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Abstract

Machine learning has been an essential tool these days. It allows the extraction of infor-

mation that would be impossible to extract manually. One of the areas widely studied

in the traditional machine learning environment, which aims to improve the predictive

power of algorithms, is the dynamic classifier selection (DCS). However, with the increas-

ing volume of stored data, traditional machine learning techniques are beginning to prove

unfeasible in certain cases. The field of data stream mining grows as an alternative to

applying similar algorithms in such situations. DCS, however, has been scarcely explored

in the data stream mining environment. Nonetheless, it is intuitive that dynamic selection

might be useful in an environment with dynamic learners, since learners are constantly

evolving with data arrival. This highlights a gap to be filled. This project is dedicated

to propose a new DCS method for mining data streams, as well as understanding the

behavior of traditional DCS algorithms in common data stream mining ensembles. A

python framework for applying DCS methods for data streams, Scikit-Dyn2Sel, was also

proposed. Regarding the behavior, results showed that DCS works similarly in the data

stream mining context as it does in the batch environment, however, there is little to no

gain in applying such algorithms to the online state-of-art ensemble as is. Tests with the

proposed method showed very competitive results against both general and DCS state-

of-art of data stream mining. Our method achieved better accuracy in most cases, while

using only a small fraction of the time and memory.

Keywords: Data Stream Classification; Dynamic Selection of Classifiers.
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Resumo

O aprendizado de máquina tem sido uma ferramenta essencial atualmente. Ele permite a

extração de informações que seriam impossíveis de serem extraidas manualmente. Uma

das áreas amplamente estudadas no ambiente tradicional de aprendizado de máquina, que

visa melhorar o poder preditivo dos algoritmos, é a seleção dinâmica de classificadores

(DCS, em inglês). No entanto, com o aumento do volume de dados armazenados, as

técnicas tradicionais de aprendizado de máquina começam a se mostrar inviáveis em

alguns casos. O campo da mineração de fluxo de dados cresce como uma alternativa

à aplicação de algoritmos semelhantes em tais situações. DCS, no entanto, tem sido

pouco explorado no ambiente de mineração de fluxo de dados. Mas é intuitivo que seleção

dinâmica pode ser útil em um ambiente com algoritmos também dinâmicos, uma vez

que os classificadores são continuamente atualizados com a chegada de novos dados. Isso

destaca uma lacuna a ser preenchida. Este projeto é dedicado a propor um novo método

DCS para mineração de fluxos de dados, bem como compreender o comportamento de

algoritmos DCS tradicionais em ambientes de mineração de fluxo de dados comuns. Um

framework python para aplicação de métodos DCS para fluxos de dados, Scikit-Dyn2Sel,

também foi proposto. Com relação ao comportamento, os resultados mostraram que

DCS funciona de forma semelhante no contexto de mineração de fluxo de dados como no

ambiente tradicional, no entanto, há pouco ou nenhum ganho em aplicar tais algoritmos

aos algoritmos do estado da arte do ambiente online. Os testes com o método proposto

mostraram resultados muito competitivos em relação ao estado da arte geral e DCS de

mineração de fluxo de dados. Nosso método alcançou melhor precisão na maioria dos

casos, usando apenas uma pequena fração do tempo e da memória.

Palavras-chave: Classificação de Fluxos Contínuos de Dados; Seleção Dinâmica de

Classificadores.
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Chapter 1

Introduction

In the modern world, enterprises and governments well understood the importance

of data in decision making. That is why the habit of storing data is constantly growing.

However, extracting knowledge from data is not a trivial task whatsoever. Nowadays, with

the great amount of data available, it is humanly impossible to do so without specialized

tools.

One of the most helpful tools used with this purpose is machine learning. This

area studies methods from recognizing patterns from data without human intervention

in the learning process, only from examples contained in the data. The discovery of

these patterns can be very helpful in the decision-making process. For example, patterns

discovered from purchases historic from a store may help the store-owner decide which

products should be offered for which clients.

The area of machine learning is not new. Since the decade of 1950, statistical

methods were already used for this purpose. To this day, the academic community and

enterprises are constantly creating new methods, for increasing the efficiency and use-

fulness of the area. One of the sub-areas studied for increasing the quality of machine

learning methods is the dynamic classifier selection (DCS). Classifiers are one of the most

basic concepts of the supervised machine learning area, they will be further explained in

Chapter 2, but a rough explanation is that they learn from data to make predictions. DCS

works with ensembles of classifiers, which again will be thoroughly explained in Section

2.8, but in summary, an ensemble is a group of classifiers working together to predict the

same data. The idea of DCS is that not all classifiers of the ensemble are able to make

a good prediction on every instance of data, so the classifiers are selected before making

the prediction. The intrinsic details of this area will be explained in Chapter 3. DCS was

already widely studied in the traditional machine learning area, with many techniques

and satisfactory results for many applications.

2
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However, with the increasing amount of data and the dynamicity of the relations

represented by it, in some cases, the application of traditional machine learning techniques

started to become difficult. To fill this gap, the area of data stream mining was proposed.

It consists of similar methods for recognizing patterns in data, but it is capable of update

the patterns learned in an efficient way. That way, smaller pieces of data can be constantly

inputted, without causing the algorithms to deal with a giant amount of data at the same

time.

For data stream mining, however, the dynamic selection is yet to be deeply stud-

ied. That means that there are not many studies applying traditional dynamic selection

methods in data stream mining, or creating new methods focused on it. But in the dy-

namic context, where we have continuously changing learners, it is intuitive that dynamic

selection might present satisfactory results. DCS might be able to not only select the

classifiers that are more competent for a given instance, but for the current state of the

stream. That is why we consider this to be an important gap in the current data stream

mining envinroment.

This project proposes to explore and understand the behavior of traditional dy-

namic selection methods in data stream mining. To determine its potential contributions

to the areas and in which cases they are beneficial. It also proposes new dynamic selec-

tion methods that take advantage of data stream mining characteristics, and respect its

restrictions.

1.1 Objectives

This project’s main objective is to propose a dynamic selection method focused on

the data stream mining context. As specific objectives, we can cite:

• Framework for applying the current state-of-art DCS techniques for data streams.

• Robust experimental protocol to ensure the feasibility of the proposed DCS method.

• Analysis of how traditional DCS methods behave on traditional ensembles in the

data stream environment.

1.2 Hypotheses

This project has two hypotheses. The first is to verify if the impact of dynamic

selection in data stream mining ensembles accuracy is positive. The second hypothesis is to
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check the viability of proposing a dynamic selection method for mining data streams, with

a positive impact on the accuracy, without adding significant overhead to its execution

time and memory consumption.

The hypotheses are:

• The application of dynamic selection methods positively impacts the classification

accuracy of dynamic ensemble methods.

• Dynamic selection method tailored for data streams positively impact the classifi-

cation accuracy in the data stream mining while keeping a low use of memory and

processing time.

1.3 Contributions

The proposed contributions of this project are:

• A framework for applying dynamic selection methods on data stream mining. A

paper explaining its structure and operation is available at (CAVALHEIRO et al.,

2020) and will soon be submitted to a peer-reviewed journal.

• Adaptation of the traditional structure of application of dynamic selection methods

for data stream mining.

• Evaluation and analysis of the impact of dynamic selection methods in the data

stream mining context.

• Proposal of a dynamic selection method designed towards data stream mining. A

paper explaining the method and experiments was submitted and is currently being

reviewed in the International Joint Conference on Neural Networks (IJCNN-2021).

1.4 Financial Support

This project was financed partially by the Pontifical Catholic University of Paraná,

with a monthly tuition waiver in 2019. From the beginning of 2020 to August 2020, fi-

nancial support was done by the “Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior” (CAPES) via the “Programa de Suporte à Pós-Graduação de Instituições Co-

munitárias de Ensino Particulares” (PROSUC) program. From March 2020 to November

2020, an internship on the University of Rouen, France, started with support from the

same university.
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1.5 Overview

This project is divided as follows. Chapter 2 introduces machine learning and data

stream mining. Chapter 3 introduces the dynamic selection of classifiers, as well as its

state-of-art methods. Chapter 4 presents a framework structure for applying dynamic

selection in data stream mining environments. Chapter 5 presents an analysis of the

behavior of traditional dynamic selection methods in data stream mining environments.

Chapter 6 proposes dynamic selection methods designed for data stream mining. Chapter

7 presents the conclusion of the current state of the project, as well as its future steps.



Chapter 2

Classification in Data Streams

As time passed, the value of data began to be more and more appreciated. The

same type of data that enterprises would normally discard because there was no point in

storing is now seen as a potential source of information for decision making. For example,

to help them find patterns in their clients’ habits and consequently explore such patterns

in order to bring benefits to the company, e.g., increase the profit, increase efficiency,

reduce costs, etc.

This led to a major adoption of a data-driven culture globally. With the advances in

computational power, storage capability, and network speed, companies and institutions

began to generate and collect more data each day. Laney (2001) stated that the way

corporations handled data at that time was already at its limit in terms of computational

and storage capacity.

It is physically impossible to extract valuable information from enormous masses

of data manually. Therefore, automatic tools are needed. One of the most important tools

for this objective is Inductive Learning. It is the base of the area of Supervised Machine

Learning (BISHOP, 2006). The algorithms in this area aim to learn patterns from a set

of labeled examples.

These examples are called instances {(x1, y1), (x2, y2), . . . , (xi, yi)} in which x is a

set of descriptive features and y is at least one target feature1 (BURKOV, 2019). The

objective of this pattern discovery is to generate a predictive model, also called a classifier

or regressor, which predicts the target feature y in unlabeled instances.

The descriptive features x of the instances are commonly inexpensive to be ex-

tracted, and this process can often be automated, e.g., the height of an animal, blood

tests, word count in a document, etc. Each feature should contribute to identifying a

characteristic of the instance. The target feature y frequently requires a specialist to be
1target features are also referred to as label or class

6
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determined, which makes its collecting process more expensive, such as the species of an

animal, if a patient has a certain disease, the type of a document, etc. That is the main

motivation of supervised machine learning, predict labels that would require an expensive

analysis to be determined. If the possible values for the target feature are a finite or

discrete set, the machine learning problem is called a classification problem. Otherwise, if

the values are continuous, it is then called a regression problem. The focus of this project

is classification. A usual protocol used to test how well the model learned is to split the

dataset into two parts: train and test. The train part is inputted into the algorithm to

build the model, and then, the test part is utilized to compute how successful was the

model generalization.

2.1 Evaluation

The evaluation of a model is done using a set of measures called performance

metrics. To compute these metrics, the test set is inputted into the trained model as if it

was real-world data that needed to be predicted, but since the labels or values of the test

instances are available, it is possible to assess how good the predictions were.

The most known and simple metric is the accuracy of the model, represented by

Equation 2.1, which is essentially the number of correct predictions pc over the total

number of predictions pt.

Accuracy =
pc
pt

(2.1)

This metric alone might represent the quality of a model that attempts to solve

a simple prediction problem. However, when the data starts to be more complex, using

only this metric might lead to a wrong conclusion.

A more complex problem, for example, could be when the distribution of classes

in the dataset is imbalanced, i.e., significantly more instances from one of the classes than

the others. In this case, the accuracy by itself does not provide useful information. For

instance, if a binary dataset has a distribution of classes of 99% for class A and 1% for

class B, and the model incorrectly predicts all of the instances as belonging to class B,

the model will achieve 99% of accuracy.

For these types of problems, usually, a per class analysis is preferable. In the

imbalanced class example, the analyzed class is usually the one with fewer samples. The

classes are divided into positive and negative instances, with positive being the class to

be analyzed and negative as the other classes. With this separation, four counters are
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extracted:

• True Positive - The number of correctly predicted instances from the analyzed class.

• False Positive - The number of incorrectly predicted instances from the analyzed

class.

• True Negative - The number of correctly predicted instances from the other classes.

• False Positive - The number of incorrectly predicted instances from the other classes.

From these counters, two metrics can be computed (POWERS, 2008): precision

and recall. Precision, as stated in Equation 2.2, is the proportion of correctly predicted

positive instances (TP ) over all the ones that were predicted (correctly or not) as positive

(TP +FP ). In other words, of all instances returned as positive, how many really were.

Precision =
TP

TP + FP
(2.2)

On the other hand, recall, as shown in 2.3, is the proportion of correctly predicted

positive instances (TP ) over all the positive instances (TP +FN) in the dataset. This is

to say, of all positive instances, how many were correctly predicted.

Recall =
TP

TP + FN
(2.3)

With precision and recall computed, the F1 score metric combines, with equal

proportions, information from both into a single number. It can be seen as a weighted

average of precision and recall. It ranges from zero to one with the values closer to one

being better. Equation 2.4 displays how to compute the F1 score.

F1 Score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(2.4)

Other vastly used metrics in the imbalanced context are the AUROC (area under

the receiver operating characteristic), AUPRC (area under the precision-recall curve), and

geometric mean. These are not detailed in this document since the imbalanced problem

is not in the scope of this work. The interested reader is referred to (JAPKOWICZ, 2013)

for a complete explanation on these metrics.

Another vastly used evaluation approach is the confusion matrix or contingency

table. It allows errors between classes to be visually observed. For example, in Figure 2.1,

there are two possible classes in the problem: YES or NO. The horizontal lines represent

the real instances of the classes, and the vertical lines represent the predicted classes.
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Figure 2.1: Binary Confusion Matrix Example (MARKHAM, 2019).

Therefore, the main diagonal of the matrix is where the right predictions are, it should

be the sequence with the highest concentration. In this example, the biggest confusion

between classes was predicted YES, when the instances were actually NO (10 errors).

2.2 Validation

If the dataset is divided into train and test once, it is called the holdout protocol.

Another commonly used option is the k-fold cross-validation protocol, which consists of

repeatedly splitting the dataset into train and test k times and evaluating the model

accordingly. This method ensures that every instance on the dataset will be used at least

one time for training the model. Both methods ensure the model did not memorize the

training instances of the dataset.

The problem of models memorizing training instances, instead of generalizing

them, is fairly common in machine learning problems. This problem is referred to as

overfitting (BURKOV, 2019). It can happen with either regression problems or classifica-

tion problems. It is normally detected when comparing the performance of the prediction

on the training set versus the test set. Usually, the metric used to detect it is accuracy.

If it decreases significantly when evaluating using the test set, then it is an indicator that

this might be happening.

2.3 Dynamic Environments

The traditional way of applying machine learning is called the offline approach. In

this approach, the data that is used to build the model should be available all at once.

The whole training set is loaded into the RAM, and the calculations needed to build

the model are computed. This is the area that contains the most known algorithms of

supervised machine learning, such as K-Nearest Neighbors (AHA; KIBLER; ALBERT,
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1991), ID3 (QUINLAN, 1986), and Random Forest (HO, 1995).

However, with the ever-growing quantity of data produced by corporations and

institutions, the traditional approach became unfeasible in certain scenarios. One of

the reasons for this is due the limitations in computational processing availability, for

example, the ability (or lack thereof) of loading all data into RAM. Another limitation is

the processing time required to generate models with such a quantity of instances. When

such circumstances are present, one possible approach is to resort to Data Stream Mining.

In the streaming approach, the definition of train and test set is not as precise as

in the offline or static environment (BIFET et al., 2018). The quantity of available data,

labeled or not, is potentially infinite since it arrives as streams of data. Possible examples

of data streams are features generated by sensors, clicks on an e-commerce website, stock

market prices, etc. Furthermore, the same data used for testing the model might later be

used to train the model. The step of building the model is never complete, as the classifier

should evolve and adapt its prediction structures as new labeled data arrives.

Other aspects of dynamic environments include: (BIFET et al., 2018):

• The learning algorithms should be able to accept new instances, either for training

the model or to be classified, at any time.

• There is no definite order that the instances should be expected.

• Efficiency in the use of RAM is expected since the data arrival might never cease.

This is one of the key points in data stream mining. The algorithms must be

structured to deal with enormous (or even infinite) quantities of data, which makes

it impossible to load all the instances into RAM.

• A limitation of the amount of time used to process each instance might exist. This

aspect is highly correlated to the previous one. Since the instances might never stop

arriving, the algorithm should not spend too much time with a single instance.

• Instances should be processed just once and should be then discarded. This is also

correlated to the RAM item, as only the highly important information to the model

should be kept in memory.

2.3.1 Concept Drift

Concepts are logic functions that machine learning algorithms learn based on pat-

terns. These functions connect the descriptive features of a set of instances to their

respective target. In other words, it is the representation of the available data behavior.
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With the concept learned, the model should be ready to predict the target value of new

instances. For example, in a problem with the descriptive features {x1, x2, x3}, all with
the same domain range [0, 1], and the target feature y has a binary domain. One possible

learned concept might be

x1 < 0.5 ∧ (0.1 > x2 > 0.2 ∨ x3 > 0.9)→ y = 1.

Machine learning is expected to solve or contribute to the solution of real-world

problems. And in the real world, the behavior or the concept of certain phenomena is not

always stable. However, if an approach accepts new data to be inputted in the model,

which is the case of Data Stream Mining algorithms, this change of behavior must be

dealt with. This change of behavior is called concept drift (SCHLIMMER; GRANGER

JR., 1986).

One of the reasons for the concept drift is that sometimes the data available in the

dataset does not contemplate all the descriptive features needed to fully understand the

concept of a problem, an issue called Hidden Context (TSYMBAL, 2004). An example of

a concept drift might occur, for instance, in a clothing store that wants to predict what

type of clothes a given customer is more likely to buy. The dataset might contain variables

that very well describe the customers. However, if it does not contemplate the country’s

inflation or the current season of the year, the patterns in the data may suddenly change

with no apparent reason.

Considering the frequency, the changes in concepts can be divided into two groups:

abrupt and gradual (NÚÑEZ; FIDALGO-MERINO; MORALES-BUENO, 2007). An

abrupt drift occurs when the change in the concept usually occurs over one time-window

to another. The gradual change occurs partially over several time windows, the percentage

of one class in one or more areas of the data distribution slowly increases as the percentage

of another class in the same area slowly decreases. During the occurrence of a gradual

drift, it is common for a mixture between classes to happen around the decision boundary

(the line or hyperplane that separates the distribution of the different classes in the data).

This is illustrated in Figure 2.2, in which f(x)1 and f(x)2 are, respectively, the old and

new decision boundaries. During the drift, instances belonging to both classes “empty

circle” and “full circle” can be seen between the boundaries.

In order to define if a drift is gradual or abrupt, we must analyze the drift window

Wdrift. Considering that a drift started after an instance xi, and the new concept was

stabilized after instance xj. If theWdrift, which is the number of instances passed between

xi and xj, is equal to one, then the drift is abrupt. Otherwise, it is gradual. The difference

between the two types of drift is illustrated in Figure 2.3.
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Figure 2.2: Evolution of Data During Gradual Drift

Finally, concept drifts may also be classified regarding the type of drift. There are

many kinds in this category, some of the most notable are the real, virtual (PESARANG-

HADER; VIKTOR; PAQUET, 2018), local, and feature drift (TSYMBAL et al., 2008).

In both real and virtual concept drifts, the data distribution changes, however in virtual

drifts, the decision boundary remains unaffected. Local concept drifts happen only in

specific parts of the data, without changing the whole concept for one class or a set of

classes. An example of this phenomenon is when dealing with the resistance of bacteria

to certain types of antibiotics (TSYMBAL et al., 2008). The resistance level can change

to a particular colony of bacteria without affecting the global resistance. Finally, feature

drift is when one or more features become or cease to be relevant for learning the concept.

An adaptive algorithm is not able to predict these changes in the concept. Yet,

it should be able to detect and react to the changes in order to keep the algorithm

performance metrics at an acceptable level.

Figure 2.3: Types of Concept Drift, adapted from (FOUCHÉ, 2017)
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2.3.2 Detecting Changes

One of the most common techniques to detect a change in the data distribution

is to monitor the error rate of the learning algorithm. The Probably Approximately

Correct Learning (PAC Learning) theory (VALIANT, 1984) explains that a concept is

approximately correct, over a certain data distribution D, if the model error is below

a certain ε and, it is probably correct if the probability of an algorithm generates a

classifier that fits the previous condition is higher than 1 − δ. Therefore, if the data

distribution is stationary, i.e., without concept drifts, an adaptive algorithm should be

continuously increasing its predictive capacity as more data arrives, and consequently,

its error rate should decrease or at least keep below ε. If a significant variation in the

error rate occurs, the model might not be probably approximately correct anymore, which

could possibly mean that drift in the concept occurred. This method is known as Drift

Detection Method (DDM) (GAMA et al., 2004). There are other methods that are based

on the same idea, such as Early Drift Detection Method (EDDM) (JOSE et al., 2006)

and Reactive drift detection method (RDDM) (BARROS et al., 2017).

Another existing approach to detect changes is by continuously estimating the

probability distribution values. A drift is detected when a significant change in the value

of the estimated parameters happens. In this category, the most representative method

is the Page-Hinkley (PH) test (PAGE, 1954). A variant of this approach is to monitor

these distributions using more than one window of data, comparing reference data from

old instances with newly arrived data, if there is a significant difference, a drift might

have happened. Examples of methods following this approach are ADWIN (BIFET;

GAVALDÀ, 2007) and Hoeffding Drift Detection Method (HDDM) (FRIAS-BLANCO et

al., 2015).

The last approach used to detect changes in data is the contextual approach.

Methods in this category combine incremental learning and forgetting techniques in the

detection process, using an estimated window. A representative method in this category

is the SPLICE method (HARRIES; SAMMUT; HORN, 1998).

A deeper explanation of each method and the main advantages of each approach is

not under the scope of this project. For this analysis, the reader is referred to (DUONG;

RAMAMPIARO; NØRVÅG, 2018).

2.3.3 Forgetting

The forgetting approach for dealing with concept drifts consists of disregarding old

instances in the predictive model (KOYCHEV, 2004). This is an implicit way of dealing
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Figure 2.4: Periodic Holdout

with changes in the data distribution, as the most recent data is considered in detriment

of older data.

One of the challenges with this type of approach is to determine for how long

should the model buffer instances. If the threshold for the forgetting to start is big, the

model should be more robust when no drift is present, however, when drift occurs, the

instances belonging to the outdated distribution are going take longer to be disregarded.

On the other hand, if the threshold is small, the model should quickly adapt to drifts,

but in problems with no drift, the model might not be as robust. This is referred to as

the stability-plasticity dilemma.

2.4 Validation in Data Stream Mining

In streaming scenarios, data is continuously arriving, and thus, the separation

between training and test data may be unclear. Therefore, specific validation processes

should be considered in streaming scenarios. Two of the most commons are the Periodic

Holdout and Interleaved Test-Then-Train or Prequential (BIFET et al., 2010). It is

noteworthy that both these methods are based on the test-then-train principle, which

ensures that the instances were used for testing before they are used for training. This is

important because it avoids a potential bias on the classifiers predicting instances already

seen.

2.4.1 Periodic Holdout

Since the quantity of instances is uncertain in data stream mining problems, it is

not possible to apply the normal offline holdout method. The periodic holdout protocol

consists of a common holdout repeated over time until there are no more instances arriving.

Since a percentage division for train and test is not possible, an absolute number of

instances for each part is set. As presented in Figure 2.4, when the stream starts flowing,

the first N instances are used only for training the model, without evaluation. After this

step is completed, the next M instances are used solely for testing. Once this cycle is

over, the process is repeated.
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Figure 2.5: Prequential

2.4.2 Prequential

The idea of prequential (GAMA; SEBASTIÃO; RODRIGUES, 2013) is to assess

instances individually in a test-then-train fashion. For each instance that arrives from

the stream, it is used first for testing the model, then for training it, as shown in Figure

2.5. This order is important because it guarantees that the model will only be evaluated

with instances that it has never been trained on. Therefore, it creates a solid represen-

tation of how the accuracy evolved over time, and how it behaved when certain known

events occurred, e.g., concept drifts. As stated by the authors in the original paper, the

performance of this protocol converges to a holdout estimate.

Prequential can also be executed with a ponderation applied upon the instances,

so they have different weights when computing the evaluation metrics (e.g, accuracy). It

was originally designed to work with one instance at a time, however it can also receive

chunks of instances. The rationale remains the same, the chunk is first used to test, then

to train.

2.5 Data Stream Generators

Data stream generators are common tools utilized when validating methods in

data stream mining. Their purpose is to generate random instances following a certain

data distribution. First, a random vector of features x is created and is labeled according

to a function f(x).

For example, in Figure 2.6 the descriptive features of the instances are x1 and x2,

with both values ranging from 0 to 1. The target feature is “empty circle” or “full circle”.

The decision boundary between the classes is defined by the function f(x) = x. The

generation of an instance occurs as follows: a random pair x1 and y2 is generated, then, if

the pair is above the decision boundary, it is considered of the class “full circle”, otherwise

“empty circle”.

Generators are widely used by the scientific community because of the vast control

and reproducibility they provide for experiments. Most generators have more than one

function to be selected as a parameter, making it easy to simulate concept drifts at any
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desired time. In this project, four generators are described in detail.

2.5.1 Streaming Ensemble Algorithm - SEA

The SEA generator (STREET; KIM, 2001) creates a random feature vector with

tree elements {x1, x2, x3}, but only two of them ({x1, x2}) contribute to describing the

instance, while the third one’s purpose is to create noise. Each of the features is bounded

in the [0;10] interval. The definition of the target feature once the vector of descriptive

features is done follows a linear threshold. If x1 + x2 > θ then it belongs to class “A”,

else to class “B”. The value of θ is variable and changing it in the middle of an algorithm

execution creates a concept drift.

2.5.2 AGRAWAL

The AGRAWAL generator (AGRAWAL; IMIELINSKI; SWAMI, 1993) creates

data that are separated in two groups. It creates instances with a total of nine de-

scriptive features, with three of them being categoric and the other ones numeric, as

seen in Table 2.1. The target feature can assume “Group 1” (defaulting customers) and

“Group 2” (non-defaulting customers). The features are generated randomly, and there

are ten different functions for determining the class of the instance once the features were

generated. Changing the function creates a drift in the concept to be learned.

In order to introduce noise into the data generation process, the generator receives

as parameter a perturbation factor p. After the features were generated and the class was

Figure 2.6: Data Distribution Following a Function
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Table 2.1: Agrawal Generator Features, adapted from (AGRAWAL; IMIELINSKI;
SWAMI, 1993)

Feature Type Value Range

salary Continuous Random in 20000 to 150000
commission Continuous 0 if salary >= 75000 else random in 10000 to 75000

age Continuous Random in 20 to 80
elevel Categoric {0, 1, 2, 3, 4}
car Categoric {1, 2, ..., 20}

zipcode Categoric {zipcode0, zipcode1, ..., zipcode8}
hvalue Continuous Random in k

2
× 100000 to 3k

2
× 100000 for k = zipcode index

hyears Continuous Random in 1 to 30
loan Continuous Random in 0 to 500000

assigned, the values of the continuous features are modified accordingly to this parameter.

For each feature, the formula v + r × p × a, is applied, where v is the initial generated

value for the feature, r is uniformly distributed between -0.5 and 0.5 and a is the range

of values that the feature can assume.

2.5.3 Random Tree Generator - RTG

The Random Tree Generator (DOMINGOS; HULTEN, 2000) is a highly flexible

generator as the number of continuous and categorical features, as well as the number

of target features, are user-given parameters. The generator first spawns a decision tree

based on random splits on attributes and random definitions of class for each leaf. After

the tree is built, the instances are created by uniformly generating attributes for the

instances and, defining the class by traversing the tree. To simulate concept drifts, a new

tree must be created with a different random seed.

2.5.4 Asset Negotiation Generator

The Asset Negotiation Generator (ENEMBRECK et al., 2007) simulates instances

with negotiation proposals. All the five descriptive features are categorical, as given

in Table 2.2, and the target feature is a judgment if the offer is “interesting” or “not

interesting”. It has five different functions to simulate changes in the concept.
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2.6 Real-World Datasets

Stream generators are widely accepted by the scientific community. However, in

order to fully validate that a method is suited for deployment in a real world environment,

it must first be tested with real-world datasets. In this section we explain three datasets

that are commonly used in streams.

2.6.1 NOMAO

The NOMAO dataset (CANDILLIER; LEMAIRE, 2013) was presented as a chal-

lenge. Each instance consists of data about two places, and the class is if they are the

same place or not. The objective of the task is to train a model capable of deduplicat-

ing instances from a search engine. This dataset consists of 34,465 isntances with the

dimension of 118.

2.6.2 Spam Corpus

The Spam Corpus dataset (KATAKIS; TSOUMAKAS; VLAHAVAS, 2006) con-

sists of 9,324 instances with dimension 39,917. The features are all boolean values that

represent if the instance, which is an email, contains a word or not. The class is if the

email is a spam or not.

2.6.3 Electricity

The Electricity dataset (RODRIGUES; GAMA; PEDROSO, 2008) was extracted

from raw data from sensors of multiple electrical stations. It contains 45,312 instaces with

dimension 8. The label is if the electricity price will increase (up) or decrease (down).

Table 2.2: Asset Negotiation Generator Features, adapted from (ENEMBRECK et al.,
2007)

Feature Value Range

Color {black, blue, cyan, brown, red, green, yellow, magenta}
Price {very low, low, normal, high, very high, quite high, enormous, non salable}

Payment {0, 30, 60, 90, 120, 150, 180, 210, 240}
Amount {very low, low, normal, high, very high, quite high, enormous, non ensured}

Delivery Delay {very low, low, normal, high, very high}
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2.7 Base Classifiers for Data Streams

As previously mentioned, classifiers or models are normally built based on labeled

data provided for training. Either in the offline or online machine learning, the data itself

is not needed anymore once the classifier is built or updated. There are many different

techniques to build classifiers, and in this section, three different methods for data stream

classification (that allows the model to be updated) are described in detail.

2.7.1 K-Nearest Neighbors

K-Nearest Neighbors for data streams is a method that works almost the same

as its offline version (FIX; HODGES, 1989). It does not have a building process for the

model, and all training instances are stored. When an instance x for prediction arrives,

its K most similar instances in the training set are selected. Next, the most common class

in these K instances are selected as the predicted class for x.

The similarity is defined by a distance function, and this function is applied to x

with every instance on the training set. Therefore, the instances with the lowest values

are the most similar to x. The most common distance function used is Euclidean distance,

which can be seen in a two or three-dimensional context as a straight line.

The search for the K-closest instances can also be optimized with a pre-processing

step on top of the training set (BENTLEY, 1975). KD-Tree subdivides the training in-

stances into subspaces, and thus, when predicting instances, distances are only computed

on the group that most likely contains their similars. This subdivision is often done by

discriminating the instances using as threshold the median of each feature values. For

example, let a dataset D with instances with two dimensions x1 and x2. First, the in-

stances would be separated accordingly to the median value of x1. We would then have

two groups of instances, then, these groups would be divided regarding the median value

of x2 for each group. This creates a tree structure, and when searching for the neighbors,

the euclidean distance search would only have to be performed on the group where the

instance lands.

While KD-Tree provides a great performance increase regarding time compared

to traditional KNN, its results may not be as accurate as the latter. However, KD-Tree

usually provides a satisfactory trade-off between statistical accuracy and processing time.

There also other optimizations of KNN such as Ball-Tree (OMOHUNDRO, 2009).

In the online version of this algorithm, a sliding window size N is received as a

user-given input. When new instances arrive, they begin filling the window. Once its
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maximum size is reached, every time a new instance arrives, the oldest one is forgotten.

The definition of the size of the window recalls the plasticity-stability dilemma. With

bigger windows, more processing is needed at every prediction as a larger number of

distance computation occurs. On the other hand, with smaller windows, less robust the

model is, but considering concept drifts, they can adapt faster.

2.7.2 Naive Bayes

The Naive Bayes algorithm for data streams is almost identical to the offline version

(BISHOP, 2006). It is an algorithm based on the Bayes Theorem given in Equation (2.5).

P (y|~x) = P (~x|y)× P (y)
P (~x)

(2.5)

This theorem calculates the conditional probability of y happening, given that ~x

happened. The training part of the algorithm consists of gathering a series of statistics

of the training set, in order to compute the statistics required during the prediction step.

During the prediction step, the exact same idea of the theorem is followed. What

is the probability of the instance i belonging to the class y, given that it has the following

set of features ~x? This probability is calculated for all the possible classes, the one with

the biggest probability is set as the prediction.

One particularity of the Naive Bayes is that it assumes that all of the features

are independent of one another. Although this is not always true, in many cases, this

should not be a problem, because even though the probabilities values might be biased,

it may not affect the final prediction (in a binary problem, a probability of 70% or 80%

will output the same class).

2.7.3 Hoeffding Tree

A decision tree is a type of classifier that builds its model following the structure of

a tree. Figure 2.7 illustrates an example of a decision tree. Each node of the tree is a test

concerning an attribute. For example, the first node, also called root, when predicting

will test if an instance has the attribute “age” is less than 30. If the condition is true,

the instance will walk down the tree to one of the sides, in this case, the left, and then

the same protocol is repeated until it reaches one of the tree leaves (node that does not

have children). Each leaf of the tree will contain a class, which is the prediction for the

instance that reaches it.

There are plenty of ways to build a decision tree, but the idea of selecting an
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Figure 2.7: Example of Decision Tree, adapted from (GUANGA, 2019)

attribute to a node split is that it is, at a given moment, the more useful in terms of

separating different classes. The Hoeffding Tree (DOMINGOS; HULTEN, 2000) algorithm

was the first of this type of algorithm that allowed online learning, as previous batch

algorithms needed to load the whole dataset in the memory or scan it sequentially multiple

times, not fulfilling a stream mining requirement.

The Hoeffding Tree proved that with just a few instances and a confidence level,

it was possible to determine the best attribute to assign to a node. The chosen attribute

would, in most cases, be the same as if it was chosen based on infinite instances. This

allowed the algorithm to process the instances just once, without the necessity of storing

them. That way, the tree built by this algorithm should be almost identical to the ones

built with offline decision trees algorithms. However, there are studies that challenge

this claim, such as (MATUSZYK; KREMPL; SPILIOPOULOU, 2013), but the original

algorithm is still the most used version, given its positive results.

Several adaptations of the original Hoefding Tree algorithm were made, such as

the Hoeffding Option Tree (PFAHRINGER; HOLMES; KIRKBY, 2007), which gener-

ates new nodes as optional paths in the tree. There is also the Vertical Hoeffding Tree

(KOURTELLIS et al., 2016), which is a distributed algorithm that allows to deal with

enormous datasets. It also noteworthy citing the Extremely Fast Decision Tree (MAN-

APRAGADA; WEBB; SALEHI, 2018), which unlike the original algorithm, it revisits the

node splits to make changes in the decision boundary, in order to make the tree more sim-

ilar to its offline version. In this work, only the traditional Hoeffding Tree is considered,

because it is the currently most used version in scientific experiments.



22

2.8 Dynamic Ensembles

An ensemble of classifiers is a diverse combination of multiple models trained to

solve the same problem (OPITZ; MACLIN, 1999). The basic idea is that each element of

the ensemble will be trained to be competent in a different area of the problem. There-

fore, when appropriately combined, all elements should come up with a better solution

than one individual element. Nonetheless, it is not guaranteed that an ensemble will

perform better than an individual classifier. The more diverse an ensemble is, the higher

are the chances that the members will complement each other, therefore increasing the

performance metrics over single classifiers (SAMMUT; WEBB, 2010). This diversity is es-

pecially important when related to the classification errors of the elements, the classifiers

should make different mistakes in a successful ensemble.

The type of classifier that composes an ensemble is called the base classifier. Tech-

nically, every type of classifier can constitute an ensemble, but an ensemble will usually

present better results if the base classifiers are unstable (SAMMUT; WEBB, 2010). It is

also important to highlight that some ensemble methods require specific base classifiers.

Unstable base classifiers are those in which small changes in the training data cause the

learning concept to vary widely. An example of an unstable classifier is a decision tree.

There are many different techniques to train an ensemble. One possible way is to

randomly distribute instances to the base classifiers (BREIMAN, 1996). The ensemble

can also be built by training each base classifier based on the previous errors of others

already trained members (BREIMAN, 1996). Another method is to randomly select the

features that each base classifier will take into consideration when training itself (HO,

1998). Among many other methods described in the literature, most of them are usually

based on one or more of these three. When it comes to predicting, they all resort to a

combination rule.

Every element of the ensemble E will have a vote about what the prediction should

be, and the combination rule takes all of these votes and combines them into one final

prediction. The most common and simple rule is the Majority Vote, given in Equation

2.6, where ŷ is the predicted class, T is the number of classifiers in the ensemble and v is

the vote of each classifier as an array with one in the predicted class index and zero in all

other indexes.

ŷ = argmax

T∑
i=0

vi (2.6)

For example, in a binary problem, if a classifier predicts the instance as the class
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"zero", v would be equal to {1, 0}. The votes of every classifier are summed into a single

array, and the argmax function selects the index of the class with the highest value. In

other words, this method selects the class that was most voted by the classifiers. There

is also the weighted vote, in which the vote of each classifier is weighted by a metric, e.g.,

the accuracy of the individual classifier.

There is an step that can happen before the vote combination, which is the dynamic

classifier selection, which is the main focus of this work. A detailed discussion on this

area is presented in Chapter 3.

There are three main reasons that justify the use of ensembles in machine learning

(DIETTERICH, 2000). The first one is statistical as what a machine learning algorithm

aims is to find a hypothesis h that explain the relations between the descriptive features x

and the class y. In other words, it seeks to find the best approximation to the real function

f(x). Sometimes, especially when few instances are available to train the model, many

different hypotheses {h1, h2, . . . , hn} can be found in the whole space H with the same

accuracy on the training set. This does not mean they will have the same accuracy when

predicting new instances. Hence, instead of picking one hypothesis by chance, combining

them brings the hypotheses to a mean, increasing the chance of a better generalization.

This is represented in Figure 2.8, top-left.

The second reason is computational. When searching for the best hypothesis, an

algorithm might find what is actually a local optimum. For some algorithms, it is very

costly, or even impractical, to perform a global search. Consequently, combining multiple

local optima increases the probability of a mean hypothesis performing better than a

single one. This can be seen in Figure 2.8, top-right.

The last reason is representational. It is possible that the hypotheses found by

classifiers do not well represent the function f(x). One reason this might happen regards

limitations in the algorithm, e.g., a linear classifier for a non-linear problem. Another rea-

son might be incomplete or non-descriptive enough data. Therefore combining hypotheses

might create a mean hypothesis that no individual classifier is capable of achieving. As

demonstrated in Figure 2.8, bottom.

In the following sections, different ensemble learning techniques tailored for data

stream learning are presented.

2.8.1 OzaBag

The Online Bagging or OzaBag (OZA, 2005) is an ensemble method for data

streams based on the popular offline ensemble method Bootstrap Agreggating or Bagging
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Figure 2.8: Reasons for the Adoption of Ensembles, adapted from (DIETTERICH, 2000)
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Table 2.3: Probability of Numbers 0 to 5 on Poisson Distribution with λ = 1.

Number Probability

0 0.36788
1 0.36788
2 0.18394
3 0.061313
4 0.015328
5 0.0030657

(BREIMAN, 1996). The traditional Bagging works by creating N “bags” of data, with

replacement, with the same size K as the original dataset. Then, each of the bags is used

to train a base classifier. On the prediction step, a simple majority vote is used.

One major difficulty when adapting the bagging algorithm to the online environ-

ment is that the whole dataset is not available at the same time. Therefore it is impossible

to determine the size of the bags and create the bags. To overcome this issue, to each

arriving instance, for each base classifier, a random number k following the distribution

of Poisson with λ = 1 is generated. This k will be the number of times the instance will

be used for training a base classifier. Table 2.3 illustrates the probability of each number

from zero to five to be generated (above five, the probability is practically negligible).

2.8.2 OzaBoost

OzaBoost (OZA, 2005) is the first online adaptation of the AdaBoost method

(SCHAPIRE, 1999). The rationale behind these methods is to create a sequential ensem-

ble of learners that are trained based on the errors made by the last learner.

The training step of OzaBoost works as follows: For a training instance xi, the first

member c0 of the ensemble trains the instance in the same way as OzaBag with λ = 1. If

the instance is misclassified by c0, the λ value is increased for that instance in the next

member c1. This process repeats for the whole ensemble. In that way, if the last member

does not well classify the instance, the next member will give more attention to it, because

the higher the λ, the higher the probability of the instance being sampled more times.

2.8.3 OzaBagAdwin

OzaBagAdwin (BIFET et al., 2009) combines the Online Bagging with the change

detector ADWIN (BIFET; GAVALDÀ, 2007), described in Section 2.3.2.

The way it works is identical to OzaBag, but with one addition, each member of

the ensemble has an ADWIN detector attached. When ADWIN detects a change, the
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Table 2.4: Probability of Numbers 0 to 11 on Poisson Distribution with λ = 6.

Number Probability Number Probability

0 0.0024788 6 0.16062
1 0.014873 7 0.13768
2 0.044618 8 0.10326
3 0.089235 9 0.068838
4 0.13385 10 0.041303
5 0.16062 11 0.022529

classifier is replaced by a new one.

2.8.4 Adaptive Random Forest

Adaptive Random Forest (ARF) (GOMES et al., 2017) is an adaptation of the well-

known method for offline environments Random Forest (BREIMAN, 1996). The original

Random Forest creates an ensemble of decision trees that are trained not only using the

Bagging method but also randomizing which features each tree will take into consideration

when splitting the nodes of the trees. This is expected to create a diverse ensemble

because the trees will only be trained and construct a hypothesis between correlations of

the features selected to it at that split.

Focusing on the Adaptive Random Forest, it initially creates bags for each tree in

a similar way to OzaBag. The only difference is that instead of Poisson with λ = 1, it uses

λ = 6. This drastically decreases the probability of an instance not being selected and

increases the probability of it being selected with a higher resampling rate, as illustrated

in Table 2.4. To adapt the selection of features in tree splits, ARF modifies the Hoeffding

Tree (DOMINGOS; HULTEN, 2000), which was described in 2.7.3. In ARF, the Hoeffding

Tree algorithm does not prune the trees, and when a tree split is done, only a subset of

features are taken into consideration.

ARF also includes two detectors for each tree, but it does not simply reset a tree

when a drift is detected, as OzaBagAdwin does. ARF sets one of the detectors with a low

and one with a high level of confidence. When the one with low level is triggered, it is

treated as a warning for a new tree to start to be constructed in the background. When

the drift is actually detected (detector with a higher level of confidence is triggered), the

tree is replaced for the new one that was already being trained on.
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2.8.5 Kappa Update Ensemble

Kappa Updated Ensemble (KUE) (CANO; KRAWCZYK, 2019) is a method based

on the Kappa metric. This metric indicates how well the classifier performs when compar-

ing to pure statistical probability, given the current state of the stream. The formula for

computing Kappa is illustrated in Equation 2.7, in which acco is the currently observed

accuracy and acce is the currently expected accuracy, given the distribution of samples.

Kappa =
acco − acce
1− acce

(2.7)

This is especially useful when dealing with imbalanced datasets, for example, a

distribution of classes of 99% to 1%. If the classifier simply guesses the predictions based

on the probability of being of the first class, it might get an accuracy close to 99%. Hence,

if a trained classifier gets the same accuracy, it does not necessarily mean it is a good

result. Therefore, Kappa, in this case, is a more meaningful metric.

In constrast to the methods described above, KUE works with chunks of data.

When the first data chunk arrives, the instances are distributed to each classifier to be

trained using Online Bagging with λ = 1. Besides, what and how many features each

classifier will take into consideration when training is also randomized for each ensemble

element. This is similar to what happens in ARF, but in this case, the number of features

is also randomized, and the subset of features is selected to the whole classifier, not only

for the node splits. After the training step, the Kappa for each classifier is computed on

the chunk. This is interpreted, in this algorithm, as the competence of the classifier.

When new data chunks arrive, the ensemble needs to be updated. The new chunk

is sampled according to the Online Bagging process. Next, the Kappa (competence) is

recalculated only on the last arrived chunk.

As a dynamic ensemble, however, the algorithm is expected to deal with possible

drifts in the concept. In order to eliminate the need for a drift detector, after the update

step, before accepting the next chunk, a new ensemble of q (which is passed as a parameter)

is created using the initialization step with the last chunk. Then if the competence

(Kappa) of the newest classifiers is better than competence of any member in the main

ensemble, the weakest classifiers are replaced with the new ones.

In the prediction step, the vote of each classifier is weighted by its Kappa on the

last chunk. The vote is only taken into consideration if the Kappa is equal or bigger

than zero, which enforces that only the most well-adapted elements to the current data

distribution contribute to the final decision.
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2.9 Frameworks for Data Stream Mining

There are two major frameworks used by the scientific community for Data Stream

Mining: Massive Online Analysis (MOA) and Scikit-Multiflow.

2.9.1 Massive Online Analysis - MOA

MOA (BIFET et al., 2010) was developed in the University of Waikato as a com-

plement to the popular framework for offline machine learning, WEKA (HALL et al.,

2009). It was developed as an environment for researchers to implement new methods

and test them with the state-of-art, as well as for users to apply data stream mining

algorithms in their own data.

MOA gives access to a great number of machine learning algorithms, especially

when considering the ones available in WEKA. It was developed in Java, and it is fully

open-source and easily extendable. It also includes several data stream generators, and it

allows input of ARFF (Attribute-Relation File Format) files as the data stream.

2.9.2 Scikit-Multiflow

Scikit-Multiflow (MONTIEL et al., 2018) is based on MOA, but it follows the base

structure of the popular Python machine learning framework Scikit-Learn (PEDREGOSA

et al., 2012). It focuses not only on applying data stream mining algorithms but also on

methods that involve multi-output responses (when the target feature y is a vector and

not a single value).

Scikit-Multiflow is also fully open-source and easily extendable. Since it is more re-

cent and not widely embraced by the scientific community yet, it still lacks some methods

and functionalities that are present in MOA, such as some stream generators and spe-

cific adaptations of traditional methods that are directly implemented in MOA by their

authors. It is written in Python, which presents an advantage over MOA since Python

is considered to be more beginner-friendly than Java (PELLET; DAME; PARRIAUX,

2019). This could help a faster adoption of the framework in the near future.

Python is also known by its various scientific tools that allow computations in

high performance. However, currently, MOA presents better performance than Scikit-

Multiflow. This is because the implementation of the data stream algorithms in Scikit-

Multiflow was highly inspired in the MOA implementation. However, in an extremely

high-level language such as Python to present good performance, non-conventional tech-

niques must be applied. For example, in Figure 2.9 left a real code extracted from the
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Figure 2.9: Code Adapted from Scikit-Multiflow repository (Left) and Possible Optimized
Version (Right)

Table 2.5: Time Processing of Original Code versus With Possible Optimization

Original Optimized

3.3678 sec. 0.0331 sec.

library2 is displayed. In it, a loop through an array of arrays (matrix) is performed apply-

ing the function argmax3, from the library Numpy (OLIPHANT, 2006), to each element.

However, Numpy is a library written in low-level languages, such as C and Fortran, it

provides an interface for Python to access highly-optimized array functions in much less

time. The same loop can be rewritten as the code presented in Figure 2.9 right, with

expressive differences in processing time, as presented in Table 2.54.

2.10 Final Considerations

This section presented the fundamental concepts for understanding the next sec-

tions of this document. The main ideas of machine learning and its extension to data

stream mining were briefly described. In the next section, dynamic classifier selection

(DCS) will be presented. Even though DCS is part of the machine learning toolkit, the

next section is devoted specifically to it since it is at the core of this work.

2https://github.com/scikit-multiflow/scikit-multiflow/blob/master/src/skmultiflow/bayes/naive_bayes.py
3Function that returns the index of the element with the higher value in an array.
4The experiments were run with a matrix randomly generated, with one million rows and five columns.

Each timing was executed ten times.
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Dynamic Classifier Selection

One of the most important aspects to set up when using an ensemble method is

the combination method. Recapitulating, the combination method is how the predictions

of all classifiers in an ensemble are combined to a single prediction. As explained in

Section 2.8, two common methods for combining predictions are the majority vote and

the weighted vote.

Besides the combination method, there are also methods that select which classi-

fiers are going to be used to predict, these are called Selection Methods. The idea of this

approach is to identify which members of the ensemble are more “competent” to classify

a specific piece of data. There are two types of selection, static and dynamic. The static

selection aims to select which classifiers were most successful during the training phase of

the ensemble. This is not suitable for data streams, at first, for some reasons. The first

one is that there is not a defined training phase in data stream algorithms, which prevents

the functioning of traditional selection methods. Another reason is that classifiers are not

static in this context, they are constantly updated and can be replaced, also, they are

subject to concept drifts.

Dynamic Classifier Selection aims to select which members of the ensemble are

more competent to predict each instance individually. As illustrated in Figure 3.1, for

each instance that arrives to be predicted, a selection logic selects from the ensemble

which elements shall be used to predict the instance. Then, from the selected ensemble,

a prediction is outputted.

Recent literature divides selection methods into two types: Dynamic Classifier

Selection (DCS) and Dynamic Ensemble Selection (DES). The difference between the

groups is that the former selects a single classifier to perform the prediction, while the

latter selects a subset of the ensemble (which in some cases may also contain just one

classifier or even the entire ensemble). Since the second group might have more than one

30
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Figure 3.1: Dynamic Selection of Classifiers

classifier, it still needs to apply a combination rule as a final step to the prediction.

A great tool that helps clarify if it makes sense to apply Dynamic Selection in

an ensemble is the Oracle (KUNCHEVA, 2000). The idea is to check if there is at least

one member of the ensemble that correctly predicted the instance. If there is, the whole

ensemble is set to as correctly predicted the instance. This is obviously not suitable for real

problems since it depends on having the class of the instances to predict. The sole purpose

of this method is to check if there is room available for increasing the performance of the

ensemble. In other words, if the Oracle considerably outperforms a normal execution,

it means that there are classifiers that are predicting correctly when the majority is

predicting wrongly, thus it is expected that a good selection method will bring benefits.

Dynamic selection for the offline machine learning environment has a vast litera-

ture. Most of the methods described in this section have very similar structures. The

protocol starts with separating part of the train set to be a validation set. Then, the

ensemble is usually constructed using the new train set. On the prediction step, to every

instance to be predicted, a search to its most similar instances on the validation set is

performed using the K-Nearest Neighbors (FIX; HODGES, 1989). Since these instances

are close to the instance to be predicted, their behavior on each classifier of the ensem-

ble is analyzed to determine which elements will be selected. This analysis is where the

difference between the methods resides.

For the understanding of the methods KNOP and META-DES, both explained
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in Section 3.1, it is necessary the understanding of what an output profile stands for.

Notation-wise, the output profile of an instance is an array {ŷ1, ŷ2, . . . , ˆyn} in which each

element is the class predicted by each one of the n classifiers of the ensemble. For example,

an output profile of {1, 0, 1}means that a given instance was predicted by the first classifier

of the ensemble as of class 1, predicted as class 0 by the second classifier and as class 1

by the third classifier.

There are few methods concerning the application of Dynamic Selection of Clas-

sifiers in online machine learning. In this section, it is presented the main methods for

dynamic classifier selection, divided by offline and online machine learning methods, thus,

highlighting this gap.

3.1 Methods for Offline Machine Learning

In this section, the DCS methods considered to be the most representative to the

state-of-art for batch classifiers will be presented.

3.1.1 A Priori and A Posteriori

The A Priori method (GIACINTO; ROLI, 1999) provides a selection method based

on probabilities. It gathers the most similar instances in the validation set to the instance

to be classified using K-Nearest Neighbors. Then, for each classifier c, it sums the proba-

bility outputted by c of each neighbor being of the class they really are. In other words,

this creates a metric that represents how accurate each classifier is the subset of neigh-

bors. The classifier with the highest value for this metric is selected for prediction. The

sum is weighted by the Euclidean distance of each neighbor with the query instance. The

classifier is only selected if the difference in the metric is significantly better than the

other classifiers. This is controlled by a user-given threshold.

The A Posteriori method (GIACINTO; ROLI, 1999) is similar to A Priori. The

difference is that it only takes into consideration when computing the metric for each

classifier c the neighbors that belong to the class predicted by c, for the instance to be

classified.

3.1.2 DCS-LA

DCS-LA (Dynamic Classifier Selection - Local Accuracy) (WOODS; JR; BOWYER,

1996) is a family of algorithms for the Dynamic Classifier Selection approach. The al-
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gorithms are Local Class Accuracy (LCA) and Overall Local Accuracy (OLA). As the

names suggest, both methods are based on the local accuracy concept, and they select a

single classifier to make the prediction of each test instance.

The Overall Local Accuracy works as follows: theK neighbors of the query instance

are gathered. Next, the algorithm computes the accuracy of each classifier regarding only

the neighbors returned. It then proceeds to pick the most accurate classifier to predict

the instance.

The Local Class Accuracy method (LCA) is very similar to the Overall Local

Accuracy (LCA), but it focuses on the ability of the classifier in the class it predicted the

query instance. The idea is to answer the question: what classifier is the most accurate

with respect to the class they predicted the instance? Only the neighbors of the same

predicted class are returned, thus, the neighbors might vary for each classifier of the

ensemble. It then computes the percentage of neighbors that were correctly predicted by

each classifier, and the prediction of the classifier with this higher measure is picked.

In both algorithms, if two or more classifiers share the higher accuracy values, the

most recurring class amongst the tied classifiers is selected. If the tie persists, a third

classifier is taken into consideration.

3.1.3 DCS-RANK

The DCS-RANK method (SABOURIN et al., 1993) might be considered one of

the first works in dynamic selection. The idea is to rank the classifiers by competence and

selecting the first position of the rank to predict the instance. The method starts with

gathering the neighbors using K-Nearest Neighbors, and these are sorted according to the

Euclidean distance to the instance to be predicted. Next, the rank of competence of the

classifiers is built, based on the number of consecutive correct predictions each classifier

made on the list of neighbors.

There is also a proposed modified version of this method (WOODS; JR; BOWYER,

1996). This version includes the concept of Local Accuracy, previously described in Section

3.1.2. When an instance arrives to be predicted, for each classifier, the nearest instances

that belong to the class that was predicted by the classifier are returned. Finally, the

neighbors of that class are sorted, and the rank is computed.

3.1.4 KNORA

KNORA or K-Nearest-Oracles (KO; SABOURIN; BRITTO JR., 2008) is a fam-

ily of dynamic classifier selection algorithms. Unlike its predecessors, which focused on
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selecting the single best classifier of the ensemble, all of the algorithms of the KNORA

family select a subset of classifiers from the ensemble per test instance. The algorithms

in the family are KNORA-ELIMINATE, KNORA-UNION, KNORA-ELIMINATE-W,

KNORA-UNION-W.

All algorithms share the first step as the common K-Nearest Neighbor search is

performed on the validation set on the instance to be predicted. Once the neighbors are

gathered, each algorithm behaves differently.

KNORA-ELIMINATE looks for classifiers in the ensemble that classified all of

the K-nearest neighbors correctly. If there is no classifier with such level of accuracy

in the neighbors, the classifiers that got (K − 1) instances corrected are selected, and

subsequently decreasing K until at least one of the classifiers is selected.

KNORA-UNION is similar to KNORA-ELIMINATE, but instead of expecting all

of the neighbors to be correctly classified, it selects the classifiers that predicted at least

one of the instances right. The classifiers that predicted more neighbors correctly have

more votes on the final combination rule.

KNORA-ELIMINATE-W and KNORA-UNION-W use the same mechanism as

KNORA-ELIMINATE and KNORA-UNION, but they take into consideration the Eu-

clidean distance of each neighbor from the given test instance as a weight for the influence

of the neighbor in the decision.

3.1.5 K-Nearest Output Profiles

K-Nearest Output Profiles (KNOP) (CAVALIN; SABOURIN; SUEN, 2013) is sim-

ilar to the KNORA-U, but instead of searching for the most similar instances in the val-

idation set using the features of the instances, it searches for the most similar output

profiles in the validation set. The next step follows KNORA-U, i.e, if the classifier cor-

rectly predicts at least one of the neighbors, it is then picked to classify the instance and

the more correctly predicted neighbors, the more votes the classifier will have in the final

prediction.

For example, in a binary problem, with classes “a” and “b”. Given the instance x

as the instance to be predicted, in an ensemble of five classifiers, the output profile, or in

other words, the predictions of each member for the instance is {a, b, a, a, b}. The first

step is to find the K instances in the validation set that were most similarly predicted by

each member. With the instances selected, the classifiers that correctly predicted at least

one of them are selected.
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3.1.6 Multiple Classifier Behavior

The Multiple Classifier Behavior (MCB) (HUANG; SUEN, 1995) is a mixture

of the KNOP and the OLA techniques. It first gathers all the K similar instances to

the query instance using K-Nearest Neighbors. It then computes the similarity of the

output profile of the neighbors with the query instance. The neighbors with a similarity

below a threshold are removed from the neighbors set, thus the size of the set might vary

from instance to instance. After this step, the local accuracy of each classifier in the set is

computed, and the classifier with the best metric is chosen to predict the instance. Similar

to A Priori and A Posteriori methods, a classifier is only selected if it is significantly better

(also defined by a threshold) than the others. If it is not, all of the members are used,

applying the majority vote rule.

3.1.7 META-DES

The META-DES (CRUZ et al., 2015) technique is a different approach to the

classifier selection problem. The previous method focused on single features of the re-

lationship between each classifier and the test instances, for example, Local Accuracy.

META-DES, instead, takes into consideration multiple features. And instead of trying

to design a selection method, it considers this task another classification problem, thus

delegating it to a meta-classifier.

The meta-classifier relies on five meta-features, each representing a measure that

aims to estimate how competent a classifier is to classify an instance. The target of the

meta-classification is if the classifier correctly estimated the instance, i.e., if it is competent

enough to classify it or not.

The method is divided into three parts. The first one is overproduction, which is

the training phase of the ensemble, on the training set. The second part, the meta-training

phase, is subdivided into three steps, which are listed below. The meta-training set is

segregated from the training set of the ensemble, in order to avoid overfitting. And the

third part is the generalization phase, which is when the training instances are inputted

into the ensemble to be predicted.

The first step is the sample selection. Previous work (SANTOS; SABOURIN;

MAUPIN, 2008; CAVALIN; SABOURIN; SUEN, 2013) showed that the dynamic selection

of classifiers is not very efficient in cases where the consensus on the ensemble is low, i.e.,

when the higher number of votes from the classifier to a class is almost equal to the

number of votes to a second class. Therefore, the authors focused on the training of

the meta-classifier on instances where this behavior is present. In order to achieve such
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selection, the level of consensus of the classifiers on a given instance is calculated. Then,

only the instances that are below a certain threshold are selected to be trained on the

meta-classifier.

If the instance is selected, its region of competence is extracted. That is performed

by using the K-Nearest-Neighbors, finding its K most similar instances, and the K most

similar output profiles.

With the output profile and the region of competence, step two starts. Five meta-

features are extracted for each instance for each classifier in the ensemble.

• Neighbors Hard Classification - an array of K size, for each instance in the region of

competence, one is set in the i position if the classifier correctly predicted the class

of the instance, otherwise 0 is set to the position.

• Posterior Probability - an array of K size, for each instance in the region of com-

petence, the probability for the classifier is calculated and set in the i position.

The posterior probability is P (yi, xi), which means the probability of the class yi
happening with the features xi.

• Overall Local Accuracy - the value of local accuracy of the classifier over the most

similar instances, i.e., the region of competence.

• Output Profiles Classification - an array ofK size, for each instance in the validation

set with the most similar output profiles, one is set in the i position if the classifier

correctly predicted the class of the instance, otherwise 0 is set to the position.

• Classifier’s Confidence - it is the perpendicular distance between the instance to the

decision border of the classifier.

Since one meta-instance is generated for every classifier in the pool, for every single

instance, even if there are few samples of the class, this problem is decreased due to the

great number of meta-instances generated.

The meta-classifier is then trained with the produced instances.

In the generalization phase, for each test instance, the region of competence and

most similar output profiles are calculated. Then, the meta-features are extracted and

inputted into the meta-classifier. Only the classifiers that are predicted as competent are

selected to predict the test instance. The majority rule voting is defined to combine the

selected classifiers. If there is a tie, the class with a higher a posteriori probability is

selected.
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3.2 Methods for Online Machine Learning

In this section, the DCS methods considered to be the most representative to the

state-of-art for online classifiers are presented.

3.2.1 Minority Driven Ensemble

The Minority Driven Ensemble method (ZYBLEWSKI; KSIENIEWICZ; WOŹ-

NIAK, 2019) is not only a selection method but a whole framework that covers training

an ensemble with a data stream and predicting new instances. It focuses on data that

are affected by the class imbalance problem. Although this method proposes dealing with

streams of data, it does not use adaptive algorithms as it provides an adaptation for tra-

ditional offline machine learning algorithms. This is done by replacing poor performing

classifiers with new ones, similar to the Kappa Update Ensemble (KUE) does, yet, KUE

uses online algorithms, as explained in Section 2.8.5.

The method divides the stream into chunks of data with a fixed size. Each chunk

is passed as a mini-batch for the ensemble to train on. For each data chunk, the instances

belonging to the minority class are filtered in order to remove outliers. That is done

using K-Nearest Neighbors on the current data chunk. If the K nearest neighbors of

each instance belong to the majority class, the instance is then considered an outlier and

then removed from the chunk. This technique is somewhat questionable since it removes

instances from the class that is in an already reduced number, compared to the majority

class.

With the outliers removed, the data chunk is used to produce one new classifier

to compose the ensemble. To create a rotation of classifiers, thus building a self-adaptive

ensemble, some techniques are applied to remove some experts from the pool of classifiers.

The ensemble is adapted to be as expert as possible in detecting the minority class. If a

classifier has low (threshold is 0.5 + α, where α is user-given) Balanced Class Accuracy

(BAC), it is removed from the ensemble. If the maximum ensemble size (which is also

user-given) is exceeded, the classifier with the worst BAC is also removed. BAC is an

alternative way to measure the accuracy of a model. It takes into consideration the

balance between classes, avoiding a false good accuracy when the model just predicts

the majority class correctly. The formula for calculating BAC for a binary problem is

displayed in Equation 3.1. Where TP is true positive, FP is false positive, TN is true
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negative, and FN is false negative.

BAC =
TP

TP + FP
+

TN

TN + FN
(3.1)

In the prediction step is where the selection method is applied. Since the ensemble

is constructed focusing on building expertise in classifying the minority class, if only one

classifier predicts the instance as being from the minority class, it is considered as such

class.

Although the paper that introduced this method presented good results, some

aspects require a more in-depth analysis. It was compared to the static methods KNORA-

E, KNORA-U (KO; SABOURIN; BRITTO JR., 2008), LCA (GIACINTO; ROLI, 1999),

and DCS-RANK (SABOURIN et al., 1993). The parameters for the evaluation, such as

α and the ensemble size, were chosen based on a hyperparameter optimization (search for

the parameters which the ensemble presents the highest BAC). However, these parameters

(and the other results as well) were tested on a single stream with gradual and sudden

drifts, which might not be true for other streams and real-world problems. Another point

is that the ensemble size selected for the evaluation was three, which might not be a

fair comparison with the other algorithms such as KNORA-E and KNORA-U. That is

because they are intended to select a subset of a usually bigger ensemble.

3.2.2 Dynamic Ensemble Selection for Drift Detection

Dynamic Ensemble Selection for Drift Detection (DESDD) (ALBUQUERQUE et

al., 2019) method provides a different concept in Dynamic Selection. Traditional DCS

methods such as KNORA-E and KNORA-U are also referred to as dynamic ensemble

selection methods because they select a subset of the ensemble, which is, by definition,

also an ensemble. DESDD, in contrast, uses the same term to designate the selection

of an ensemble ei in a group G with n ensembles. In other words, G is an ensemble of

ensembles, e.g, an ensemble of n OzaBags.

DESDD utilizes online classifiers, and it is designed to work with the prequential

evaluator. There is no algorithm predefined to be used to build each ensemble ei as any

algorithm can be used. However, in the paper experiments, Online Bagging was used

to create each ei, with a randomized λ varying from a minimum and maximum value

(user-given), thus, each ensemble is expected to be different from each other.

In the selection step, DESDD selects the ensemble ei with the highest current

accuracy, which is the average of the accuracy of the ensemble prior to the moment of

selection.
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DESDD is also proposed to deal with concept drift. Therefore, a drift detector

(also not specified, any method can be used) is attached to G. Once a drift is detected,

the whole G is discarded, and the initialization and training for each ensemble ei is started

again.

3.2.3 Semi-supervised Drift Detection Method

The Semi-supervised Drift Detection Method method (PINAGE; SANTOS; GAMA,

2019) provides a framework to create and maintain a dynamic ensemble in environments

where labeled data are scarce. As the name suggests, it applies a semi-supervised tech-

nique, which means that part of the data used to train the model has labels, and the other

part gets an automatically assigned label. The method starts with the ensemble creation.

In this phase, a modified version of Online Bagging (MINKU; WHITE; YAO, 2010) is

used. The main difference of this version to the traditional Online Bagging is that the

λ used by the Poisson random number generator is passed as a parameter and smaller λ

values result in higher diversity. The first m instances to arrive are expected to be labeled

to create a model capable of predicting new instances with a certain confidence.

After the classifier is partially built on the first instances, the next training in-

stances are not necessarily expected to be labeled. Consequently, the method uses dy-

namic selection of classifiers to define which member of the ensemble is the most compe-

tent to predict the instance. Then, the classifier is updated assuming the prediction of

the selected member as a true label for it. The methods applied for the selection are the

ones defined in DCS-LA and MCB, previously explained in Sections 3.1.2 and 3.1.6. The

validation set required by the methods is initially defined offline for the whole ensemble

with part of the first labeled instances.

In order to detect drift, all of the members of the ensemble hold a detector. How-

ever, since most detectors are expected to deal with labeled data, they were also adapted

to treat the label predicted by the most competent classifiers as true. The drifts work

with both warning and detection levels. If the warning level is set in any classifier, the

instances and their assumed labels are started to be stored, if the level changes to detec-

tion, the instances previously-stored are used as a new validation dataset, and all of the

statistics are restarted.

3.2.4 Dynamic Selection Based Drift Handler

The Dynamic Selection Based Drift Handler (DYNSE) (ALMEIDA et al., 2016)

is a method that applies traditional offline techniques of Dynamic Selection in online
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Machine Learning environments to deal with concept drift. It contemplates the whole

construction of the structure of the ensemble, as well as the prediction step.

It does not use a traditional ensemble algorithm, such as Online Bagging (OZA,

2005). Instead, it proposes building each classifier with batches of labeled data that arrive

at once. Each batch is used to train a new classifier of the ensemble, and if the size n of

the batch is not sufficiently large, multiple batches can be accumulated before training.

Any base classifier can be used to compose the ensemble, even the ones intended

for offline machine learning, since they receive the data for training all at once. On the

prediction step, when an instance x arrives to be predicted, a K-Nearest Neighbors (FIX;

HODGES, 1989) search is executed to find the most similar instances to x in the validation

set, which is defined by the M latest supervised batches that arrived to be trained on.

Once the similar instances are gathered, any selection method that depends on it can be

applied, in the paper, the method applied was KNORA-E (KO; SABOURIN; BRITTO

JR., 2008).

There is not a defined number of maximum member an ensemble should have, and

the authors propose that the most base classifiers trained on different data, the greater

the chance that the selection for the most fitted members for a specific instance succeeds.

However, if concepts change, the older classifiers might never be selected, because the

selection is based on the neighbors of the instance that are on the most recent batches.

Although the paper presented some results superior to other state-of-art methods,

in the experimental protocol, the number of instances used to train each classifier was

somewhat small (250 instances for some datasets), and the classifier used was the Hoeffd-

ing Tree. Perhaps a greater amount of instances and the training with offline classifiers,

because they usually require fewer instances in order to learn a stable concept, should be

tested for a greater comprehension of the method behavior.

3.2.5 Preprocessed DCS I

Focusing on the imbalanced data problem, this method proposes a similar approach

to DYNSE. Preprocessed DCS I (PDCS I, the method is not given a specific name by

its authors, it is named for the sake of clarity) (ZYBLEWSKI; SABOURIN; WOŹNIAK,

2021) processes the data stream in chunks and new classifiers are trained and added to

the ensemble upon each chunk arrival.

PDCS I works with an ensemble of ensembles so that for each chunk, a new ensem-

ble is trained using offline bagging, however, the data samples are stratified. Similar to

Minority Driven Ensemble, if the maximum size is reached, the ensemble with the lowest
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balanced accuracy (BAC) is removed from the pool. The validation set is also defined

as the last arrived batch, however, before updating it, a pre-processing technique focused

on data imbalance, either under or oversampling, is applied to the chunk. Covering these

methods is not under the scope of this project, for an overview of this type of method,

the reader is referred to (WANG; PINEAU, 2016).

The training part follows the same protocol of DYNSE, for each test instance, the

most similar instances of the validation set are gathered so any traditional DCS method

can be applied.

3.2.6 Preprocessed DCS II

Preprocessed DCS II (PDCS II, again for the sake of clarity) (ZYBLEWSKI;

SABOURIN; WOŹNIAK, 2020) is similar to PDCS I (ZYBLEWSKI; SABOURIN; WOŹ-

NIAK, 2021), with the difference that it works with any classifier, not only with ensembles,

and the pre-processing step is applied on the chunk before the training phase. It also adds

a step that removes any classifiers from the ensemble that have their BAC (Equation 3.1

in Section 3.2.1) below a user-given threshold, which is the same protocol applied in the

Minority Driven Ensemble (ZYBLEWSKI; KSIENIEWICZ; WOŹNIAK, 2019).

Both PDCS I and II can be used with both offline and online classifiers as they

handle the data stream as chunks, and classifiers are only trained once. Consequently,

the ensemble may not take advantage of online classifiers as its members are not updated

as new data become available.

3.3 Applying Dynamic Selection of Classifiers

When new dynamic selection methods are published, it is common for their authors

to provide the source code used in their experiments. However, it is usually “biased” to

the type of the experimental protocol used in that specific paper. Thus, it is not always

allowing an easy adaptation for other authors to test it with other datasets and other

base classifiers. Not to mention that the language of the code might not be the same as

other authors are willing to implement.

However, a tool that allows the applications of many implements methods using

the same programming interface is very important to the scientific community. It allows

other creators to easily compare their new methods with the state-of-art, providing a fair

evaluation of its real contribution and a code that is completely reproducible with other

datasets. That is the purpose of the previously explained frameworks (Section 2.9) for
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Table 3.1: Methods Implemented in DESLIB

Name Type Name Type

A Priori (GIACINTO; ROLI, 1999) DCS DES-KNN (SOARES et al., 2006) DES
A Posteriori (GIACINTO; ROLI, 1999) DCS KNOP (CAVALIN; SABOURIN; SUEN, 2013) DES
LCA (WOODS; JR; BOWYER, 1996) DCS KNORA-E (KO; SABOURIN; BRITTO JR., 2008) DES
OLA (WOODS; JR; BOWYER, 1996) DCS KNORA-U (KO; SABOURIN; BRITTO JR., 2008) DES

MCB (HUANG; SUEN, 1995) DCS DES-MI (GARCÍA et al., 2018) DES
MLA (WOODS; JR; BOWYER, 1996) DCS RRC (WOLOSZYNSKI; KURZYNSKI, 2011) DES

Mod. Rank (WOODS; JR; BOWYER, 1996) DCS DES-Kullback Leibler. (WOLOSZYNSKI et al., 2012) DES
META-DES (CRUZ et al., 2015) DES DES-Minimum Difference. (ANTOSIK; KURZYNSKI, 2011) DES
DES Clust. (SOARES et al., 2006) DES DES-Exponential. (ANTOSIK; KURZYNSKI, 2011) DES

DES-P (WOLOSZYNSKI et al., 2012) DES DES-Logarithmic. (ANTOSIK; KURZYNSKI, 2011) DES

data stream mining and of Scikit-Learn (PEDREGOSA et al., 2012) for batch machine

learning.

In order to fill in this gap in the dynamic classifier selection scope, Cruz et al.

(2018) proposed DESLIB, which is a framework that implements the most popular and,

well-succeeded methods of Dynamic Selection for offline Machine Learning environments.

DESLIB is intended to work with ensembles implemented in Scikit-Learn, or that at least

follows the same specified programming interface.

DESLIB delegates the training step of the ensembles to the framework that im-

plemented it. It encapsulates the ensemble and provides a “second training” step, which

is essentially receiving a validation set and preparing it in order to work with a dynamic

selection algorithm.

The prediction step is handled by DESLIB, as it automatically selects the classifiers

that are most competent to predict a given instance, respecting the protocol of each

specific algorithm, and returns a prediction. It also offers multiple parameters for the

methods, such as optimized ways to apply the K-Nearest Neighbors and the number of

neighbors that will be gathered to perform the selection.

DESLIB is also easily extendable, fully open-source, and written in Python. This

allows new creators of methods to implement it following the structure of the framework,

making it easier to share and publish them.

The methods implemented in the library are divided into DCS and DES, and there

are also Static Selection methods implemented. The Oracle selector is also implemented.

The methods implemented in the library, as well as their category, are displayed in Table

3.1.



43

3.4 Final Considerations

This chapter presented the rationale behind dynamic classifier selection (DCS)

methods, as well as the state-of-art methods for both batch and online environments. In

addition, it was also presented a currently available framework for applying DCS in the

batch envinronment. In the next section, a similar framework, but for online envinroments

is proposed.
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PROPOSAL



Chapter 4

Framework for Applying DCS in Data Stream
Mining

As discussed in the previous chapter, methods concerning the application of dy-

namic selection of classifiers in data stream mining are still scarce. However, it is a

well-explored area in the batch environments, with a great number of developed methods.

This produces an implicit expectation that there are many benefits from DCS that are

yet to be brought to the online machine learning configuration.

For batch environments, DESLIB (CRUZ et al., 2018) provides an easy way to

implement and test new classifier selection methods. The framework only has to take

care of the prediction step of the methods.

With the task of selecting which classifiers of the ensemble will be used to perform

the prediction for a test instance, it provides a generic framework that works with any

ensemble that follows the same interface as scikit-learn (PEDREGOSA et al., 2012).

The only code required by the authors of a new classifier selection method is the

selection logic.

However, the whole rationale of dynamic selection was designed for offline envi-

ronments. In opposition to what we observe in batch scenarios, the appliance of DCS

methods in data stream mining is not a generic task.

These types of methods, such as DYNSE (ALMEIDA et al., 2016), do not propose

a novel approach of selecting the classifiers to predict a given instance. Instead, they

require an architecture that also contemplates how the selection methods will be applied.

For instance, let us analyze the concept of the validation set, which in batch environments

is traditionally a subset of the available instances to train the model, is not trivial in this

context.

In streaming scenarios, the instances that will compose the validation set must

be extracted from the stream. Moreover, they should be representative of the stream’s

45
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current state, i.e., they should follow the same distribution of the training set, which is

potentially untrue due to concept drifts (TSYMBAL, 2004).

Or in some cases like MDE (ZYBLEWSKI; KSIENIEWICZ; WOŹNIAK, 2019)

and DESDD (ALBUQUERQUE et al., 2019), the validation set is not even required for

classifier selection.

The type of ensemble that the method will work with is another point that must

be contemplated.

Some methods might be compatible with any dynamic ensemble implemented in

scikit-multiflow (MONTIEL et al., 2018) or MOA (BIFET et al., 2010), which is similar

to what DESLIB (CRUZ et al., 2018) does with scikit-Learn (PEDREGOSA et al., 2012).

On the other hand, some methods, such as DYNSE (ALMEIDA et al., 2016),

require a different way of constructing the ensemble with individual online classifiers,

while others do not even require the classifiers to be incremental or dynamic, such as in

MDE (ZYBLEWSKI; KSIENIEWICZ; WOŹNIAK, 2019).

To the best of the author’s knowledge, there is currently a lack of tools and frame-

works that contemplate the aforementioned characteristics and allow researchers to de-

velop and compare new classifier selection methods with others previously developed.

This creates a delay in the development of this area because even if the authors provide

their implementation source code, it is usually biased toward their experimental protocol

and their datasets.

4.1 Scikit-Dyn2Sel

To fill in this gap, we propose Scikit-Dyn2Sel, a novel framework for dynamic

classifier selection for data streams. The Dyn2Sel acronym comes from that it deals

with a Dynamic environment 2 “times”, because it deals with dynamic ensembles and

dynamic classifier Selection. Scikit-Dyn2Sel is designed to be fully compatible with Scikit-

Multiflow (MONTIEL et al., 2018). The architecture of Scikit-Dyn2Sel is illustrated in

the class diagram in Figure 4.1.

In order to correctly address the challenges presented, the following key classes of

the architecture are:

• BaseEnsemble - The BaseEnsemble class belongs to Scikit-Multiflow. It is the class

that all the ensemble methods from the library, such as AdaptiveRandomForest

(GOMES et al., 2017), extend. Thus, all of these classifiers are accepted in Scikit-

Dyn2Sel. It is also possible to deal with the dynamic construction of an ensemble.
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Figure 4.1: Class Diagram of Scikit-Dyn2Sel

This is required in methods like DYNSE. Therefore, a new class Ensemble is created,

which extends the same BaseEnsemble class, forcing it to respect the same interface.

Thus, it allows Scikit-Dyn2Sel to handle it the same way as a Scikit-Multiflow

ensemble in which base classifiers can be either added or removed from the pool.

• DCSTechnique - The DCSTechnique class is responsible for defining the interface to

be shared by the dynamic selection method. It is also stores the validation set of a

method, when it is required.

The BaseEnsemble, Ensemble, and DCSTechnique classes are abstract classes,

which means that they can provide abstract methods (without implementation), con-

crete methods (with implementation) and attributes that should be used by all of the

concrete classes. The concrete classes are classes that extend these abstract classes and

implement the abstract methods. For example, for the implementation of any method, it

would be necessary to either implement an Ensemble concrete class and set it up in a way

that mimics the growth of the ensemble defined in the method or to instantiate a Scikit-

Multiflow ensemble. It would also be necessary to implement any DCS techniques that

are desired to be applied in conjunction with the proposed method. The benefit of this

separation is that each DCS technique only needs to be implemented once, independently

of how many methods it is used with.

All of these classes are combined as attributes into the DCSApplier class, which is

responsible for coordinating them. This class is also an abstract class, and thus, for any
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Table 4.1: Methods Contemplated in Scikit-Dyn2Sel

DCSApplier DCSTechnique

DYNSE KNORA-E
DESDD KNORA-U
MDE A Priori and A Posteriori

Preprocessed DCS I DCS-LA
Preprocessed DCS II DCS-RANK

KNOP
MCB

META-DES

method implemented, a new class inheriting from DCSApplier should be added.

For clarity, on the class diagram reported in Figure 4.1, the only concrete classes

for BaseEnsemble that are displayed are DYNSEEnsemble and MDEEnsemble. The same

happens for the concrete implementation of DCSApplier, where only DYNSEMethod and

MDEMethod are shown. For DCSTechnique, only KNORA-E and META-DES are illustrated.

The ClassifierMixin class, which DCSApplier is inherited from, is also from

Scikit-Multiflow. This is the class from which all classifiers implemented in Scikit-Multiflow

extend. The fact that DCSApplier also has this inheritance is important for the archi-

tecture of the framework. It allows an implemented method to fully-compliant with

Scikit-Multiflow’s architecture, and thus, being able to be executed together with other

functionalities of the library, such as generators and evaluators. The main methods that

DCSApplier inherits for ensuring compatibility are partial_fit and predict, which are

responsible for updating the model and predicting a set of instances, respectively.

Table 4.1 illustrates all the methods contemplated by the framework.

This structure is partially inspired by DESLIB, however, several adaptations were

needed for it to work with dynamic ensembles. Scikit-Dyn2Sel was designed so most of

the current and future DCS methods can be added to it.

4.1.1 Example of DYNSE Implementation

To illustrate how an implementation of a method could be done in Scikit-Dyn2Sel, a

demonstration with two simple sequence diagrams was executed, following the explanation

of the method DYNSE described in Section 3.2.4. For the sake of clarity, it is divided

into two phases: training and testing.

For the training phase, as shown in Figure 4.2, inside a loop of n instances, for

each instance, the first step is a call to the partial_fit method. This step is strictly

the same for training any classifier from Scikit-Multiflow. Next, a conditional instruction

is performed: if the number of instances sent to update the model current_chunk_size
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Figure 4.2: DYNSE Training Phase

Figure 4.3: DYNSE Testing Phase
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1 def partial_fit(self , X, y):
2 for x_i , y_i in zip(X, y):
3 if len(self.buffer_x) < self.chunk_size:
4 self.buffer_x.append(x_i)
5 self.buffer_y.append(y_i)
6 else:
7 self.ensemble.partial_fit(self.buffer_x , self.buffer_y)
8 self.dcs_method.fit(self.buffer_x , self.buffer_y)
9 self.buffer_x = []

10 self.buffer_y = []

Figure 4.4: Implementation of the partial fit on DYNSEMethod

1 def predict(self , X):
2 if len(self.ensemble) > 0:
3 all_predictions = self.ensemble.predict(X)
4 selected_indexes =
5 self.dcs_method.estimate_competence(self.ensemble , X)
6 masked_predictions =
7 ma.masked_array(all_predictions , selected_indexes)
8 final_predictions = np.max(masked_predictions , axis =1)
9 return final_predictions

10 else:
11 return np.array ([])

Figure 4.5: Implementation of the predict on DYNSEMethod

is still less than the size defined for a data chunk max_chunk_size, the instance is only

accumulated into an internal buffer. Otherwise, a call to partial_fit from the class

DYNSEEnsemble is made, containing the whole data chunk. Upon this call, DYNSEEnsemble

will create a new member of its pool of classifiers trained on the recently passed chunk.

Finally, the internal validation of the DCS method, in this case, KNORA-E, is replaced

with the same chunk used to train the new classifier, using the fit function.

For the testing phase, displayed in Figure 4.3, a similar loop of instances is applied.

For each instance, the predict method is called. Again, this first step is the same

for predicting using a Scikit-Multiflow classifier. Then, the DYNSEMethod will call the

estimate_competence in KNORA-E, which will use its internal validation set to select

and return the members to predict that given instance With the members of the ensemble

selected, the predict method of DYNSEEnsemble will be called only with the selected

members, and a prediction is returned.

Figures 4.4 and 4.5 illustrates the implementation on the framework of the methods

partial fit and predict respectively.



Chapter 5

Behavior of Dynamic Selection on Data Stream
Mining

The application of dynamic selection of classifiers in batch machine learning is very

well studied and documented (CRUZ; SABOURIN; CAVALCANTI, 2018; JR; SABOURIN;

OLIVEIRA, 2014). It is observed that DCS techniques achieve good performance when

some key points are present. Each of these points is discussed as follows.

• The pool of classifiers must be diverse. As already explained in Section 3, the

mistakes made by each base classifier should be different from each other. The way

they react to the instances should not be the same, otherwise, the selection will not

make sense. This is not only valid for selection purposes, but also for the whole

purpose of ensembles.

• The problem must not be linearly separable, i.e., the dataset must not be too simple

or else selection is not useful. In simple problems, multiple classifier systems with

traditional voting methods, or even single classifiers, achieve good performance.

Thus, using selection only inserts an additional complexity layer into the model,

which is potentially unnecessary or even prejudicial.

• The pool must be composed of weak classifiers. Dynamic selection tends to work

better when applied in a pool where the base classifiers are not too complex. Using

weak classifiers, each member tends to be a specialist on a small part of the data,

not capable of learning the whole concept alone. Hence, the selection aims to find

these experts for each instance.

An experiment performed in the documentation of DESLIB (CRUZ et al., 2018),

which can be accessed in <https://deslib.readthedocs.io/en/latest/auto_examples/plot_

example_P2.html> (accessed in February 10, 2020), demonstrates the last point on top

of a static dataset.

51
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Figure 5.1: Decision Space of P2 Generator

An ensemble of five weak classifiers was generated using the Boosting (FRIED-

MAN, 2000) technique. The base classifiers were Decision Trees, and they were weak

because the maximum depth that the trees could achieve was limited at one, thus practi-

cally, the trees contained simply the root and its children. This is also called a Decision

Stump. The ensemble was combined with three selection techniques: KNORA-E (KO;

SABOURIN; BRITTO JR., 2008), OLA (WOODS; JR; BOWYER, 1996) and Modified

Rank (WOODS; JR; BOWYER, 1996). The experiment also included a Random Forest

(BREIMAN, 1996) with ten trees for comparison with the DCS techniques.

The dataset used for the experiment was the generator P2, proposed by Valentini

(2006). It is a complex non-linear problem in which the classes are defined by multiple

decision boundaries in different regions. The equations that determine the classes of the

instances are defined in Equation 5.1. P2 is a binary class generator with only two features.

One possible decision space of randomly generated P2 instances are defined in Figure 5.1,

with one of the classes represented as full circles and the other as empty circles.

E1(x) = sin x+ 5

E2(x) = (x− 2)2 + 1

E3(x) = −0.1× x2 + 0.6 sin(4x) + 8

E4(x) =
(x− 10)2

2
+ 7.902

(5.1)

The results of the experiments are displayed in Table 5.1. The boosting ensemble

without selection methods performed poorly when compared to the same pool combined
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with selection methods. The selection methods were also better than the non-limited

Random Forest model, even though it used the double of base classifiers than boosting.

5.1 Dynamic Selection in Data Stream Mining

The objective of this chapter is to present an analysis of the appliance of tradi-

tional dynamic selection methods, for the batch environment, in traditional data stream

classifiers. If there is an accuracy gain, in which cases and so on. The objective is not to

compare if the selection methods will outperform the state-of-art methods, but to verify

when DCS is welcomed in dynamic ensembles.

Each of the topics mentioned above must be carefully analyzed when dealing with

dynamic environments, as some characteristics of data stream mining might seem contrary

to some requirements for dynamic selection to be useful.

5.1.1 Weak Classifiers

In batch machine learning, weak classifiers are easy to produce. Classifiers’ growth

potential is pruned, or the quantity of data that it receives for training is lowered. How-

ever, in online machine learning, this is not so simple. That is because, in most dynamic

ensemble construction methods, the instances keep arriving for each base classifier to

update its model.

Thus, the trend is that all the base classifiers will be able to predict most types of

instances and not an expert on a specific type.

Figure 5.2 is the plot of the accuracy overtime of an execution of a single Hoeffding

Tree using the prequential process. Two million instances were generated by the Random

Tree Generator, set up to five numerical and five categorical features and three classes.

The evaluation of the model, i.e., data points in the chart, was done every 10 thousand

instances, totaling 200 hundred evaluations.

The values between each evaluation vary from worse to better than the last evalu-

ation, but overall, an increasing trend is observed in the results. That means that as the

Table 5.1: Results of DESLIB Experiment

Method Accuracy Method Accuracy

Boosting - No Selection 79.50% Boosting - KNORA-E 94.80%
Random Forest - No Selection 92.50% Boosting - Modified Rank 94.80%

Boosting - OLA 93.20%
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Figure 5.2: Evolution of the Accuracy Overtime

model receives more and more instances, it becomes more accurate. The accuracy trend

will eventually reach a plateau, which is when the maximum that the model can extract

from that data, without drift, is exceeded.

As explained, this characteristic is the opposite of what is expected for satisfactory

results with dynamic selection in the batch environment, as the classifiers tend to not

remain weak for long. This is not the ideal environment for DCS because, as previously

explained, the selection mechanism only makes sense if there are experts in different areas

of the data distribution. When the classifiers are strong, DCS starts to lose its appeal.

5.1.2 Complex Datasets

Another problem that needs to be dealt with when applying dynamic classifier

selection (DCS) in data stream mining is the complexity of the datasets. Most generators

present simple problems, normally linearly separable. For example, as explained in Section

2.5.1, the SEA Generator has three features, but one of them is not descriptive (noise). If

the non-descriptive feature is ignored and the other ones are plotted, it is clear that the

problem is linear. This is illustrated by Figure 5.3.

Another example of the lack of complexity of data stream mining generators re-

gards their functions to determine the class of the instance. Even though some generators

have many features, some of the functions use only a few of them. For example, the

Agrawal Generator explained in Section 2.5.2 has nine features. However, its first func-
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Figure 5.3: Decision Space of SEA Generator - Function 0

tion consists of: 1 if age < 40 or 60 ≤ age

0 otherwise

where only the “age” feature is used and all the other features act as noise in the learning

process. Even though this function is simple, it is not linear, since it needs two comparisons

for the class to be determined. This causes problems for some linear classifiers, but not

for more complex ones. The noise surely adds some level of difficulty to the problem, but

not as much as a complex (non-linear) function. The second classification function of the

Agrawal Generator is slightly more complex:

1 if ((age < 40) and (50000 ≤ salary ≤ 100000)) or

(( 40 ≤ age < 60) and (75000 ≤ salary ≤ 125000)) or

((age ≥ 60) and (25000 ≤ salary ≤ 75000))

0 otherwise

As shown in Figure 5.4, the decision space of this function is not linear, however,

its decision boundaries are clear and not challenging to many ensemble methods.

In a simple experiment, two thousand instances were generated using the afore-

mentioned functions from the SEA and Agrawal, respectively. Half of the instances were

used to train two classifiers: an offline Random Forest classifier with 100 trees and an

offline bagging with 100 Perceptrons, which individually are linear classifiers. The other

half of the instances was used to evaluate the accuracy of the trained models. These clas-

sifiers were chosen because the objective of this experiment was to evaluate the behavior



56

Figure 5.4: Decision Space of Agrawal’s Second Function

Table 5.2: Results of Generators with Batch Random Forest

Dataset Accuracy

Random Forest - Agrawal (first function) 100.00%
Random Forest - Agrawal (second function) 99.00%

Random Forest - SEA 98.90%
Bagging with Perceptrons - Agrawal (first function) 47.80%

Bagging with Perceptrons - Agrawal (second function) 61.50%
Bagging with Perceptrons - SEA 98.80%

of data stream generators in two different situations: with a state-of-art ensemble method

and with an ensemble of weak classifiers.

As seen in Table 5.2, the batch version of Random Forest, implemented in Scikit-

Learn (PEDREGOSA et al., 2012), achieved more than 98% of accuracy for all generators.

For the ensemble of weak classifiers, the results for the simple but non-linear functions from

the Agrawal generator were significantly worse. However, for the linear SEA generator,

the results were practically the same, achieving more than 98%.

This implies that the generators are indeed very simple and easily predictable for

the state-of-art method (Random Forest). For the ensemble of weak linear classifiers, for

the non-linear functions, the results were not satisfactory, but for the linear function from

the SEA generator, it got close to the results of the Random Forest.

These results lead to the conclusion that there is a considerable gap in terms of

accuracy for non-linear classifiers that could benefit from selection. However, the potential

of gain using the state-of-art method is very small if not nonexistent. Hence, at least in

the batch environment, it would not make sense to apply dynamic selection on these

datasets.
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5.2 Experimental Protocol

With the aforementioned challenges in mind, a series of experiments were executed

to check how dynamic selection behaves with existing online ensembles and commonly

used data stream mining generators.

The application of the dynamic selection methods in online learning could not

be made without some adaptations. The logic for creating and updating the validation

set, from where the neighbors from each test instance would be extracted, needed to be

defined. For that, an adaptation of the Interleaved Chunks validation scheme available

on MOA (BIFET et al., 2010) was used. It works similarly to Prequential, explained in

Section 2.4.2, but instead of testing then training a single instance at a time, it uses chunks

of instances with n size. In order to define the validation set, instances were randomly

drawn according to a probability p from each chunk during training, i.e., after they were

already used for testing. Thus, the validation set defined on round x is used for testing

the data made available in round (x+ 1).

The dynamic ensemble algorithms, DCS methods, and the generators used in the

experiments are depicted in Table 5.3. All the generators were balanced, except P2 and the

real-world datasets, were executed with and without concept drifts, the concept functions

used were always one (default) and two (alternate). The parameter of the ensembles

and the generators were left as default as given in the Massive Online Analysis (MOA)

framework (BIFET et al., 2010), with the exception of the ensemble size, which was that

to 100 base learners. The k for the nearest neighbor search on the DCS methods was set

to 7.

The combination of all methods, datasets, and hyper-parameters, totaled 500 runs.

The size n of the chunk was set to 1000, the number of the instances generated each time

was 250,000, totaling 250 chunks. The evaluation of the model was performed at the end

of each chunk. The drift added was in the middle of the execution, after 125,000 instances

had passed.

Additionally, experiments with the base classifiers alone were executed for com-

parison.

5.2.1 Statistical Testing

Two statistical tests were applied in the results in order to better visualize the effect

of DCS on the ensembles. The first was the combination of the Friedman test followed

by the Nemenyi post-hoc test, as suggested in (DEMŠAR, 2006). The objective of the
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Table 5.3: Ensemble Algorithms, DCS Methods and Generator used in the Experiments

Ensembles DCS Methods Generators

Adaptive Random Forest (ARF) with Hoeffding Tree KNORA-E SEA
Kappa Updated Ensemble (KUE) with Hoeffding Tree KNORA-U Agrawal
Kappa Updated Ensemble (KUE) with Naive Bayes LCA Asset
Kappa Updated Ensemble (KUE) with Perceptron OLA Random Tree Generator (RTG)

Ozabag with Hoeffding Tree Oracle P2
Ozabag with Naive Bayes Spam Corpus
Ozabag with Perceptron Electricity

OzabagAdwin with Hoeffding Tree NOMAO
OzabagAdwin with Naive Bayes
OzabagAdwin with Perceptron

Figure 5.5: Critical Distance Plot Example

Friedman test, in this context, is to determine if there is a significant difference between

the performance of three or more groups of classifiers on multiple datasets, respecting

a significance level α. This significance level is basically the probability of a significant

difference outputted by the test being false. α is usually set to 0.05. Friedman test alone,

however, does not specify which classifiers’ performances are significantly different than

others, that is why the pairwise Nemenyi test needs to be applied after.

The most common way to output the results of the Nemenyi test is the critical

distance plot, such as the example in Figure 5.5. In the example, the classifiers A, B,

C, and D are being compared. The first thing to look at is the order that the classifiers

appear, that is the mean rank of their performances on the datasets. In this case, the

classifier B was the best placed one, followed by D, A, and C. All the classifiers that the

same black bar touches, are not significantly different from each other. In this case, the

only significantly different classifier is B. It is noteworthy that this test only takes into

account the mean ranking of the classifiers, it does not consider how wide the gap between

different classifiers is.

The second test applied was the Bayesian Analysis (BENAVOLI et al., 2017).

This is a pairwise analysis that outputs the probability of each classifier being better

than the others. It works by creating a normal distribution based on the results of two

classifiers. Then, it draws n random samples of the distribution and based on these

samples, determines the probability of classifier A being better than classifier B and

vice-versa. It also outputs the probability of the classifiers being better than each other

lying in the region of practical equivalence, or rope. The size of this region is set by a
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Table 5.4: Adaptative Random Forest and Kappa Updated Ensemble with Hoeffding Tree
- Without Drift and Real-World datasets

NO SELECTION LCA OLA KNORA-U KNORA-E
ARF - P2 98.53% 94.28% 95.48% 98.55% 98.41%
ARF - SEA 87.41% 85.87% 83.43% 87.48% 84.99%
ARF - RTG 98.72% 91.28% 93.52% 98.51% 98.59%
ARF - Asset 93.65% 81.78% 91.43% 93.35% 92.73%

ARF - Agrawal 93.35% 79.89% 83.82% 92.84% 91.84%
ARF - Spam Corpus 70.05% 66.49% 67.79% 70.09% 69.24%
ARF - Electricity 68.52% 65.33% 63.87% 68.93% 69.04%
ARF - NOMAO 71.28% 71.28% 74.92% 71.29% 74.92%

KUE - P2 94.40% 85.94% 94.00% 94.66% 96.05%
KUE - SEA 86.53% 77.73% 82.27% 86.21% 82.67%
KUE - RTG 96.03% 86.53% 96.36% 96.26% 95.77%
KUE - Asset 93.65% 73.02% 92.47% 93.64% 92.41%

KUE - Agrawal 94.31% 87.96% 92.62% 94.40% 93.48%
KUE - Spam Corpus 65.10% 63.15% 60.30% 63.45% 65.12%
KUE - Electricity 44.16% 43.46% 43.65% 44.19% 44.10%
KUE - NOMAO 70.29% 70.29% 70.47% 70.35% 70.74%

hyperparameter. For instance, if the rope = 1%, any difference between classifiers that

is less than 1% is not considered a difference. Unlike Friedman/Nemenyi, this test takes

into account the performance values of the classifiers and not the mean ranking. In this

experiments, we set rope = 1%

5.3 Results

For clarity, the results reported below were separated by the ensemble types that

had similar behavior, only the most relevant results will be presented in this chapter, but

the full table of results is given in Appendix A.

5.3.1 Adaptive Random Forest and Kappa Updated Ensemble using Hoeffding

Trees

These are the state-of-art methods amongst those tested. Therefore, the expecta-

tion was that the potential of gain with selection would be insignificant. Table 5.4 displays

the results of these classifiers, combined with all selection methods and generators without

drift and the real-world datasets. It is observed that the expectation was confirmed. Even

though in some datasets the selection methods were better than without any selection,

the improvements were minor.

When we look at the critical distance plot, in Figure 5.6, the methods without

selection were placed in the first position, as expected, followed by methods with KNORA-

U. LCA executions were placed in the last position with a wide margin. It also presented
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Figure 5.6: Critical Distance Plot for Adaptative Random Forest and Kappa Updated
Ensemble with Hoeffding Tree - Without Drift and Real-World Datasets

Figure 5.7: Bayesian Analysis Matrix for Adaptative Random Forest and Kappa Updated
Ensemble with Hoeffding Tree - Without Drift and Real-World Datasets. The results are
given according to the probability of a being better than b, where a and b are the methods
on the x and y axis, respectively.
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Table 5.5: Adaptative Random Forest and Kappa Updated Ensemble with Hoeffding Tree
- With Drift

NO SELECTION LCA OLA KNORA-U KNORA-E
ARF - RTG 85.08% 79.05% 79.82% 85.44% 84.26%
ARF - Asset 93.82% 83.62% 92.04% 93.53% 93.15%

ARF - Agrawal 73.29% 62.07% 66.66% 71.92% 70.10%
ARF - SEA 86.53% 84.86% 82.33% 86.62% 83.82%
KUE - RTG 81.76% 68.02% 79.58% 82.77% 81.65%
KUE - Asset 93.15% 61.87% 92.62% 93.28% 92.80%

KUE - Agrawal 79.15% 61.44% 76.05% 75.96% 77.71%
KUE - SEA 85.57% 79.71% 81.01% 85.52% 82.08%

all methods but LCA as being statistically equivalent.

For understanding the Bayesian analysis, in Figure 5.7, one must understand that

it means the pairwise matrixes of the Bayesian analysis of all methods pairwise, with

rope = 1%. The matrix should be interpreted as follows: the intersection between a

method a on the vertical axis with the method b on the horizontal axis is the probability

of a being better than b. The opposite is also true, the intersection of a on the horizontal

axis with b on the vertical axis is the probability of a being worse than b. If these numbers

do not sum to 1 (or 100%), that means that the difference lied in the rope.

Thus, analysing Figure 5.7, in the vertical lines of the methods without selection,

the probability of them being worse than any other method is zero. This means that

there is no possible gain using any selection method in these experiments. Methods

without selection, however, also have probability zero of being better than KNORA-U,

meaning that these methods are equivalent for the rope set (1%). The executions without

selection were clearly superior to DCS-LA methods and somewhat superior to KNORA-E,

even though in the latter the majority of the probability lied in the rope.

The analysis of both statistical tests confirmed the initial intuition. There are no

methods that can top the “normal” execution without selection. KNORA-U performed

very close to without selection, being virtually equivalent, however, there is no advantage

in that, because a significant overhead is added to the normal execution overflow.

Figure 5.8 illustrates the accuracy of these ensembles overtime for the SEA exper-

iment, without drift, across different DCS methods, including the Oracle. It is observed

that during the whole execution, the KNORA-U method accuracy was very close to the

accuracy with no selection. This is probably due to KNORA-U, as explained in Section

3.1.4, being a more “inclusive” selection method, so more trees are selected.

When drift is present, as displayed in Table 5.5, the observed behavior remains

unchanged, as the gain of the selection is minimal or inexistent. In some cases, the

executions with some selection methods are not as affected by the drift as the one without
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Figure 5.8: Accuracy Evolution Over Time of ARF and KUE with SEA Generator -
Without Drift and Real-World datasets

selection. This can be seen in the Figure 5.9 on the left. KUE, when executed with the

methods KNORA-E, KNORA-U, and OLA, presented this behavior. With ARF, on the

right, however, the selection methods did not present any benefit.

The statistical tests in Figures 5.10 and 5.11 presented little change in the interpre-

tation of the results. The Bayesian analysis confirmed what was observed in Table 5.5, the

difference between methods without and with selection was wider. However, KNORA-U

remained virtually equivalent to methods without selection, with only 9% of chance of

being worse than it.

5.3.2 OzaBag using Hoeffding Trees

OzaBagging composed by Hoeffding trees usually yields slightly worse results than

Adaptive Random Forest.

However, since a Hoeffding Tree alone is a quite strong base classifier, with great

learning capacity, the dynamic selection results were expected to be better than with ARF

or KUE, but still not provide a significant gain.

Table 5.6 displays the results of this classifier without drift and real-world datasets,

again combined with all the selection methods. It is observed for all the common gener-

ators that the accuracy improvements were small, much like the results with ARF and

KUE. However, for the more complicated generator P2, the selection methods KNORA-E

and OLA presented a significant increase in the accuracy, 8.59% and 7.85%, respectively.

Figure 5.12 shows the accuracy overtime on this generator. It is clear that the selection

methods not only performed better but were also able to learn the concept much quicker.
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Figure 5.9: Accuracy Evolution Over Time of ARF and KUE with Asset Generator -
With Drift

Figure 5.10: Critical Distance Plot for Adaptative Random Forest and Kappa Updated
Ensemble with Hoeffding Tree - With Drift

Table 5.6: OzaBag with Hoeffding Tree - Without Drift and Real-World Datasets

NO SELECTION LCA OLA KNORA-U KNORA-E
OzaBag - Agrawal 93.53% 92.15% 93.70% 93.70% 93.84%
OzaBag - Asset 94.15% 93.08% 94.02% 94.16% 94.08%
OzaBag - SEA 86.10% 85.56% 85.92% 86.16% 86.12%
OzaBag - P2 84.87% 79.50% 92.72% 88.06% 93.46%
OzaBag - RTG 94.68% 93.50% 95.08% 94.20% 95.45%

OzaBag - Spam Corpus 67.15% 63.11% 64.56% 68.34% 68.46%
OzaBag - Electricity 62.54% 43.48% 43.77% 44.24% 44.36%
OzaBag - NOMAO 71.28% 71.28% 71.28% 71.28% 71.28%
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Figure 5.11: Bayesian Analysis Matrix for Adaptative Random Forest and Kappa Updated
Ensemble with Hoeffding Tree - With Drift. The results are given according to the
probability of a being better than b, where a and b are the methods on the x and y axis,
respectively.

Figure 5.12: Accuracy Evolution Over Time of Ozabag with Hoeffding Tree on the P2
Generator - Without Drift

Figure 5.13: Critical Distance Plot for OzaBag with Hoeffding Tree - Without Drift and
Real-World Datasets
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Figure 5.14: Bayesian Analysis Matrix for OzaBag with Hoeffding Tree - Without Drift
and Real-World Datasets. The results are given according to the probability of a being
better than b, where a and b are the methods on the x and y axis, respectively.

Regarding the statistical methods, we can see a change in the observed patterns.

In the critical distance plot, in Figure 5.13, methods with KNORA-E were placed in the

first position. Methods without selection appeared in the fourth position, winning only

against LCA. However, all the methods but LCA were again considered as not significantly

different.

Regarding the Bayesian analysis, in Figure 5.14, the only method that methods

without selection present any probability of being better is against LCA. On the other

hand, the chances of selection methods (OLA, KNORA-U, and KNORA-E) being better

than the traditional execution are low, around 20%. This means that they have about

80% of chance of being equivalent.

While the results did not show a clear advantage of selection methods, they can be

interpreted as a step, relative to the last results, towards an environment where selection

methods are useful.

When drift is added, the results are similar to the ones achieved with ARF and

KUE in terms of gain with selection methods, as presented in Table 5.7. As seen with

KUE, with some streams such as RTG, in the right side of the Figure 5.7, the selection

method KNORA-E was not as affected by the drift as without selection, and also presented

a better recovery, keeping the accuracy higher than the execution without selection. For

streams like SEA, presented on the right side of Figure 5.15, this behavior was not present.

Looking at the critical distance plot in Figure 5.16, the advantage of selection
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Figure 5.15: Accuracy Evolution Over Time of Ozabag with Hoeffding Tree on the SEA
and RTG Generator - With Drift

Table 5.7: OzaBag with Hoeffding Tree - With Drift

NO SELECTION LCA OLA KNORA-U KNORA-E
OzaBag - Agrawal 77.67% 76.82% 76.09% 74.19% 77.93%
OzaBag - RTG 79.81% 76.56% 80.40% 80.02% 81.47%
OzaBag - Asset 93.92% 92.72% 93.79% 93.92% 93.91%
OzaBag - SEA 85.38% 84.66% 85.32% 85.41% 85.47%

Figure 5.16: Critical Distance Plot for OzaBag with Hoeffding Tree - With Drift
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Figure 5.17: Bayesian Analysis Matrix for OzaBag with Hoeffding Tree - With Drift. The
results are given according to the probability of a being better than b, where a and b are
the methods on the x and y axis, respectively.

Table 5.8: OzaBag with Percepton - Without Drift and Real-World Datasets

NO SELECTION LCA OLA KNORA-U KNORA-E
OzaBag - Asset 51.56% 51.93% 82.00% 72.67% 82.12%

OzaBag - Agrawal 49.97% 49.97% 49.97% 49.97% 49.97%
OzaBag - P2 54.73% 54.56% 86.95% 82.88% 87.10%
OzaBag - SEA 78.51% 74.34% 83.92% 82.33% 84.23%
OzaBag - RTG 86.34% 85.23% 86.68% 86.41% 86.86%

OzaBag - Spam Corpus 45.60% 45.42% 52.36% 47.48% 46.91%
OzaBag - Electricity 53.62% 42.83% 57.17% 42.38% 54.95%
OzaBag - NOMAO 71.28% 71.28% 71.28% 71.28% 71.28%

methods decreased. Methods without selection are now placed in the second position.

KNORA-E remained in first. All the methods were set as not significantly different.

Concerning the Bayesian analysis in Figure 5.17, the vertical line of methods with-

out selection shows that there are virtually no chance of selection methods presenting

any gain. No selection methods also did not present significant advantage over selection

methods, except for LCA.

5.3.3 OzaBag using Perceptrons

Perceptron, by default, is a simple classifier that learns linear separations between

classes. Thus, if a problem is not linear, it is expected to have a bad performance. When

OzaBagging is learned using Perceptron as the base learner, such ensemble can be viewed

as an ensemble of weak classifiers. Therefore, the gain of dynamic selection is expected
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Figure 5.18: Accuracy Evolution Over Time of OzaBag with perceptron on the P2 Gen-
erator

Figure 5.19: Critical Distance Plot for OzaBag with Perceptron - Without Drift and Real
World Dataset

to be much more visible in this experiment.

As seen in Table 5.8, the effects of the dynamic selection are clear, especially in

the Asset generator, in which the accuracy rate improved in more than 30%.

The P2 experiment also presented a clear improvement in accuracy, and the ac-

curacy over time for this experiment is displayed in Figure 5.18. Selection methods like

KNORA-E and OLA presented significantly higher accuracy during the whole time of

execution. KNORA-U also presented significant improvement over the execution without

selection. However it performed slightly worse than KNORA-E and OLA. The Oracle

showed that there is still some potential gain to be achieved using the selection methods.

Regarding the critical distance plot, in Figure 5.19, the expected advantage of

selection methods is confirmed, with only LCA being placed in a worse position than

without selection. However, KNORA variants and OLA were set as not significantly

different than without selection.

When looking at the Bayesian analysis, in 5.20, a clear advantage of selection

methods can be seen, with all of them but LCA having around 88% of probability of

being better than without selection.
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Figure 5.20: Bayesian Analysis Matrix for OzaBag with Perceptron - Without Drift and
Real-World Datasets. The results are given according to the probability of a being better
than b, where a and b are the methods on the x and y axis, respectively.

Table 5.9: OzaBag with Percepton - With Drift

NO SELECTION LCA OLA KNORA-U KNORA-E
OzaBag - SEA 77.56% 76.10% 83.57% 81.83% 83.82%

OzaBag - Agrawal 49.97% 49.97% 49.97% 49.97% 49.97%
OzaBag - Asset 51.50% 51.67% 72.85% 68.94% 72.99%
OzaBag - RTG 68.59% 67.33% 73.44% 70.31% 73.59%

These results, as expected, showed that in such an environment of an ensemble of

weak classifiers, selection methods are much more welcomed than in the previous envi-

ronments. However, they do not top the state-of-art results for the same streams.

With drift present, the improvement was also very clear, as seen in Table 5.9.

However, there was not a clear difference in terms of impact when the drift occurred, as

seen with the other classifiers.

Regarding the statistical tests, virtually no change happens in the critical distance

plot, in Figure 5.21. But in the Bayesian analysis, in Figure 5.22, the advantage of OLA

Figure 5.21: Critical Distance Plot for OzaBag with Perceptron - With Drift
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Figure 5.22: Bayesian Analysis Matrix for OzaBag with Perceptron - With Drift. The
results are given according to the probability of a being better than b, where a and b are
the methods on the x and y axis, respectively.

and KNORA-E are increased, with they having around 95% of chance of being better than

methods without selection. These results are interesting because they show a potential of

selection methods being useful in drifts contexts.

5.3.4 Single Base Classifiers

For comparison reasons, Table 5.10 presents the accuracy of the base classifiers

used with the ensembles alone. The Hoeffding Tree results were very close to the state-

of-art method ARF and KUE, without selection, with all streams but P2. Similar thing

happened with the Perceptron, compared to Ozabag composed of this base classifier.

No statistical tests were run in the base classifiers results because they were added

only as reference, and not to compare against selection methods.

5.4 Conclusion

The experiments reported in this chapter showed that the same characteristics

usually required for dynamic selection to be useful in batch machine learning are also

required for the online environment.

When dynamic selection is applied to robust classifiers such as Adaptive Random

Forest and Kappa Updated Ensemble, the impact in accuracy is often small, and some
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Table 5.10: Accuracy of the Base Classifiers in the Streams

Stream Hoeffding Tree Perceptron Naive Bayes
P2 83.50% 54.49% 56.79%
SEA 85.91% 77.35% 82.48%
Asset 93.14% 50.79% 85.53%

Agrawal 93.28% 45.00% 93.68%
RTG 94.10% 86.24% 85.73%

Spam Corpus 72.76% 47.85% 76.42%
Electricity 65.73% 55.83% 64.00%
NOMAO 69.10% 67.28% 68.42%

SEA - Concept 85.07% 76.70% 82.84%
Asset - Concept 92.98% 50.79% 84.81%

Agrawal - Concept 84.75% 45.00% 83.76%
RTG - Concept 85.60% 67.85% 71.75%

times worse. Each base classifier of these ensembles, especially when they are composed

of Hoeffding Trees, are not specialists in specifics regions of the decision space. Instead,

they are capable of predicting most parts of it, hence, selection does not make a difference.

When the slightly less robust ensemble, i.e., OzaBag with Hoeffding Trees as base

classifiers, was used, the results started to become more apparent. In the complex P2

generator, selection significantly improved the accuracy of the ensemble. However, as

shown in Table 5.10, Hoeffding Tree is a strong classifier on its own, achieving satisfactory

results on most streams without the need for an ensemble. Thus, this is not the ideal

environment for classical dynamic selection to work.

With the ensemble of weak linear classifiers, i.e., OzaBag with Perceptrons, the

positive impact of dynamic classifier selection in accuracy rates was clearly observed for

the P2, SEA, and Asset generators. In the Asset and P2 generators, the improvement

rates observed were over 30%.

After all, the dynamic selection was proved to be effective in data stream mining

when applied under similar conditions to those observed for batch environments. However,

as explained in Section 5.1, the objective of this experiment was not to compare dynamic

selection techniques with state-of-art data stream mining techniques. The objective was

to understand if the gains observed by dynamic selection in the offline environment were

also true in the online environment.

Another point observed was that there is a gap for more complex data stream

generators. The currently used ones are mostly linear or simple. This was shown in Table

5.10, where the base classifiers such as the Hoeffding Tree alone achieved results close

to the state-of-art of dynamic ensembles. More complex generators could represent real-

world functions that are not easily learned from the current classifiers. Dynamic selection
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could also present some potential gain in these cases.



Chapter 6

DCS Method Focused on Data Stream Min-
ing

As discussed in Section 2.3, time is an important limitation when dealing with data

stream mining. Krempl et al. (2014) explained that in this area, three main challenges are

faced: volume, velocity, and volatility. Thus, in problems with a great amount of data,

expected to run in a reasonable time, and with the possibility of concept drifts, proposals

must have this concern well addressed in order for them to be useful.

Although a satisfactory statistical accuracy is important, it must be weighted with

how much time it took to be achieved in comparison with other methods. For example,

assuming that a model achieved 95% accuracy using the technique “a” taking 100 seconds

to run. Another model using another technique “b” achieved 93% taking 10 seconds. In a

careful analysis, the technique “a” should not be automatically chosen. Even though the

technique “b” was not as accurate as “a”, it can handle larger amounts of data in a shorter

time.

However, when analyzing DCS methods, most of them rely on the application of the

traditional K-Nearest Neighbor algorithm for every instance to be predicted. This causes

the necessity of computing a distance for all instances in a validation set, for each new test

instance that arrives. In batch machine learning, this is not a very concerning problem

since the number of instances available is usually lower. But in dynamic environments,

added to the fact that the validation set might change over time, this might be considered

very costly as it induces a significant computational overhead.

Thus, different approaches are needed in this case, such as using KD-Tree, as

explained in Section 2.7.1, instead of traditional KNN. With KD-Tree, the search space

on the validation set is drastically reduced to only the instances that are most likely to be

similar to the test instance. The computational complexity of traditional KNN is O(1) for

training and O(k×n× d) for testing, while KD-Tree is O(d×n× log n) and O(k× log n)

73
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for training and testing, respectively.

In this chapter, we propose the Double Dynamic Classifier Selection (DDCS). It

was named as is because we are dealing with dynamic selection with dynamic classifiers,

culminating in the “double dynamic” term.

6.1 Double Dynamic Classifier Selection

The structure of Double Dynamic Classifier Selection (DDCS) is similar to DYNSE

and PDCS (I and II). Algorithm 1 depicts its training process. First, when a chunk arrives

to be trained, in line 1, the current ensemble E is retrieved (even if it is still empty). Next,

from lines 2 to 4, if E is empty, and the hyperparameter init_all is set, all the ensemble is

pre-initialized with empty instances of the selected base classifier. The effect of init_all

is to define whether the ensemble is going to be complete from the beginning or if it is

going to be filled one by one as new chunks arrive.

In line 5, a new base classifier is created. In lines 6 to 8, if the maximum size N of

the ensemble E is reached, the member with the current lowest accuracy is removed. Line

Algorithm 1: Training Step of DDCS
input : BaseClassifier: base classifier to add to the ensemble
input : (X, Y ): chunk to train
input : N : maximum possible size of E
input : use_bagging: if set, train using online bagging
input : init_all: if set, initialize all the classifiers of the ensemble on first run

[1]E ← get_ensemble();
[2]if |E| == 0 & init_all then
[3] E ← {ei| such that 1 ≤ i ≤ (N − 1) and ei is a BaseClassifier instance};
[4]end
[5]new_classifier ← new BaseClassifier();
[6]if |E| = N then
[7] Remove from E the member ei with lowest accuracy;
[8]end
[9]E ← E ∪ {new_classifier};

[10]if use_bagging then
[11] For i = 1, . . . , |E|, train ei using (X, Y ) using Online Bagging;
[12]else
[13] For i = 1, . . . , |E|, train ei using (X, Y );
[14]end
[15]V ← (X, Y );
[16]KDTree ← get_searcher();
[17]KDTree.clear();
[18]KDTree.train(V);
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Algorithm 2: Prediction Step of DDCS
input : x: instance to predict
input : dcs: DCS method to use
input : k: number of neighbors to gather
output: Prediction ŷ of xi

[1]KDTree ← get_searcher();
[2]E ← get_ensemble();
[3]neighbors ← KNNSearcher.find_neighbors(x, k);
[4]selected_members ← apply_dcs(neighbors, dcs, E);
[5]ŷ ← predict(x, selected_members);
[6]return ŷ;

9 adds the newly created classifier to the ensemble. In lines 10 to 14, if the hyperparam-

eter use_bagging is set, the whole ensemble is trained using the online bagging schema,

explained in Section 2.8.1. If use_bagging is not set, then the ensemble is trained with

each member receiving each instance of the chunk once. Finally, the chunk is assigned to

the validation set V , in line 15. Then, in lines 16, 17, and 18, the KD-Tree algorithm is

queried, reset so it can be trained again and trained with the new validation set.

The process for testing with DDCS is strictly the same as with DYNSE and PDCS

I and II. This process is displayed on Algorithm 2. For a test instance x, in lines 1 and 2

the KD-Tree and the ensemble E are retrieved. Then, in line 3 the nearest neighbors of

x in the validation set are queried. Line 4 selects the members of the ensemble that are

most competent to predict x, using any traditional DCS method. Finally, in line 5, the

prediction is made using the members selected and returned in line 6.

It is noteworthy to state that unlike DYNSE and PDCS, the whole ensemble of

DDCS is always updated, thus, providing stronger classifiers that are trained on older and

newer data. Because of this characteristic, DDCS requires that only online classifiers are

used.

6.2 Experimental protocol

6.2.1 Experimental protocol

In our experiments, the ensembles were tested following the interleaved chunks

test-then-train process. This can be seen as a variation of the prequential schema that

works with chunks. The stream is divided into chunks of one thousand instances, then

each chunk is firstly used for testing and later for training, with the exception is the first

chunk, which is used solely for training.
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Table 6.1: Stream Generators and Datasets Used in the Experiments

Name # Instances # Features # Numeric Features # Categoric Features # Classes Imb. Ratio
SEA 100,000 3 3 0 2 0.47

Agrawal 100,000 9 6 3 2 0.48
P2 100,000 2 2 0 2 1.00

Asset 100,000 5 0 5 2 1.00
NOMAO 34,465 118 118 0 2 0.39

Spam Corpus 9,324 39,917 0 39,917 2 0.34
Electricity 45,312 8 8 0 2 0.73

The experiments conducted and depicted in Table 6.1 included synthetic and real-

world datasets. The synthetic generators were: Agrawal (Agr) (AGRAWAL; IMIELIN-

SKI; SWAMI, 1993), Asset Negotiation (An) (ENEMBRECK et al., 2007; BARDDAL et

al., 2016), SEA (STREET; KIM, 2001), and Valentini P2 (P2) (VALENTINI, 2006). The

real-world datasets were Electricity (Elec) (RODRIGUES; GAMA; PEDROSO, 2008),

Nomao (CANDILLIER; LEMAIRE, 2013), and Spam Corpus (KATAKIS; TSOUMAKAS;

VLAHAVAS, 2006). All of the synthetic streams were executed with 100,000 instances.

The streams were set to have zero, one, two, and three equally distributed concept drifts,

abrupt and gradual, the gradual drift happened over a window of 1000 instances.

DDCS was compared against the OzaBag (OZA, 2005), Adaptive Random Forest

(ARF) (GOMES et al., 2017) and the Dynamic Selection Based Drift Handler (DYNSE)

(ALMEIDA et al., 2016). All the ensembles were set to have 100 Hoeffding trees as base

classifiers. It is noteworthy that this number does not necessarily mean an optimal size for

any of the methods, it is just to ensure a fair comparison. All ensembles but OzaBag were

executed with 4 threads, OzaBag current state-of-art implementation does not provide a

multithread implementation.

In this analysis, different hyper-parameter values (true or false) in DDCS for

use_bagging and init_all were used. As for the dynamic selection algorithms, KNORA-

E (KNE), KNORA-U (KNU) (KO; SABOURIN; BRITTO JR., 2008) and no selection

method (majority vote) were chosen for the comparison. These algorithms were selected

because of their smaller computational cost when compared to more recent approaches

such as META-DES (CRUZ et al., 2015). The value of K for the K-Nearest neighbors

for both DDCS and DYNSE was set to 7, as suggested in (CRUZ; SABOURIN; CAVAL-

CANTI, 2018)

Since execution time and memory are of vital importance for data stream mining

settings, an important hyper-parameter in this sense of ARF was optimized to provide a

fair comparison, max_features. This parameter sets the size of the feature subset that

ARF will use when splitting a node. In some cases, changes in this parameter can lead to

changes in time of execution without losing its accuracy, thus, it is important to optimize
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it. The values used in this parameter varied from 2 to 6, with step 1, in addition to the

square root of the total number of features. In the following results, we show two variants

for ARF.

The remainder of the hyper-parameters were set as the default provided in the

Massive Online Analysis (MOA) framework (BIFET et al., 2010). The experiments were

executed 20 times and accuracy, execution time (CPU time), and memory use were as-

sessed. We applied two statistical tests on the results, i.e., the Friedman and Nemenyi

combination proposed in (DEMŠAR, 2006), and the pairwise Bayesian comparison (BE-

NAVOLI et al., 2017).

Regarding accuracy, the results are the average of the 20 executions. Regarding

processing time and memory consumption, all of the values were presented both as the

absolute value and as a relative value to the slowest method and the one that consumed

more memory.

In the following results, we present only two variants for ARF. The first regards

the optimized version of ARF towards accuracy (ARF_ACC), which means that it is the

execution of ARF with the value for max_features that presented the highest accuracy.

The second focuses on the execution with max_features that required less processing

time (ARF_TIME). Regarding DDCS results, only the executions with both parameters

use_bagging and init_all set to false are reported, as these were the most positive

results. The complete list of results with all the variants is displayed in <https://docs.

google.com/spreadsheets/d/1PZSygbHw7gGV4lcHkdu-Hvna9l8vGTdUNxduYcToN5Y/edit?

usp=sharing>. The results were subdivided into 4 sections, no drift, gradual drift, abrupt

drift, and real-world.

6.3 Results

6.3.1 No Drift

For the results regarding the streams without any concept drift. In Table 6.2, we

can see that the winner methods were always ARF_ACC and Ozabag. However, in the

streams Agrawal and Asset, all DDCS variants outperformed ARF_ACC, with more than

Table 6.2: Results Comparing DDCS with Streams Without Drift

DYN_KNE DYN_KNU DYN_NO_SEL OzaBag DDCS_KNE DDCS_KNU DDCS_NO_SEL ARF_ACC ARF_TIME
Agr 86.667 78.556 85.793 93.716 92.600 93.027 93.314 88.506 68.556
An 92.989 92.630 92.851 94.005 93.613 93.796 93.763 93.472 91.662
P2 76.919 79.175 57.872 80.920 87.892 86.757 78.456 97.951 97.902
SEA 88.528 88.136 87.929 88.025 88.386 88.343 87.840 89.350 88.775
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Figure 6.1: Critical Distance Comparing DDCS with Streams Without Drift

4% with Agrawal. DDCS methods also outperformed DYNSE methods in all streams but

SEA. It is noteworthy that ARF_TIME was able to keep relatively competitive results,

relative to ARF_ACC, in the streams Asset, P2, and SEA, however in Agrawal, it was

greatly outperformed by ARF_ACC.

In the critical distance plot, in Figure 6.1, the dominance of ARF_ACC is con-

firmed, with they appearing in first and second position respectively. However, Ozabag

is closely followed by DDCS with KNORA-U and KNORA-E. All DYNSE variants were

placed in the last positions. All of the methods were defined as not significantly different

according to this test.

Regarding the Bayesian analyisis, for the rope = 0.5%, in Figure 6.2 the hori-

zontal line of ARF_ACC presents the highest and most consistent values, meaning that

it is the method with the highest probability of being better than the others. Com-

paring ARF_ACC to DDCS methods with selection, ARF_ACC has between 50% and

57% of being better than DDCS, the opposite (probability of DDCS being better than

ARF_ACC) is only about 25%, meaning that around 25% is in the rope. It is worth to

cite that ARF_ACC has around 84% of the probability of being better than ARF_TIME,

while the opposite number is 0%, meaning that for this rope, they have only around 16%

of being considered equivalent.

For the rope = 1%, in Figure 6.3, as expected, the values decreased in several

places. It is noteworthy that the chance of ARF_ACC outperforming both DYNSE and

DDCS with KNORA-E dropped about 30% and 13% respectively. With KNORA-U, this

drop was quite smaller, with 6% for DYNSE and 5% for DDCS. This means that KNORA-

E was able to achieve a higher margin in the cases where it outperformed ARF_ACC.

In our experiments with streams without any drift, ARF_ACC was the superior

choice in most cases. However, DDCS presented results relatively close and even better

in some streams. If the processing time and memory consumption is added to the equa-

tion, DDCS becomes a quite competitive option. Table 6.3 shows the processing time

of all method with relation to ARF_ACC, which in this round of experiments was the
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Figure 6.2: Bayesian Analysis of All the Methods Pairwise with Rope = 0.5% for Streams
Without Drift. The results are given according to the probability of a being better than
b, where a and b are the methods on the x and y axis, respectively.

Figure 6.3: Bayesian Analysis of All the Methods Pairwise with Rope = 1% for Streams
Without Drift. The results are given according to the probability of a being better than
b, where a and b are the methods on the x and y axis, respectively.
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Table 6.3: Results Comparing Processing Time and Memory Consumption with Streams
Without Drift Against ARF_ACC

Method Processing Time (s) Method Memory Consumption ( Ram-hours)
DYN_NO_SEL 0.308% (3.314) DYN_NO_SEL 0.004% (1.358e-07)
DDCS_NO_SEL 1.014% (10.903) DYN_KNU 0.018% (5.835e-07)

DYN_KNU 1.600% (17.204) DYN_KNE 0.037% (1.212e-06)
DYN_KNE 1.738% (18.688) DDCS_NO_SEL 0.040% (1.320e-06)
DDCS_KNU 2.332% (25.074) DDCS_KNU 0.174% (5.748e-06)
DDCS_KNE 2.664% (28.643) DDCS_KNE 0.217% (7.147e-06)

OzaBag 4.365% (46.927) OzaBag 0.489% (1.613e-05)
ARF_TIME 25.147% (270.330) ARF_TIME 12.208% (4.025e-04)
ARF_ACC 100.000% (1074.995) ARF_ACC 100.000% (3.297e-03)

Table 6.4: Results Comparing DDCS with Streams with Gradual Drift

DYN_KNE DYN_KNU DYN_NO_SEL OzaBag DDCS_KNE DDCS_KNU DDCS_NO_SEL ARF_ACC ARF_TIME
Agr-2X 83.527 73.768 78.949 89.969 90.890 90.949 91.029 84.762 69.507
Agr-3X 80.191 71.289 72.882 86.250 89.864 89.203 89.357 81.960 70.318
Agr-4X 80.745 73.383 73.303 83.880 90.157 88.811 88.513 84.155 72.743
An-2X 92.729 91.422 85.568 93.712 93.545 93.785 93.583 93.484 91.456
An-3X 92.517 91.072 79.923 93.445 93.663 93.579 93.392 93.346 91.295
An-4X 92.031 90.421 78.858 92.623 93.583 93.321 93.071 93.193 91.191
SEA-2X 88.440 87.482 87.231 87.473 88.222 87.946 87.551 89.178 88.535
SEA-3X 88.254 87.080 86.519 86.929 88.065 87.761 87.159 88.963 88.043
SEA-4X 88.104 86.856 86.086 86.150 87.964 87.740 87.125 88.668 88.018

worst, and the mean absolute time. DDCS with KNORA-U for instance (which featured

in the third position in the critical distance plot), took only about 2.3% of the time

ARF_ACC took to run and consumed only around 0.1% of the consumed memory. Com-

paring ARF_TIME with ARF_ACC, it is clear that the optimization focusing on time

provided a great reduction in processing time (25%) and memory consumption (12%).

In conclusion, when dealing with datasets without drift, the use of DDCS is jus-

tifiable only when processing time and memory consumption are a must. Otherwise

ARF_ACC was the obvious choice for such scenarios, with a lower probability of being

outperformed. Other methods such as DYNSE variants also presented a much lower pro-

cessing time and memory consumption (even lower than DDCS), but the accuracy gap of

these methods in such scenario is in general too wide, except for the SEA generator.

6.3.2 Gradual Drift

Regarding the results on the streams set to have gradual drifts, Table 6.4 shows a

different pattern than that observed in environments without any drift, DDCS variants,

especially with KNORA-E, was able to outperform the other methods in all streams

but SEA. With SEA, DDCS presented close results to ARF_ACC, but as it happened

in the past results, it was again outperformed by DYNSE. Comparing ARF_ACC to

ARF_TIME, the biggest discrepancies in accuracy were again observed in the Agrawal

stream.

DDCS with KNORA-E and KNORA-U were placed in the first and second posi-
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Figure 6.4: Critical Distance Comparing DDCS with Streams with Gradual Drift

tions respectively, as shown in the critical distance plot in Figure 6.4. They were closely

followed by ARF_ACC. DYNSE with KNORA-E performed better in this scenario than

without drift, lying in the fifth position. This was expected as DYNSE was focused on

dealing with concept drifts. Only DYNSE without selection and with KNORA-U were

marked as significantly different from the other methods.

Looking at the matrix of the Bayesian analysis, for rope = 0.5%, in Figure 6.5,

the horizontal line of DDCS with KNORA-E was the method that presented the highest

values for most columns, meaning that it is the method that has more probability of being

better than the others. Looking at the vertical line of the same method, we can observe

most values zero or close to zero, meaning that it is also the method least “threatened’ by

the others. I.e, if DDCS with KNORA-E is not better than the method a, they must be

equivalent (in the rope).

In Figure 6.6, for rope = 1%, an interesting difference is that all DDCS vari-

ants became virtually equivalent among each other, meaning that there is a chance of

almost 100% of the difference between them lies in the rope. ARF_ACC was the most

competitive method against DDCS variants, yet, with probability values close to zero.

Regarding processing time, in Table 6.5, the relative difference of DDCS methods

against ARF_ACC dropped. For instance, DDCS with KNORA-E now took 7.1% of the

time ARF_ACC used to process (against 2.6% in scenarios without drift). The same

happen for memory consumption, with DDCS with KNORA-U now using 0.6% of the

memory used by ARF_ACC (against 0.1% without drift). These values, however, are

still significantly low, compared to ARF_ACC.

In conclusion, in a gradual drift scenario, DDCS both with KNORA-E and KNORA-

U presented a strong basis for it to be considered a choice for dealing with such scenarios.

It presented virtually no chance of being outperformed by other methods, however, it is

important to highlight that this does not mean that can not be equivalent. This comes

together with a much lower processing time and memory consumption. As for DYNSE,

although it did perform better than without drift, it is still no match for the current
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Figure 6.5: Bayesian Analysis of All the Methods Pairwise with Rope = 0.5% for Streams
with Gradual Drift. The results are given according to the probability of a being better
than b, where a and b are the methods on the x and y axis, respectively.

Figure 6.6: Bayesian Analysis of All the Methods Pairwise with Rope = 1% for Streams
with Gradual Drift. The results are given according to the probability of a being better
than b, where a and b are the methods on the x and y axis, respectively.

state-of-art ARF_ACC.
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Table 6.5: Results Comparing Processing Time and Memory Consumption with Streams
with Gradual Drift Against ARF_ACC

Method Processing Time (s) Method Memory Consumption (Ram-hours)
DYN_NO_SEL 0.539% (3.543) DYN_NO_SEL 0.005% (1.362e-07)
DYN_KNU 2.997% (19.704) DYN_KNU 0.052% (1.295e-06)

DDCS_NO_SEL 3.192% (20.991) DYN_KNE 0.056% (1.395e-06)
DYN_KNE 3.244% (21.330) DDCS_NO_SEL 0.073% (1.818e-06)
DDCS_KNU 6.359% (41.811) DDCS_KNU 0.674% (1.686e-05)
DDCS_KNE 7.106% (46.724) DDCS_KNE 0.787% (1.966e-05)

OzaBag 13.134% (86.360) OzaBag 2.386% (5.963e-05)
ARF_TIME 25.873% (170.129) ARF_TIME 10.836% (2.709e-04)
ARF_ACC 100.000% (657.556) ARF_ACC 100.000% (2.500e-03)
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Table 6.6: Results Comparing DDCS with Streams with Abrupt Drift

DYN_KNE DYN_KNU DYN_NO_SEL OzaBag DDCS_KNE DDCS_KNU DDCS_NO_SEL ARF_ACC ARF_TIME
Agr_2X 83.129 74.448 79.070 90.617 91.053 91.148 91.763 84.595 68.808
Agr_3X 80.554 71.501 71.317 87.976 90.113 90.228 90.347 82.174 69.783
Agr_4X 81.185 74.364 72.753 87.337 90.507 89.394 89.438 84.925 72.401
An_2X 92.736 91.144 85.589 93.704 93.428 93.485 93.513 93.267 91.472
An_3X 92.469 90.558 79.702 93.489 93.407 93.464 93.317 93.286 91.266
An_4X 91.714 90.204 78.636 92.752 92.839 92.947 92.916 92.810 90.876
SEA_2X 88.388 87.486 87.214 87.524 88.178 88.053 87.552 89.148 88.527
SEA_3X 88.220 87.032 86.544 86.890 88.047 87.771 87.146 88.966 88.106
SEA_4X 88.234 86.956 86.129 86.213 88.046 87.741 87.126 88.723 88.077

Figure 6.7: Critical Distance Comparing DDCS with Streams with Abrupt Drift

6.3.3 Abrupt Drift

In the abrupt drift results, in Table 6.6, DDCS methods were the winner in 4

streams, however, in two of them DDCS without any selection method presented the best

results. The same pattern in SEA repeated, ARF_ACC was the winner and DYNSE

methods were better than DDCS.

The critical distance plot in Figure 6.7 presented an unexpected result, which was

DDCS without selection being better positioned than ARF_ACC. DDCS with KNORA-

U and KNORA-E was placed in first and second position. Following the same pattern as

the results with gradual drifts, the only methods that were considered to be significantly

different than the others were DYNSE with KNORA-U and without selection.

For the Bayesian analysis matrix, with rope = 0.5%, in Figure 6.8, the results

were very similar to the ones obtained in the gradual drift experiments. Looking at the

vertical line of DDCS with KNORA-E and KNORA-U, we can see that the probabilities

of any other method being better than DDCS is virtually zero. DDCS also presented

probabilities close to 100% when compared to DYNSE variants, and DDCS with KNORA-

E presented probabilities around 64% of being better than ARF_ACC (the remainder of

the probability lied most in the rope).

Regarding the matrix for the rope = 1%, the results did not drastically changed.

The probability of DDCS methods being better than some other methods (especially

ARF_ACC) decreased a little. However, the probability of DDCS with KNORA-E being

worse than any other method is literally 0%.
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Figure 6.8: Bayesian Analysis of All the Methods Pairwise with Rope = 0.5% for Streams
with Abrupt Drift. The results are given according to the probability of a being better
than b, where a and b are the methods on the x and y axis, respectively.

Figure 6.9: Bayesian Analysis of All the Methods Pairwise with Rope = 1% for Streams
with Abrupt Drift. The results are given according to the probability of a being better
than b, where a and b are the methods on the x and y axis, respectively.
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Table 6.7: Results Comparing Processing Time and Memory Consumption with Streams
with Abrupt Drift Against ARF_ACC

Method Processing Time Method Memory Consumption
DYN_NO_SEL 0.560 (3.606s) DYN_NO_SEL 0.006 (1.342e-07 ram-hour)
DDCS_NO_SEL 2.862 (18.435s) DYN_KNU 0.053 (1.290e-06 ram-hour)

DYN_KNU 3.062 (19.723s) DYN_KNE 0.057 (1.395e-06 ram-hour)
DYN_KNE 3.307 (21.301s) DDCS_NO_SEL 0.059 (1.438e-06 ram-hour)
DDCS_KNU 5.892 (37.950s) DDCS_KNU 0.552 (1.344e-05 ram-hour)
DDCS_KNE 6.658 (42.878s) DDCS_KNE 0.665 (1.619e-05 ram-hour)

OzaBag 11.266 (72.559s) OzaBag 1.605 (3.907e-05 ram-hour)
ARF_TIME 25.828 (166.345s) ARF_TIME 10.764 (2.620e-04 ram-hour)
ARF_ACC 100.000 (644.059s) ARF_ACC 100.000 (2.434e-03 ram-hour)

Table 6.7, following the pattern observed with the Gradual Drift, the relative differ-

ence in processing time of DDCS methods with DCS methods against ARF_ACC dropped

to around 7%. The same thing happened regarding memory consumption, the same hap-

pened. With DDCS methods using around 0.7% of the used memory by ARF_ACC.

In conclusion, in an abrupt drift scenario, DDCS methods presented consistent

results for being a satisfactory option for dealing with this type of context. It showed

an extremely low probability of being outperformed by other methods, while keeping the

processing time and memory consumption to a minimum. Another DCS method, DYNSE,

was also largely outperformed by DDCS.
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Table 6.8: Results Comparing DDCS with Real World Datasets

DYN_KNE DYN_KNU DYN_NO_SEL OzaBag DDCS_KNE DDCS_KNU DDCS_NO_SEL ARF_ACC ARF_TIME
elec 76.689 76.912 78.714 76.249 78.113 79.091 79.351 78.905 61.707

nomao 93.341 91.853 87.532 92.371 93.735 93.416 93.206 93.451 91.001
spam_corpus 75.796 75.688 61.963 75.997 75.298 75.360 74.934 75.908 68.259

Figure 6.10: Critical Distance Comparing DDCS with Real World Datasets

6.3.4 Real World

The winner methods in real world datasets were Ozabag, DDCS with KNORA-

E and without any selection method. This was the only round of experiments that

ARF_ACC was not the winner in any case.

Looking at the critical distance plot in Figure 6.10, as in the results in the streams

without any drift, no method was marked as significantly different from each other.

ARF_ACC was placed in the first position, followed by all DDCS variants. In this

datasets, ARF_TIME was the worst positioned method.

Regarding the Bayesian analyisis for rope = 0.5%, in Figure 6.11, ARF_ACC

presented the horizontal line with the highest values. It also presented the vertical line

with all the values equal to zero, this means ARF_ACC has the biggest probability of

being better than the other methods, however, the majority of the probability against

DDCS methods lied in the rope.

For rope = 1%, in Figure 6.12, ARF_ACC again presented the highest values in

its horizontal line, however, the values against DDCS variants was zero.

Regarding processing time and memory consumption, in Table 6.9, this round of

Table 6.9: Results Comparing Processing Time and Memory Consumption with Streams
for Real World Datasets Against OzaBag

Method Processing Time (s) Method Memory Consumption (Ram-hours)
DYN_NO_SEL 10.341% (5.941) DDCS_NO_SEL 1.687% (2.458e-06)
DDCS_NO_SEL 14.894% (8.558) DYN_NO_SEL 2.191% (3.192e-06)

ARF_TIME 28.941% (16.628) ARF_TIME 7.451% (1.086e-05)
DYN_KNU 57.879% (33.255) DYN_KNORAU 72.049% (1.050e-04)
DYN_KNE 58.209% (33.444) DYN_KNORAE 72.618% (1.058e-04)
DDCS_KNU 69.378% (39.862) DDCS_KNORAE 83.506% (1.217e-04)
DDCS_KNE 69.599% (39.989) DDCS_KNORAU 83.547% (1.217e-04)
ARF_ACC 96.331% (55.347) ARF_ACC 87.862% (1.280e-04)
OzaBag 100.000% (57.455) OzaBag 100.000% (1.457e-04)
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Figure 6.11: Bayesian Analysis of All the Methods Pairwise with Rope = 0.5% for Real
World Datasets. The results are given according to the probability of a being better than
b, where a and b are the methods on the x and y axis, respectively.

Figure 6.12: Bayesian Analysis of All the Methods Pairwise with Rope = 1% for Real
World Datasets. The results are given according to the probability of a being better than
b, where a and b are the methods on the x and y axis, respectively.
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experiments presented the most different results. The slowest method and the one that

consumed most memory was Ozabag, and not ARF_ACC. The gain in speed and mem-

ory consumption that DDCS provided against Ozabag and ARF_ACC was significantly

smaller. That is because as the number of dimensions increase, the cost of KD-Tree

increases.

In conclusion, on the tested real-world datasets, DDCS loses some of its appeal.

It did not present an advantage in accuracy over the state-of-art ARF_ACC, and when

taking into account time processing and memory consumption, DDCS did not present the

same advantage as it did in previous scenarios.

6.4 Conclusion

As important as is to analyze traditional statistical performance metrics, such as

accuracy, processing time and memory consumption can not be left out of the equation

when dealing with data streams. In this chapter we presented Double Dynamic Classifier

Selection (DDCS) as a alternative to tackling the concept drift problem using dynamic

classifier selection (DCS). DDCS has a lightweight structure, which takes advantage of

KD-Tree for speeding up the selection process. We compared DDCS with Ozabag and

Adaptive Random Forest (ARF), the latter is considered to be in the state-of-art for

general purpose and concept drift classifiers for data streams. Besides, we also compared

with Dynamic Selection Based Drift Handler (DYNSE), another DCS based method for

tackling the concept drift problem.

We run experiments several times and gathered their accuraccy, processing time

and memory consumption. The results show that for streams with both gradual and

abrupt concept drift, DDCS variants outperformed other methods in most cases, while

keeping a significantly low memory consumption and processing time, especially with

relation to ARF, which is extremely performant, statistically speaking, but it currently

state-of-art implementation has very high computational cost.

For streams with no drift and real-world datasets, DDCS is not as justifiable as it

is in drift scenarios. For the no drift context, DDCS could not outperform ARF_ACC,

but it still presented a satisfactory low use of processing time and memory. For real-world

datasets, DDCS also did not outperform ARF_ACC, and did not run in significantly less

time than it or consumed much less memory.
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Chapter 7

Conclusions

Dynamic selection of classifiers (DCS) is a widely studied area of batch machine

learning. In data stream mining, however, its behavior has not been deeply studied and

analyzed by the scientific community. Also, most works in this area do not use online

classifiers, but batch classifiers adapted to receive streams of data. This is an important

gap to be filled since DCS methods were very successful in batch machine learning. Thus

it has the potential to also contribute to data stream mining.

This work’s analysis that allows a partial conclusion about the first hypothesis of

the project: “The application of dynamic selection methods positively impact the perfor-

mance of dynamic ensemble methods”. Yes, there were cases where the dynamic selection

positively impacted data stream mining ensembles. However, it was also detected that an

environment with state-of-art ensembles and commonly used generators, is not an ideal

environment for satisfactory performance with dynamic selection. Thus, further analysis

is required to better determine the specific cases, if they exist, where the DCS methods

are welcomed or not when applied to traditional dynamic ensembles.

As for the second hypothesis, “Dynamic selection methods tailored for data streams

positively impact the classification accuracy in the data stream mining while keeping a

low use of memory and processing time”, we conclude that it proved to be true. DDCS

not only provided better results, but used significantly less time and memory than the

current state-of-art, the Adaptive Random Forest.

As future work, it is worthy investigating if traditional DCS methods present gains

for dynamic ensembles in scenarios other than concept drift, such as imbalanced and noisy

datasets. DDCS is also to be tested in such scenarios. New DCS methods focused on

tackling these problems also need to be designed. Although there are DCS methods for

imbalanced datasets, for instance, we still believe there is a gap to be filled, since most

DCS methods do not support online classifiers.

91
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A deeper analysis of the experimental protocol of DDCS should also be evaluated.

There is a need to check if the use of a chunk-based evaluation did not interfere with the

results of instance-based algorithms, such as ARF and OzaBag. For that, an adaptation

of DDCS for it to work without the need of chunks should be done. The impact of the

size of the chunks and the dimension of data in the quality of the prediction should also

be assessed.
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Appendix A

Results DCS Techniques in Data Stream Min-
ing

This appendix presents the complete set of results of the experiments described in
Section 5.2. Table A.1 organizes them by making each line a combination of an ensemble
with a stream generator, and each column a selection method.

Table A.1: Results for all experiments reported in Section 5.3

No Sel. LCA OLA KNORA-U KNORA-E ORACLE

ARF - P2 98.53% 94.29% 95.48% 98.55% 98.41% 100.00%

ARF - RTG 98.72% 91.28% 93.52% 98.51% 98.59% 100.00%

ARF - Agrawal - Drift 73.29% 62.07% 66.66% 71.92% 70.10% 100.00%

ARF - SEA - Drift 86.53% 84.86% 82.34% 86.62% 83.82% 98.78%

ARF - SEA 87.41% 85.88% 83.43% 87.49% 84.99% 98.75%

ARF - Agrawal 93.35% 79.89% 83.83% 92.84% 91.84% 100.00%

ARF - Asset - Drift 93.82% 83.62% 92.04% 93.53% 93.15% 97.85%

ARF - RTG - Drift 85.08% 79.05% 79.82% 85.45% 84.26% 99.99%

ARF - Asset 93.65% 81.78% 91.44% 93.35% 92.73% 97.85%

OzaBAd. - Percep. - P2 54.73% 54.57% 86.95% 82.88% 87.10% 96.60%

OzaBAd. - Percep. - RTG 86.34% 85.23% 86.68% 86.42% 86.86% 94.22%

OzaBAd. - Percep. - Agrawal - Drift 49.97% 49.97% 49.97% 49.97% 49.97% 49.97%

OzaBAd. - Percep. - SEA - Drift 76.93% 76.15% 83.54% 81.52% 83.77% 99.34%

OzaBAd. - Percep. - SEA 78.34% 74.08% 83.92% 82.41% 84.31% 99.39%

OzaBAd. - Percep. - Agrawal 49.97% 49.97% 49.97% 49.97% 49.97% 49.97%

OzaBAd. - Percep. - Asset - Drift 51.58% 64.89% 87.85% 86.87% 87.95% 100.00%

OzaBAd. - Percep. - RTG - Drift 68.60% 67.32% 73.62% 70.32% 73.78% 96.26%

OzaBAd. - Percep. - Asset 52.86% 61.39% 86.22% 83.43% 86.34% 100.00%

OzaB. - NB - P2 56.96% 57.72% 62.00% 68.80% 61.96% 86.08%

OzaB. - NB - RTG 85.62% 85.27% 85.70% 85.62% 85.69% 94.09%

OzaB. - NB - Agrawal - Drift 71.26% 70.42% 71.43% 71.31% 71.49% 87.44%

OzaB. - NB - SEA - Drift 84.14% 83.83% 84.28% 84.15% 84.35% 93.07%

OzaB. - NB - SEA 82.70% 82.42% 82.83% 82.72% 82.95% 92.04%

OzaB. - NB - Agrawal 94.14% 93.33% 94.04% 94.18% 94.22% 97.94%

OzaB. - NB - Asset - Drift 85.59% 85.66% 87.51% 86.30% 87.60% 94.02%

OzaB. - NB - RTG - Drift 63.47% 62.93% 63.65% 64.14% 63.69% 86.43%

OzaB. - NB - Asset 85.57% 85.36% 87.22% 86.39% 87.33% 94.87%

OzaB. - HT - P2 84.87% 79.50% 92.72% 88.06% 93.46% 99.54%

OzaB. - HT - RTG 94.68% 93.50% 95.08% 94.20% 95.45% 99.72%
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OzaB. - HT - Agrawal - Drift 77.67% 76.83% 76.09% 74.19% 77.93% 97.51%

OzaB. - HT - SEA - Drift 85.38% 84.66% 85.32% 85.41% 85.47% 97.29%

OzaB. - HT - SEA 86.10% 85.56% 85.92% 86.16% 86.12% 97.64%

OzaB. - HT - Agrawal 93.53% 92.16% 93.70% 93.70% 93.85% 100.00%

OzaB. - HT - Asset - Drift 93.92% 92.72% 93.79% 93.92% 93.92% 96.84%

OzaB. - HT - RTG - Drift 79.81% 76.56% 80.40% 80.02% 81.47% 99.76%

OzaB. - HT - Asset 94.15% 93.08% 94.02% 94.16% 94.08% 97.03%

OzaBAd. - NB - P2 57.74% 59.00% 75.23% 71.39% 75.21% 91.72%

OzaBAd. - NB - RTG 85.62% 85.27% 85.70% 85.62% 85.69% 94.09%

OzaBAd. - NB - Agrawal - Drift 71.72% 69.66% 73.79% 71.46% 74.29% 95.97%

OzaBAd. - NB - SEA - Drift 84.14% 83.83% 84.28% 84.15% 84.35% 93.07%

OzaBAd. - NB - SEA 82.70% 82.42% 82.83% 82.72% 82.95% 92.04%

OzaBAd. - NB - Agrawal 94.14% 93.33% 94.04% 94.18% 94.22% 97.94%

OzaBAd. - NB - Asset - Drift 86.42% 87.25% 91.78% 87.82% 91.86% 96.39%

OzaBAd. - NB - RTG - Drift 65.08% 65.73% 69.24% 67.44% 69.25% 90.62%

OzaBAd. - NB - Asset 85.62% 84.57% 88.80% 86.39% 88.96% 95.43%

OzaBAd. - HT - P2 85.17% 79.49% 92.96% 88.54% 93.80% 99.68%

OzaBAd. - HT - RTG 94.78% 93.50% 95.08% 94.20% 95.45% 99.92%

OzaBAd. - HT - Agrawal - Drift 75.81% 70.58% 76.36% 76.28% 77.07% 99.71%

OzaBAd. - HT - SEA - Drift 85.39% 84.55% 85.29% 85.42% 85.44% 97.35%

OzaBAd. - HT - SEA 86.10% 85.56% 85.92% 86.16% 86.12% 97.64%

OzaBAd. - HT - Agrawal 93.55% 92.12% 93.69% 94.08% 94.12% 100.00%

OzaBAd. - HT - Asset - Drift 93.92% 92.94% 94.15% 93.92% 94.27% 97.24%

OzaBAd. - HT - RTG - Drift 79.88% 77.20% 80.76% 80.07% 81.71% 99.79%

OzaBAd. - HT - Asset 94.15% 93.08% 94.02% 94.16% 94.08% 97.03%

KUE - HT - P2 94.40% 85.95% 94.00% 94.66% 96.05% 99.39%

KUE - HT - RTG 96.03% 86.53% 96.36% 96.26% 97.14% 99.39%

KUE - HT - Agrawal - Drift 79.15% 61.44% 76.05% 75.96% 77.71% 99.39%

KUE - HT - SEA - Drift 85.57% 79.71% 81.01% 85.52% 82.08% 98.50%

KUE - HT - SEA 86.53% 77.73% 82.27% 86.21% 82.67% 98.48%

KUE - HT - Agrawal 94.31% 87.96% 92.62% 94.40% 93.48% 99.39%

KUE - HT - Asset - Drift 93.15% 61.87% 92.62% 93.28% 92.80% 99.39%

KUE - HT - RTG - Drift 81.76% 68.02% 79.58% 82.77% 81.65% 99.39%

KUE - HT - Asset 93.65% 73.02% 92.47% 93.64% 92.41% 99.39%

OzaB. - Percep. - P2 54.73% 54.57% 86.95% 82.88% 87.10% 96.60%

OzaB. - Percep. - RTG 86.34% 85.23% 86.68% 86.42% 86.86% 94.22%

OzaB. - Percep. - Agrawal - Drift 49.97% 49.97% 49.97% 49.97% 49.97% 49.97%

OzaB. - Percep. - SEA - Drift 77.56% 76.10% 83.58% 81.83% 83.82% 98.77%

OzaB. - Percep. - SEA 78.51% 74.35% 83.92% 82.33% 84.23% 98.90%

OzaB. - Percep. - Agrawal 49.97% 49.97% 49.97% 49.97% 49.97% 49.97%

OzaB. - Percep. - Asset - Drift 51.50% 51.67% 72.86% 68.94% 72.99% 100.00%

OzaB. - Percep. - RTG - Drift 68.59% 67.33% 73.44% 70.31% 73.59% 95.95%

OzaB. - Percep. - Asset 51.56% 51.93% 82.00% 72.67% 82.13% 100.00%

KUE - NB - P2 57.24% 57.04% 81.62% 74.58% 80.82% 87.71%

KUE - NB - RTG 85.18% 83.19% 85.56% 83.67% 85.56% 93.58%

KUE - NB - Agrawal - Drift 72.05% 52.76% 71.56% 52.27% 71.41% 91.93%

KUE - NB - SEA - Drift 83.75% 79.07% 83.59% 81.07% 83.30% 92.78%

KUE - NB - SEA 82.27% 76.95% 82.10% 79.53% 81.88% 91.71%

KUE - NB - Agrawal 93.60% 68.30% 93.45% 58.04% 93.27% 97.51%

KUE - NB - Asset - Drift 85.55% 80.90% 92.14% 89.85% 92.36% 97.58%

KUE - NB - RTG - Drift 64.46% 60.10% 70.59% 65.67% 71.07% 89.20%

KUE - NB - Asset 84.97% 81.70% 91.95% 90.26% 92.12% 97.30%
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KUE - Percep. - P2 56.69% 54.34% 88.08% 83.82% 87.59% 97.43%

KUE - Percep. - RTG 86.13% 83.70% 86.66% 86.13% 86.82% 97.89%

KUE - Percep. - Agrawal - Drift 49.98% 49.97% 50.11% 49.97% 50.03% 51.13%

KUE - Percep. - SEA - Drift 77.90% 70.93% 82.92% 82.82% 83.16% 99.06%

KUE - Percep. - SEA 78.89% 70.57% 83.41% 83.18% 83.60% 99.07%

KUE - Percep. - Agrawal 49.87% 49.97% 49.97% 50.00% 50.36% 51.18%

KUE - Percep. - Asset - Drift 76.08% 70.57% 88.43% 88.17% 88.58% 99.39%

KUE - Percep. - RTG - Drift 68.00% 64.47% 74.83% 70.91% 75.22% 98.96%

KUE - Percep. - Asset 77.36% 76.97% 86.66% 85.74% 86.55% 99.39%


