
Wellington Rodrigo Monteiro

A large-scale hybrid optimization strategy for multi-

objective problems

Curitiba

2018

Wellington Rodrigo Monteiro

A large-scale hybrid optimization strategy

for multi-objective problems

Dissertation document presented to the Indus-

trial & Systems Engineering Graduate Pro-

gram, System Optimization, Modeling and

Control research group from the Pontifical

Catholic University of Paraná as a partial

requirement for the Master’s degree in Indus-

trial & Systems Engineering.

Supervisor: Gilberto Reynoso Meza

Curitiba

2018

Monteiro, Wellington Rodrigo

M775L A large-scale hybrid optimization strategy for multi-objective problems /

2018 Wellington Rodrigo Monteiro ; supervisor: Gilberto Reynoso Meza. – 2018.
111 f. : il. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Paraná,

Curitiba, 2018

Bibliografia: f. 105-111

1. Engenharia de produção. 2. Algoritmos genéticos. 3.Otimização

combinatória. I. Meza, Gilberto Reynoso. II. Pontifícia Universidade Católica

do Paraná. Programa de Pós-Graduação em Engenharia de Produção e

Sistemas. III. Título.

CDD 22. ed. – 670

Dados da Catalogação na
Publicação Pontifícia

Universidade Católica do

Paraná

Sistema Integrado de Bibliotecas –

SIBI/PUCPR Biblioteca Central
Luci Eduarda Wielganczuk – CRB 9/1118

Abstract

In the optimization field it is common to find algorithms originally capable of addressing

problems with a single objective (such as direct search methods including Nelder-Mead

simplex method, Hooke-Jeeves and pattern search) and other strategies known to

address multi-objective problems (multi-objective evolutionary algorithms, for

instance). The latter are able to solve multi-objective problems with varying amounts

of variables and constraints. However, these strategies do not adapt very well to some

real problems that have a high amount of variables. It happens due to their low

performance combined with a high resource usage as well as sometimes being unable to

reach and generate an adequate solution set. Considering these reasons, this research

proposes a new hybrid (combining a genetic algorithm approach with local search)

optimization strategy for multi-objective continuous problems having such characteristics

while keeping an acceptable performance to be deployed in industrial applications such

as in the meat industry.

The proposed hybrid strategy is intended to have lower computer resource usage through

parallelization and new parameters to be used in order to better use these resources

as needed. By computer resources, it is understood as the memory and processor

usage. For example, in the proposed strategy, some parameters enable the reduction

on the number of solutions being transferred from one generation to the other or the

number of solutions being evaluated in the local, stochastic search algorithm. With these

strategies, the proposed strategy aims to allow the evaluation of problems containing a

large number of variables (i.e. containing tens of thousands of variables or more). Other

than this, it also must be able to attempt to quickly reach the real Pareto front and be

easy to evaluate, adapt and port.

This strategy originated from the situation of a large meat company which used a single

objective optimization algorithm to generate the production plan for its slaughterhouses,

being the objective the maximization of the theoretical profits. However, this strategy

did not consider the reliability of each slaughterhouse — each slaughterhouse

covered only partial quantities of the proposed production plan determined by the

algorithm and, therefore, the profits informed by the algorithm differed from the real

values. As such, a multi-objective optimization algorithm could address the scenario

considering the maximization of the reliability of the overall plan (determined from the

reliability rates of the slaughterhouses) as another objective. While this algorithm was

executed and provided viable results, it used too much computer resources and took too

long to completely run due to the large number of variables in the problem.

As a feedback of these outcomes, the need to create a multi-objective optimization algorithm

with low resource usage and with faster results arose. Also, since the company found

some opportunities to improve the accuracy of their own data, the new strategy was

compared against two other algorithms using other test problems as complex as the

original one, comparing both their computer resource usage (memory and processor)

as well as the hypervolume for the Pareto front approximations and the approximations

in themselves.

Keywords: hybrid optimization. multi-objective optimization. many-variable optimiza- tion.

Resumo

Na área de otimização é comum encontrar algoritmos originalmente capazes de

endereçar problemas com somente um objetivo (como o Nelder-Mead ou o Hooke-

Jeeves) e outras estratégias conhecidas por endereçar problemas multi-objetivo (por

exemplo, algoritmos evolucionários multi-objetivo). Estas últimas são capazes de

solucionar problemas multi- objetivo com diferentes grandezas de variáveis e restrições.

Contudo, estas estratégias não se adaptam muito bem para problemas reais que

possuem um grande número de variáveis. Isto ocorre por conta do seu baixo

desempenho combinado com um alto uso de recursos do computador e até mesmo não

conseguir alcançar um conjunto adequado de soluções ocasionalmente. Considerando

estas razões, esta pesquisa propõe uma nova estratégia de otimização híbrida (isto é,

combinando um algoritmo genético com busca local) para problemas contínuos multi-

objetivo que possuam estas características enquanto mantém uma performance aceitável

para ser utilizado em aplicações industriais tais como aquelas na agroindústria.

Espera-se da estratégia híbrida proposta um baixo uso de recursos computacionais

através do emprego do paralelismo e de novos parâmetros a serem usados para melhor

utilizarem estes recursos conforme necessário. Por recursos computacionais,

compreendem-se os usos da memória e do processador. Por exemplo, na estratégia

proposta, alguns parâmetros possibilitam a redução no número de soluções sendo

transferidas de uma geração a outra ou então no número de soluções sendo avaliadas

pelo algoritmo de busca local estocástica. Com estas estratégias, a estratégia proposta

busca possibilitar a otimização de problemas contendo um grande número de variáveis

(contendo dezenas de milhares de variáveis ou mais, por exemplo).

Esta estratégia originou-se de uma situação de uma grande empresa da agroindústria

a qual utilizava um algoritmo de otimização mono-objetivo para gerar o plano de produção

para os seus frigoríficos, sendo o objetivo a maximização dos possíveis lucros. Contudo,

esta estratégia não considerava a confiabilidade de cada frigorífico — cada frigorífico

atendia apenas à uma quantidade parcial daquilo que era sugerido pelo plano de pro-

dução determinado pelo algoritmo e, portanto, os lucros informados pelo algoritmo eram

diferentes dos valores reais. Assim sendo, um algoritmo de otimização multi-objetivo

poderia endereçar este cenário considerando esta confiabilidade como um segundo objetivo.

Enquanto que um algoritmo multi-objetivo tenha sido executado e fornecido valores viáveis,

ele utilizava muitos recursos computacionais e demorou muito tempo para completar o

seu funcionamento devido ao grande número de variáveis no problema.

Como um resultado dessas situações, nasceu a necessidade de criar um algoritmo
de

otimização multi-objetivo de baixo consumo de recursos computacionais e que fosse

capaz de gerar resultados mais rapidamente. Ademais, uma vez que a empresa

encontrou algumas oportunidades de melhora na acurácia dos seus próprios dados por

conta desta pesquisa, a nova estratégia foi comparada com outros dois algoritmos utilizando

problemas matemáticos cujas complexidades assemelhar-se-iam à complexidade do

problema do plano de produção, comparando tanto o uso de recursos computacionais

(memória e processador) como os hipervolumes das aproximações das frentes de Pareto

bem como as aproximações em si.

Palavras-chave: otimização híbrida. otimização multi-objetivo. otimização multivariável.

List of Figures

Figure 1 – A two-dimensional design space - each axis represent a design variable.

The darker area is the feasible region where infinite feasible solutions

are inside it, with some of them represented by the black diamonds.

The optimum point is represented by the black asterisk. 27

Figure 2 – The same solutions are shown in both charts. The problem has two

objectives and two variables. The bottom chart, commonly used in SO

strategies, shows the values found from the variables standpoint while

the upper chart shows the values relative to the objectives. For MOPs it

is more common to represent the solutions from the objective standpoint

since the decision maker must, generally, analyze the tradeoffs

between

the multiple objectives first. ... 28

Figure 3 – Example of the Pareto optimality for a two-objective problem as shown

by Reynoso-Meza (2014). The continuous line represent the Pareto

optimal front. The dark area represents the feasible solution space.

The diamonds represent feasible solutions dominated by other non-

dominated solutions (represented by the squares). The squares

overlapping the continuous line are non-dominated and Pareto

optimal solutions while

the other squares are simply non-dominated solutions. 30

Figure 4 – Comparison of the solutions found for each strategy. Note that the goal-

attainment and the weighted sum approaches had distinct approximated

Pareto fronts according to their targets, as previously set by the decision

maker. The random approach generated 10000 solutions which the

decision maker would need to handpick the ones most suitable for him. 32

Figure 5 – Example of the scatter plot for the I-BEAM problem. 38

Figure 6 – Example of parallel coordinates for an unrelated problem. The y-axis

represent the normalized values found for each objective. 39

Figure 7 – Example of the horizontal bars visualization of a random problem

containing three objectives. ... 39

Figure 8 – Example of the radar plot for an unrelated problem. 40

Figure 9 – Example of the convergence concept for a multi-objective evolutionary

algorithm, where the continuous curved line represents the real, unknown

Pareto front, and the squares were the results found by an

algorithm. Under the convergence characteristic an algorithm must

found solutions as close as possible to the real Pareto front - i.e. after

each iteration the solutions would follow the direction shown by the

arrows until they

theoretically reach the real Pareto front. .. 42

Figure 10 – Example of the diversity characteristic for a multi-objective evolutionary

algorithm, where the continuous curved line represents the real, unknown

Pareto front, and the squares were the results found by an algorithm.

Under this characteristic the solutions must be both spread along the

real Pareto front as well as distributed among themselves, as shown by

the solutions highlighted with the arrows - notice the distance across

them. ... 43

Figure 11 – Example of the pertinence characteristic for a multi-objective evolu-

tionary algorithm, where the dashed box represents an example of

a region of interest to the decision maker. Depending on the

algorithm it is possible to determine the area beforehand or

determine it after the algorithm execution. In this case, the decision

maker would need to manually filter out the solutions most useful for

him - i.e. only the ones

inside the box. ... 44

Figure 12 – Results of the first run done with 350000 iterations. The first plot shows

the tradeoffs between both objectives while the second plot shows the

comparison between the theoretical maximum profits and the more

realistic profits taking in account the reliability rates found for each

solution. .. 64

Figure 13 – Results of the second run done with 1 million iterations. The first plot

shows the tradeoffs between both objectives while the second plot

shows the comparison between the theoretical maximum profits and the

more realistic profits taking in account the reliability rates found for

each

solution. .. 65

Figure 14 – Comparison between both runs. The second run achieved noticeably

better results. .. 66

Figure 15 – The results for all the problems tested with 1000 variables. From left to

right: first row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4,

LSMOP5, LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9.

Circles:

gamultiobj, asterisks: sp-MODE II, stars: new algorithm. 88

Figure 16 – The results for all the problems tested with 5000 variables. From left to

right: first row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4,

LSMOP5, LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9.

Circles:

gamultiobj, asterisks: sp-MODE II, stars: new algorithm. 89

Figure 17 – The results for all the problems tested with 15000 variables. From left to

right: first row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4,

LSMOP5, LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9.

Circles:

gamultiobj, stars: new algorithm.. 90

Figure 18 – The results for all the problems tested with 30000 variables. From left to

right: first row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4,

LSMOP5, LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9.

Stars:

new algorithm. ... 91

Figure 19 – The results for all the problems tested with 50000 variables. From left to

right: first row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4,

LSMOP5, LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9.

Stars:

new algorithm. .. 92

Figure 20 – The hypervolume distribution for all the problems tested with 1000

variables. The vertical axis represents the hypervolume values, where

ga represents the runs with gamultiobj, sp with sp-MODE II and new

with the new algorithm. The density of the violin refers to the

distribution of all the hypervolume values for a given problem, the

box height determines the interquartile range, the strip in the box

represents the

median and the dots represent the outliers. ... 95

Figure 21 – The hypervolume distribution for all the problems tested with 5000

variables. The vertical axis represents the hypervolume values, where

ga represents the runs with gamultiobj, sp with sp-MODE II and new

with the new algorithm. The density of the violin refers to the

distribution of all the hypervolume values for a given problem, the

box height determines the interquartile range, the strip in the box

represents the

median and the dots represent the outliers. ... 96

Figure 22 – The hypervolume distribution for all the problems tested with 15000

variables. The vertical axis represents the hypervolume values, where

ga represents the runs with gamultiobj and new with the new

algorithm. The density of the violin refers to the distribution of all the

hypervolume values for a given problem, the box height determines the

interquartile range, the strip in the box represents the median and the

dots represent

the outliers. ... 97

Figure 23 – The hypervolume distribution for all the problems tested with 30000

variables. The vertical axis represents the hypervolume values,

where new represents the runs with the new algorithm. The density

of the violin refers to the distribution of all the hypervolume values for a

given problem, the box height determines the interquartile range, the

strip in

the box represents the median and the dots represent the outliers. 98

Figure 24 – The hypervolume distribution for all the problems tested with 50000

variables. The vertical axis represents the hypervolume values,

where new represents the runs with the new algorithm. The density

of the violin refers to the distribution of all the hypervolume values for a

given problem, the box height determines the interquartile range, the

strip in

the box represents the median and the dots represent the outliers. 99

Figure 25 – The memory and processor usages registered through the perfmon

tool. From top to bottom, left to right: results for LSMOP5 with 1000

variables, 5000 variables, 15000 variables, 30000 and 50000 variables.

The memory usage is registered by the continuous lines while the

processor usage is registered by the dashed lines. The y-axis

represents the percentage of processor usage, for the processor usage

lines (meaning the value of 60 represents 60% in processor usage),

and the usage in hundreds of megabytes in memory for the memory

usage lines (meaning the value of 60 means 6.0 GB in memory

usage). The vertical, dotted lines represent the division between the

algorithm execution as referred

in the Section 4.1 (I: new algorithm; II: gamultiobj; III: sp-MODE II). 101

List of Tables

Table 1 – Top 10 solutions for the I-BEAM problem for one sample run. T =

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution);

P = PROMETHEE (Preference Ranking Organization METHod for

Enrichment of Evaluations); PP = Physical Programming. 36

Table 2 – Top 10 solutions for the Nutrition problem for one sample run. T =

TOPSIS; P = PROMETHEE; PP = Physical Programming.

 ... 3

7

Table 3 – PROMETHEE rankings, Insulin problem. The columns show the values

for each criterion (C 1, C 2, C 3, C 4, C 5). The numbers besides

significant

and insignificant show the number of the run. ... 37

Table 4 – Median time taken for each algorithm considering 51 runs. NVar rep-

resents the number of variables. The algorithms with the best median

values are in bold. .. 93

Table 5 – Hypervolumes for each algorithm considering 51 runs. NVar represents

the number of variables. The algorithms with the best median values are

shown in bold. .. 94

Table 6 – Wilcoxon signed rank test results compared against the median hypervol-

umes found for each algorithm and problem. True indicates a rejection

of the null hypothesis at 5% significance level while false indicates a

failure to reject the null hypothesis. The problems with 30000 and 50000

variables are not available in this table since only the new algorithm was

capable to run them. ... 100

List of abbreviations and acronyms

AOF Aggregate Objective Function

CCGA Cooperative Coevolutionary Genetic Algorithm

CCGDE3 Cooperative Coevolutionary GDE3

CPSO Cooperative Particle Swarm Optimization

CPU Central Processing Unit

DM Decision-making

EMO Evolutionary Multi-objective Optimization

ERP Enterprise Resource Planning

GA Genetic Algorithm

GFCL Generate-First Choose-Later

GDE3 Generalized Differential Evolution, 3rd version

MA Memetic Algorithm

MCDM Multi-criteria Decision-making

MOEA Multi-objective Evolutionary Algorithm

MOO Multi-objective Optimization

MOOD Multi-objective Optimization Design

MOP Multi-objective Problem

NIS Negative Ideal Solution

NNC Normalized Normal Constraint

PIS Positive Ideal Solution

PIT Practically Insignificant Tradeoff

PROMETHEE Preference Ranking Organization METHod for Enrichment of Eval-

uations

RAM Random Access Memory

SaNSDE Self-adaptive Neighbourhood Search Differential Evolution

SO Single-objective

sp-MODE Multi-objective Differential Evolution with Spherical Pruning

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

Contents

Introdução .. 21

1 BACKGROUND .. 25

1.1 Single-objective Optimization .. 25

1.2 Multi-objective Optimization... 27

1.2.1 Fundamentals .. 29

1.2.2 Algorithm Rationale ... 29

1.3 Multi-objective Evolutionary Algorithms ... 40

1.4 Large-scale Optimization .. 45

1.5 Hybrid Optimization .. 47

1.6 Benchmarks ... 49

1.6.1 LSMOP1 .. 51

1.6.2 LSMOP2 .. 52

1.6.3 LSMOP3 .. 53

1.6.4 LSMOP4 .. 54

1.6.5 LSMOP5 .. 54

1.6.6 LSMOP6 .. 55

1.6.7 LSMOP7 .. 56

1.6.8 LSMOP8 .. 57

1.6.9 LSMOP9 .. 57

1.6.10 Poultry dataset ... 58

2 PRELIMINARY CONTRIBUTIONS .. 63

2.1 Poultry dataset .. 63

2.2 Results published in COBEM 2017 ... 64

3 PROPOSAL .. 67

3.1 Context ... 67

3.2 Overview ... 68

3.2.1 Parameters .. 69

3.2.2 Dominance Filter ... 72

3.2.3 Tournament, mutation and recombination ... 73

3.2.4 Local Search .. 75

3.2.5 Pruning .. 77

3.3 Strategies Previously Used .. 79

4 RESULTS .. 81

4.1 Evaluation Methods ... 81

4.2 Pareto fronts and Hypervolume ... 84

4.3 Findings ... 85

5 CONCLUSIONS .. 103

REFERENCES .. 105

19

Acknowledgements

Thanks to the Pontifical Catholic University of Paraná, specially to its Polytechnic

School and its Industrial & Systems Engineering Graduate Program (PPGEPS).

Thanks to Prof. Gilberto Reynoso-Meza for his help, assistance and overwhelming

support.

Special thanks to the family, friends and wife of the author for their continuous

support, patience and care.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

21

Introduction

The concept of optimization, by itself, is simple. From a pragmatic standpoint,

it revolves around the idea of improving something and choosing the best alternative

(or alternatives) - be it a process or a product, for example Stadler (2013).

Independently of what it might be, it has one or multiple constraints and variables

according to the context. For example, improving a given production plan might result in

multiple values representing the production distribution across multiple production lines

and/or plants for a set of products in different dates. These variables might even be

numeric or binary. One important notion here is that both the concepts of improvement

and optimization are also associated with the idea of quality - after all, if something is

improved it should also have better quality as a result. Quality, as is, is a relative

concept since it depends from the standpoint of a person and also the context, the

timing, and so on. Therefore, when something - named problem from now on - must

be improved, it must be defined in an exact, mathematical fashion. From it, it is

possible to determine what exactly should be improved and under what set of criteria

it must comply.

Recalling the example of the production plan to be improved, it is possible for one

to assume that, from its description as is, a given optimization algorithm should provide

as a result the best production plan. However, for a plant maintenance coordinator the

word best might mean that the resulting plan will have separate, equilibrated maintenance

windows along the day. For the logistics manager it might imply in a plan that generates

the least stock in plant. For the Sales department it might imply in a plan with the most

profitable material, even though it might generate a lot of waste since the least profitable

raw material or semi-finished goods would be simply ignored. From this quick example it is

possible to identify that the result of the algorithm shall be oriented to the definition and

understanding of the objective according to the one in charge of designing it - i.e. the

problem designer must define exactly what he needs in the end. This task must

encompass not only the objective itself, but also all the limitations and situations to be

considered. In short, it means that the problem designer must carefully define the entire

model since even small errors might produce largely distinct results.

While this situation is easy to understand, in most real-world scenarios the degree

of difficulty may rise exponentially depending on the case. The first issue is within the data

collection itself since the data is not always ready for use or even it is either

nonexistent or unreliable - this situation is also seen in other industry frameworks and

techniques where a reliable data source is required, such as Lean Six Sigma, as seen

in Albliwi et al. (2014). Secondly, the scenarios and situations can reach the hundreds

or thousands - in the production plan example, the distribution of 10 different products

across four weeks

22 Introdução

for eight plants and with differing plant capacities and market demands along the weeks

can already reach hundreds of variables. Data sources such as common optimization

for radiation therapy (CORT) dataset Craft et al. (2014) in the radiation therapy field

or housing-related datasets as the example shown in Hallac, Leskovec and Boyd (2015)

and engineering-related problems such as the ones in Liao et al. (2014) are real-world,

complex cases that meet the criteria explained above.

Up to this point, there are already some challenges to be tackled: 1) the

difficulty in retrieving and organizing reliable data; 2) the difficulty in designing the

problem and its constraints; 3) the large number of variables and constraints to be

handled in some real-world problems; and 4) the computational performance of the

optimizers involved in resolving said problems. Focusing in the latter two items since they

are more interesting from a computing standpoint, it is important to highlight the myriad of

single-objective algorithms with varying strategies and, therefore, differing performance

depending on the algorithm chosen. Now, when many objectives are involved - that is,

when a combination of objectives are looked for with implicit tradeoffs between them -

the complexity is even higher. Back on the production line example, one may search

not only for the most profitable solution, but instead may look for the solution with the

most profits and also with the least stock room space used. In such scenarios there

should not have only one solution since the one with the most profits may as well use

more stock than other solutions, and vice-versa. Therefore, a list of possible solutions is

generated instead so the problem designer can choose one out of it that may best suit his

needs. This list should be comprehensive but also short and diverse at the same time,

thus bringing another layer of complexity to the process. When dealing with real-world,

large scenarios, most algorithms may use too much processing power - and, therefore,

time - attempting to find the best solution.

For this reason, there is a strategy named hybrid optimization Juang (2004), which

attempts to accelerate the discovery of the best solutions by forcing improvements within

each step - let us consider that the discovery of a set containing the possible solutions

is achieved after 1000 iterations where each iteration generates a set and the next

iteration tries to improve the set created in the past iteration. This strategy, as shown in

more detail in this document, employs different methods which, in the long run, might

reduce the quantity of iterations and/or time required to reach the best set of solutions as

well as the required computational time to achieve that which is specially interesting in

complex, real- world problems. For example, a genetic algorithm (GA) might generate

better and better solutions each generation through tournament, mutation and

recombination techniques. The GA is an example of a metaheuristic optimization algorithm

since there is no need to deeply customize and adapt it depending on the problem, as

seen in BoussaïD, Lepagnot and Siarry (2013). A case of a hybrid optimization

modification to this algorithm would include an additional step after the end of each

generation where some variables of these

23

solutions are randomly changed in order to find even better solutions and using them

instead.

Therefore, in order to better address the situations noted above there is a need

to implement a mix of techniques in order to attempt to find quickly the best set of

solutions with the least side-effects as possible - that is, in the hurry of finding the best

solutions the algorithm might ignore some of them that would be considered otherwise.

Having that said and considering the big picture explained above, this research proposes a

hybrid algorithm targeted for large-scale, multi-objective problems. Large-scale, as seen

in Cheng et al. (2016), are problems with at least hundreds or thousands of decision

variables. Multi-objective problems, as shown in Huang, Gu and Du (2006), are problems

with two or more solution objectives. Since this algorithm was originally targeted to be

used in the meat industry - more specifically on the generation of production plans - it

was developed with integer variables in mind (i.e. without considering discrete variables).

This document is divided five chapters besides the current one, as follows: the current

chapter is the introduction to the research itself. After it, the first numbered chapter lays

ground to the background used by the algorithm, explaining what exactly is understood

by single-objective and multi-objective optimization (i.e. the optimization of problems

with either only one objective or problems with two or more objectives), large-scale

optimization (i.e. the optimization involving at least thousands or tens of thousands of

variables to be considered) or the already existent hybrid techniques, for example. It

is important to explain the logic behind single-objective optimization since many of its

concepts are inherited by multi-objective optimization, which is the target of this research.

The following chapter shows the preliminary contributions of this research. The next

chapter revolves around the proposal of the expected deliverables for this research

while the following chapter presents the a discussion of the results of this proposal. The

next chapter shows the conclusions of this research while the final chapter lists the

bibliography used.

25

x2

 ...

1 BACKGROUND

Before understanding the new algorithm proposed in this document it is of

paramount importance understand where and how it is applicable. The new algorithm is

intended to be used in multi-objective problems - therefore, it is worth understanding what

determines a given problem as single-objective or multi-objective. Going one step

further, it is also important to identify all the steps that compose a multi-objective

algorithm as well as some of its implementations - the multi-objective evolutionary

algorithm (MOEA), for example, is one of the stepping stones of the new algorithm. In

the same way, it is relevant to understand all the tests (problems) that will be subject to

the new algorithm as well as other algorithms for comparison purposes.

1.1 Single-objective Optimization

From a computing standpoint, single-objective (SO) algorithms aims to find the

values for a given equation that provide the highest - or lowest - value. In this perspective,

the equation is the mathematical representation of the problem to be improved which

result is the objective itself - when the objective should be minimized, the lowest the result

is, the better. Analogously, when the objective should be maximized, the highest the result

is, the better. The problem may be represented as follows, as seen in Rao (2009):

x1

Find X = x3

which minimizes F (X) = Y (1.1)

xn

In this case, xi, i = 1, 2, ..., n are the design variables of a problem, where each

variable is a characteristic of the problem. In the production plan example, each variable

can represent the production of a given material for a given plant, for a given time period.

These variables combined form what is called design vector. The design vector is used in

a objective function F (X) which generates a result. Using the same example, each design

variable may have a value assigned to them that represents their cost of production - there

might be different costs of production depending of the combination of product, plant

and time. If the problem designer wants to minimize the costs of production as much as

possible then this objective function will be a minimization problem. On the other hand,

he might instead assign values associated with the estimated profits. Then, due to its

nature (the designer wants the highest profit), the problem would be one of maximization

26 Chapter 1. BACKGROUND

instead. Most techniques, since they are oriented to minimization, commonly require the

problem designer to convert the problem from maximization to minimization by inverting

both the problem and its constraints. Due to this reason, from now on only references to

minimization problems will be considered except when explicitly noted otherwise.

The constraints are a list of equations and/or inequations the objective function

must comply. These constraints define limits for the algorithm in a way that only reasonable

solutions can be achieved. As also noted by Rao (2009), these constraints are defined

as:

gj(X) ≤ 0, j = 1, 2, ..., m (1.2)

lj(X) = 0, j = 1, 2, ..., p (1.3)

where m and p can be different than n and/or themselves. The production plan problem

can state as constraints the maximum capacity of each plant, the minimum production

required for each plant, the market minimum and maximum requirements for each week

and so on.

Therefore, the objective is always to find the best value - i.e. maximize or minimize

as much as possible - for a given problem that is subject to a set of constraints that

determine the area of feasible solutions. The concept of area, shown in the Figure 1, can

be explained in the following way: considering a n-dimensional Cartesian space -

henceforth named design space, where each axis represent one design variable, a set of

infinite solutions can be represented along it. However, the constraints limits the space

where the solutions are feasible - thus determining what is called as feasible region.

From the set of feasible solutions, the one that outperforms the others in respect to the

objective function is what is named the optimum point (or points, if there is more than

one point with the same minimum).

One challenge found by the algorithms in charge of resolving SO problems is

the local optimum which does not always equal to the global optimum. Therefore, an

algorithm may not always guarantee that it found the global optimum instead of a local

optimum. In other words, the minimum value found by the algorithm might be only the

minimum value in a region of the feasible space instead of the minimum value for the

feasible space as a whole. On the other hand, some algorithms might as well be

complex for simpler problems. Due to this reason there are several SO algorithms

available using different implementations such as Nelder-Mead, seen in Klein and Neira

(2014); DIRECT, shown in Hao et al. (2016); Multidirectional Search, noted in Torczon

(1997); Hooke-Jeeves, as seen in Lin, Ma and Cooper (2016) or Implicit Filtering,

mentioned in Kelley (2017) techniques, among others shown, for example, in Kelley

(1999).

1.2. Multi-objective Optimization 27

k k

Figure 1 – A two-dimensional design space - each axis represent a design variable.

The darker area is the feasible region where infinite feasible solutions are

inside it, with some of them represented by the black diamonds. The optimum

point is represented by the black asterisk.

1.2 Multi-objective Optimization

The general implementation behind the Multi-objective Optimization (MOO) differs

from the SO algorithms due to its increased complexity. While the SO strategies only have

one resulting value - meaning therefore that the problem designer will have one single

"target" to look for, the multi-objective problems (MOP) have two or more objectives to

be analyzed as seen in the equation (1.4) from Huang, Gu and Du (2006). In this equation,

represented by f1 and f2 represents two different objectives where both are subject to the

restrictions hi and gj. The Figure 2 shows an example of a problem with two

objectives and two variables.

Minimize

f (X) = {f1(X), f2(X), ..., fn(X)},

hi(X) = 0, i = 1, 2, ...,
I,

 (1.4)

Subject to: gj(X) = 0, j = 1, 2, ..., J,

Xu ≥ Xk ≥ Xl , k = 1, 2, ..., K

28 Chapter 1. BACKGROUND

Figure 2 – The same solutions are shown in both charts. The problem has two objectives

and two variables. The bottom chart, commonly used in SO strategies, shows

the values found from the variables standpoint while the upper chart shows

the values relative to the objectives. For MOPs it is more common to represent

the solutions from the objective standpoint since the decision maker must,

generally, analyze the tradeoffs between the multiple objectives first.

Back in the production plan example, consider the situation where the requirement

is to minimize the costs of production and maximize the profits at the same time.

Depending on the strategy, an infinite set of feasible solutions might be generated and

all of them could be considered as the best solution - one of these solutions might have

the best profits, but it would also be one of the costliest. Alternatively, it would be the

cheapest production plan, but its profits would be somewhat low. Additionally, there would

be other solutions falling in the between. For this reason, the problem designer would

need to choose the best solution for his current needs by analyzing the tradeoffs between

all the proposed solutions.

1.2. Multi-objective Optimization 29

This way, the algorithm implementations for MOPs differ from the SO algorithms.

1.2.1 Fundamentals

As shown in Paula et al. (2017), there are two main strategies when resolving

a MOP: generate-first choose-later (GFCL) and aggregate objective function (AOF).

The AOF approach merges all the design objectives, commonly through weighting

vectors that determine the relative importance of each objective. In this scenario, the

problem designer

- or decision maker - must define the tradeoffs before the execution of the algorithm,

generating as a result a single value similar to the SO problems. Therefore, distinct

decisions could be generated depending on the weights used at the start of the process.

In order to understand the concept behind the GFCL approach it is important

to also understand the concepts of Pareto optimality, Pareto set and Pareto front. As

explained by Veldhuizen and Lamont (1998), a given solution (i.e. vector) v is said to

be Pareto dominated by another solution u if u is partially less than v such as:

∀i ∈ {1, ..., p}, ui ≤ vi ∧ ∃i ∈ {1, ..., p} : ui < vi (1.5)

If a solution is non-dominated when compared against all the other solutions it is

said that it is a Pareto optimal solution. A set of these solutions is part of the Pareto

front. Yet, an important detail should be noted: it is possible that a given set of non-

dominated solutions generated by an algorithm are not exactly Pareto optimal

because the real Pareto front was simply not found by the algorithm. Then, as mentioned

in Reynoso-Meza (2014), these solutions are part of what is called the approximated

Pareto front instead. In fact, this is not a great issue most of the times simply because

the real Pareto front is unknown. As shown in the Figure 3, where each axis represent

one objective, five solutions were found by a given algorithm. In the feasible solution space

there were two dominated solutions - one by the solution A and another by the solution

B. Therefore, they were not considered as part of the Pareto front. The solutions A, B

and C, however, were the non-dominated solutions found by the algorithm and, for this

reason, were part of the Pareto approximated front. In practice, B and C are not part of

the real Pareto front but, since the algorithm could not reach it, they are part of the

Pareto approximated front instead. Since different algorithms can reach different

approximated fronts, it is important to attempt to reach as close as possible to the real

front.

1.2.2 Algorithm Rationale

When using the GFCL strategy, the multi-objective optimization design (MOOD)

does have at least three steps as shown in Reynoso-Meza et al. (2014): the multi-

objective

30 Chapter 1. BACKGROUND

Figure 3 – Example of the Pareto optimality for a two-objective problem as shown by

Reynoso-Meza (2014). The continuous line represent the Pareto optimal front.

The dark area represents the feasible solution space. The diamonds represent

feasible solutions dominated by other non-dominated solutions (represented by

the squares). The squares overlapping the continuous line are non-dominated

and Pareto optimal solutions while the other squares are simply non-dominated

solutions.

problem (MOP) definition, the multi-objective optimization (MOO) and the multi-criteria

decision making (MCDM).

The MOP definition is the step where the objective function and the constraints

are defined. Considering that many objectives are involved, the quantity of variables and

equations involved in the problem can be hard to manage. For this reason, sometimes the

designer must also balance human readability and algorithm readability - i.e. sometimes,

a problem that is easily understandable by a human might not be easily interpreted by

the algorithm and vice-versa.

The MOO process comprises the computational efforts related to solving the

problem itself and finding useful solutions. As shown in Miettinen (1999), there are some

classical algorithms to achieve this, such as the weight sum and goal attainment

techniques apart of a brute-forced one. The brute-force technique basically generates a

given number of random-generated solutions. Then, between them the decision maker

chooses the non-

1.2. Multi-objective Optimization 31

Σ

dominated ones as part of the approximated Pareto front. Due to its simplicity it is more

effective in simpler, bidimensional or tridimensional search spaces. On the other hand,

since the chances of reaching the real Pareto front increases with the quantity of solutions

generated at the same time that the percentage of discarded solutions - and,

therefore, wasted computing power - also increases, it is not recommended to use it

against larger search spaces, principally when parting from the assumption that an infinite

number of solutions can be held within the space.

The weighted sum technique works as follows: considering that a general MOP

can be defined as:

Minimize F (X) = [F1(x), F2(x), ..., Fk(x)]T (1.6)

and that is subject to:

gj(x) ≤ 0; j = 1, 2, ..., m (1.7)

where F (x) is a vector of k objective functions that is subject to m inequality constraints,

the composite objective function can be represented as seen in Naidu, Mokhlis and Bakar

(2014):

k
U = wiFi(x) (1.8)

i=1

where wi is a weight assigned to each objective. Therefore, the designer must assign a

bias for each objective before running the algorithm. As a result, the Pareto front

generated will be biased depending on the weights informed as well as their relation

between themselves.

The goal attainment approach, on the other hand, as informed in Fonseca,

Fleming et al. (1993), implements goals such as that the general MOO equation (1.6) is

modified by implementing a set of design goals gi, each of them associated to each

objective available such that:

fi − wiλ ≤ gi (1.9)

where the minimization of the scalar λ leads to the finding of the specified goals either

under or over attained in relation to the specified goals. Additionally, the weights wi are

weights and with values equal or above zero, also defined by the designer. Therefore, this

set of design goals represent the expected Pareto optimal solution the designer is looking

for.

32 Chapter 1. BACKGROUND

Another strategy is called Normalized Normal Constraint (NNC) Messac, Ismail-

Yahaya and Mattson (2003) and it is defined of the following steps:

Algorithm 1: Normalized Normal Constraint Data:

constraints, objective function, design space

Result: the Pareto front approximation

1 define the anchor points (i.e. the best possible points considering only one of the

objectives);

2 form an Utopia line linking the anchor points;

3 divide the Utopia line into segments. The number of segments is defined by the

designer;

4 for each segment do

5 evaluate n positions;

6 apply a dominance filter to the current segment;

7 end

8 apply a PIT (practically insignificant tradeoff) if needed.

Figure 4 – Comparison of the solutions found for each strategy. Note that the goal-

attainment and the weighted sum approaches had distinct approximated Pareto

fronts according to their targets, as previously set by the decision maker. The

random approach generated 10000 solutions which the decision maker would

need to handpick the ones most suitable for him.

Through this technique a given set of solutions is provided with one being fairly

separated from the other, enabling a greater diversity among the approximated Pareto

front. On the other hand, this algorithm works better on MOPs with fewer objectives since

it is hard to establish an Utopia hyperplane as well as its segments when the quantity

of objectives increases.

1.2. Multi-objective Optimization 33

For such complex cases where there is a higher amount of constraints and/or

objectives involved the concept of Evolutionary Multi-objective Optimization (EMO) is an

alternative since its algorithms (called within this research as multi-objective evolutionary

algorithms or MOEAs) are more flexible, as noted by Coello (2006). The MOEAs are

inspired by biological evolution mimicking actions such as reproduction, mutation and

selection of the solutions in a way that successive generations are created as offspring of

the previous one with the most suitable solutions handling over to the next generation

their traits and attempting to improve over them as well. This way, independent on their

original positions the solutions should move to the real Pareto front over time independent

of the complexity of the feasible hyperspace and the constraints. Details on the

MOEA characteristics will be explained on the Section 1.3.

Independently of the algorithm chosen during the MOO step, the desired output

must always be a set of suitable solutions - since they are suitable, they must respect the

MOP definition including all of its defined constraints.

The Multi-Criteria Decision-Making (MCDM) Bonissone, Subbu and Lizzi (2009) is

the last process. After the approximate Pareto front had been determined as well as a

number of solutions within it, these solutions should be shown to the decision maker in a

helpful way. This in itself can also be a challenge because, for example:

• There are too many solutions to be shown in a Cartesian chart;

• There are too many objectives to be shown in a Cartesian chart - since each

axis traditionally represent an objective, two objectives/axes can be easily

represented. Three objectives/axes are more difficult depending on the generated

Pareto front as the decision maker may take additional time rotating and changing

the angle of the tridimensional chart in order to understand the tradeoffs. From four

objectives and beyond it would be impossible to represent with ease the Pareto

front.

• The differences between the generated solutions may be hard to represent within a

single chart.

This means that the designer needs to spend more time to understand the

tradeoffs between the proposed solutions. Depending on the quantity of generated data

the designer may also find himself overwhelmed by it since it would involve the analysis of

multicriteria solutions scattered around multiple dimensions.

On the decision making, the designer usually have two choices: pass

completely or partially the decision making responsibility to the algorithm through methods

such as the minimum p-norm Mertins, Mei and Kallinger (2010) or the Nash procedure

Coello (1999) where, for example, only one solution would be retrieved based on

mathematical

34 Chapter 1. BACKGROUND

processing over the whole list or through the multicriteria analysis. On the latter, the

designer has a clearer view of the best solutions available and therefore may do

faster decisions. This analysis - the MCDM - commonly may be done through two

strategies - visually or through filtering and ranking.

On the filtering alternative, as shown by Antonio and Coello (2013), it is possible

to use tools to do the post-processing of the list of solutions. This post-processing

may include, for example, physical programming filters, restrictions and indicators, all

informed by the designer. The result is, therefore, a filtered list with all the solutions

meeting the criteria informed by the designer which may be compared as-is or even

shown in a chart if needed. The physical programming, according to Messac (1996), is

composed of a matrix with the preference values used for pertinence purposes. Within this

matrix, a line would represent the objectives with the values representing the boundaries

of highly desirable, desirable, tolerable, intolerable and highly intolerable values,

respectively (i.e. the first and second values create the limit for highly desirable values,

the second and third, for the desirable values, and so on). The values in this matrix are

used to better choose the possible solutions depending on the designer preferences.

Therefore, it may be used either for ranking or filtering purposes - the former by ranking

first the solutions within the first range (i.e. highly desirable to desirable) and so on.

It is important noting that there are different strategies to the ranking option

considering the complexity - and, therefore, performance - of the algorithm such as SMART,

ANP, ELECTRE or SAW, as shown by Valiris, Chytas and Glykas (2005), Lee and

Kim (2000), Roy (1990), Abdullah and Adawiyah (2014). One, proposed in 1993 by

Hwang, Lai and Liu (1993), is called TOPSIS (Technique for Order of Preference by

Similarity to Ideal Solution). This strategy mainly works with two alternatives called

PIS and NIS (positive and negative ideal solution, respectively). They are reminiscent of

the concepts of the utopia and nadir points since the PIS is the theoretical point with the

best attribute values while the NIS is the one with the worst attribute values. Naturally,

in the MOO implementations the interest of the designer is to have the best possible

solutions at hand. Having that said, the main objective is to have the chosen solutions

both as near as possible to the PIS while being as far as possible to the NIS. As the

TOPSIS’ first step, the decision matrix is standardized for comparison purposes. This

is done by obtaining the root of the sum of all the squared values for all of the

solutions, for each one of the objectives. As a result, all of the criteria will have a

resulting value obtained from all of the solutions. Then, the value for a given criterion for

each one of the solutions is divided by its resulting value previously calculated.

Therefore, all of the criteria results will be normalized.

As a second step, the values may be multiplied by weights given to each one of

the criteria. From the resulting matrix, the third step is composed of building the PIS

and

1.2. Multi-objective Optimization 35

i

i

i

p −qk
 k

0, if dk ≤ qk

NIS are upon the best and worst values for each one of the criteria. Then, the fourth step

will determine the separation of each one of the solutions from the PIS. This is done

by calculating the squared difference between the normalized, weighted value of the

criteria of a given solution to the PIS. These differences are then summed. The

squared root of this sum is the separation from the PIS, or Si
∗. Similarly, the same

process is also done to the NIS with the resulting value named S
𝘫
. From both values,

the relative closeness is determined for each solution by (1.10), where:

 S
𝘫

Si
∗ +

S

(1.10)

Therefore, each proposed solution will have a single value. These values may

be easily sorted, grouped and/or ranked which means that the designer will have a

resulting subset that may be analyzed and further compared in less time and with more

simplicity.

Another strategy, as shown by Behzadian et al. (2010), is the PROMETHEE

(Preference Ranking Organization Method for Enrichment of Evaluations). It is a ranking

method which places positions to a given list of solutions based on two thresholds -

preference and indifference (pk and qk) for each one of the criteria. One solution i is placed

ahead of the other solution j (i.e. with a preference factor of 1) if the difference

between its objective with the objective of the other solution (named di,j(k)) is greater

than the preference value set by the system designer since the difference is

sufficiently big to justify reorganizing the ranking of the solution list. If this difference is

equal to or lesser than the indifference value it, even if it one solution has a value

marginally better than the other the ranking would not be changed since the tradeoffs

are sufficiently small in the decision making process that they are negligible (i.e. with

a preference factor of 0). On the other hand, if the difference lays between both factors,

the equation shown in (1.11) assigns an intermediate value between 0 and 1 in the

preference factor.

Pi,j (k)

dk−qk , if qk < dk

≤ pk

1, if dk > pk

(1.11)

where, as previously mentioned, Pi,j(k) represents the preference factor for the k-th

objective for the i-th solution in relation to the j-th solution, di,j(k) is the difference

between the objective values of the i-th and j-th solutions and pk and qk are the preference

and indifference values set for each objective.

36 Chapter 1. BACKGROUND

Under multi-objective optimization cases, this is repeated for each one of the

objectives - there is a preference degree which is a sum of the preference factors

calculated to each one of the objectives multiplied by a weighting factor between 0

and 1.

1.2. Multi-objective Optimization 37

In order to properly rank all of the available solutions, each solution has two scores

- the positive and negative preference flows which state how a given action is

preferred to all or by all the other solutions. These flows are made from the

normalization of the preference factors. From both flows - with the positive one

subtracting from the negative

- a single value is retrieved called net preference flow. Then, the algorithm described

in Behzadian et al. (2010) is able to properly sort through all the solutions based from

their net preference flows.

These strategies may be applied to a myriad of problems - three sample MOP

cases, mentioned merely as examples and without any relation and/or strong

resemblance to the test subjects of this research, are:

1. I-BEAM design problem, presented by Huang, Gu and Du (2006) — a problem

with two objective functions and four variables intended to minimize the total cross-

sectional area and its deflection at the midspan of an I-beam considering two applied

forces;

2. Nutrition problem, shown by Hwang, Lai and Liu (1993) — a problem with six

variables and three objectives in order to balance the daily nutritional requirements

of a person;

3. Automatic insulin administration problem, presented by Reynoso-Meza et al. (2013)

— a problem containing three objectives and five variables in order to maintain the

glucose levels in the bloodstream.

Position T P PP

1 41 4 45

2 43 5 48

3 42 3 43

4 45 1 51

5 40 2 52

6 46 6 41

7 44 9 42

8 38 12 40

9 47 8 46

10 48 10 47

Table 1 – Top 10 solutions for the I-BEAM problem for one sample run. T = TOPSIS

(Tech- nique for Order Preference by Similarity to Ideal Solution); P =

PROMETHEE (Preference Ranking Organization METHod for Enrichment of

Evaluations); PP

= Physical Programming.

All of those problems are based on the general MOP problem which is stated

in the equation (1.4).

38 Chapter 1. BACKGROUND

The positions for each solution depends on the strategy used, as seen in the

Tables 1, 2 and 3, for example.

Position T P PP

1 841 297 643

2 643 608 723

3 723 747 841

4 123 191 892

5 373 308 123

6 646 957 773

7 652 348 373

8 699 95 138

9 54 71 646

10 518 711 652

Table 2 – Top 10 solutions for the Nutrition problem for one sample run. T = TOPSIS; P

= PROMETHEE; PP = Physical Programming.

Parameter C 1 C 2 C 3 C 4 C 5

Insignificant 3.00 0.10 0.10 0.02 0.50

Significant 10.00 0.30 0.50 0.04 1.00

Table 3 – PROMETHEE rankings, Insulin problem. The columns show the values for

each criterion (C 1, C 2, C 3, C 4, C 5). The numbers besides significant and

insignificant show the number of the run.

The second MCDM strategy - visual - revolves around the concept of

graphically showing the possibly solutions through a shared chart. This chart is n-

dimensional where n is the number of objectives. All of the solutions are shown plotted

on it where their positions are set by the mathematical values assigned to each of

their objectives.

While the visualization through charts is a great tool in order to quickly assess

the possible solutions when there the problem has two dimensions (i.e. objectives),

the visualization suffers from readability issues when there are three or more

dimensions involved. Since MOO usually have more than two objectives, there are some

techniques to better display in a graphically fashion the possible solutions found. Some of

them are, for example:

1. Scatter plots;

2. Parallel coordinates, as shown by Inselberg (2014);

3. Horizontal bars, noted in Miettinen (2014);

4. Radar plots, explained in Ward, Grinstein and Keim (2015).

1.2. Multi-objective Optimization 39

Figure 5 – Example of the scatter plot for the I-BEAM problem.

Depending on the number of solutions it also might make sense to combine

the ranking/filtering techniques along with the charts. As seen in the Figure 5, for

example, the solutions were previously divided into three clusters. In the chart it is

therefore easier to understand the placement of the solutions found for each cluster.

The scatter plot, as seen in the Figure 5, works by displaying a n-dimensional

space in a set of 2-dimensional plots. In an example of three dimensions, three charts

would be shown - one with the first vs. second dimension, other with the first vs. third

dimension and another with the second vs. third dimension, with all of them displaying

the same data set, only within different perspectives.

The parallel coordinates approach, as seen in the Figure 6, uses a single 2-

dimensional space in order to display all the solutions. With each objective being presented

within the x-axis and their values in the y-axis, each objective is represented as a line.

The horizontal bars, according to the Figure 7, displays one single plot where each

bar refers to the values found for a given objective of a given problem. In this case,

the bars are grouped by objective - however, it is equally feasible to group by solution

instead as shown in Miettinen (2014). In both cases, the bars will represent the values

found for each solution and objective combination.

Another approach, as seen in the Figure 8, is called radar plots. Analogous to the

parallel coordinates, a single plot shows all the objectives and all of the solutions as lines.

The main difference is that, as explained by its own name, the plot type used by this

strategy is the radar.

In order to properly display the data using these approaches there are software tools

40 Chapter 1. BACKGROUND

Figure 6 – Example of parallel coordinates for an unrelated problem. The y-axis represent

the normalized values found for each objective.

Figure 7 – Example of the horizontal bars visualization of a random problem containing

three objectives.

available such as Sliver, shown in SOFTWARE (2016); XDAT, shown by XDAT

(2016) and Grapheme, as shown in ICHROME (2016) in order to properly display the

parallel coordinates data. For the scatter plots, there are commonly plugins for Excel

such as SigmaXL, according to SIGMAXL (2016) and software such as JMP, shown in

JMP (2016). On the level diagrams, there are papers with suggested approaches such as

1.2. Multi-objective Optimization 41

the ones shown

42 Chapter 1. BACKGROUND

Figure 8 – Example of the radar plot for an unrelated problem.

in Blasco et al. (2008) and Reynoso-Meza (2014). For the radar plots, there are

approaches such as Origin, mentioned in ORIGINLAB (2016) and Plotly, shown in

PLOTLY (2016). Apart from all of them, most computing environments (such as

MATLABⓍc) also offers some or all of the visualization techniques aforementioned.

1.3 Multi-objective Evolutionary Algorithms

When discussing the Multi-objective Evolutionary Algorithms (MOEAs) there

are a myriad of techniques and variants well explored: examples are the Particle

Swarm Optimization (PSO), the cuckoo search, Genetic Algorithms (GAs), Artificial Bee

Colony (ABC), Ant Colony Optimization (ACO). Like the SO counterparts, each of these

strategies have tradeoffs when compared against each other. In fact, they were originally

developed for SO, being later adapted for EMO purposes. A general MOEA is

described in the Algorithm 2.

Independently of the algorithm chosen, there are some desired characteristics to

be looked for, as mentioned and shown by Coello et al. (2007), Corne and Knowles

(2007), Reynoso-Meza (2014), Beyer and Sendhoff (2007), Santana-Quintero, Montano

and Coello (2010), Lozano, Molina and Herrera (2010), Farina, Deb and Amato (2004),

Das et al. (2011):

• Convergence: this characteristic express the capacity of an algorithm to reach the

real Pareto front that, as mentioned earlier in the section 1.2.1, is unknown.

1.3. Multi-objective Evolutionary Algorithms 41

|

|

|

|

end

Algorithm 2: Basic MOEA, as shown in Reynoso-Meza (2014)
Data: objective vector, design space

Result: the Pareto set approximation Xp
∗

G

1 build initial population P 0 with Np individuals;
2 evaluate P 0;

3 build initial Pareto set approximation Xp
∗

0;

4 set generation counter G = 0;

5 while convergence criteria not reached do
6 G = G + 1;

7 build population P ∗|G using P |G with an evolutionary technique;

8 evaluate new population P ∗|G;

9 build Pareto set approximation with Xp
∗|G with Xp

∗|G−1 ∪ P ∗|G;

10 update population P |G+1 with P ∗|G ∪ P |G;

11

• Diversity: this characteristic externalizes the capacity of a given algorithm to

generate a set of distributed solutions. For the decision maker, it is better if he could

have available a list of ten different, well-spread solutions along the Pareto front than

ten solutions almost equal between each other while other sections of the

Pareto front would be left without any solution.

• Pertinence: for the decision maker is also important to have solutions that might

be more useful for his needs. That is, from the generated Pareto front it might

make sense for him, for example, to use only the solutions that are able to reach an

equilibrium along all the objectives - i.e. ignore all the solutions that are feasible

or impractical for at least one objective. If the decision maker knows the kind of

solutions he is looking for he is able to use a MOO algorithm capable to set up

his pertinence preferences before the algorithm execution. Or, for other algorithms,

the decision maker can choose a desirable set of solutions after the algorithm is

executed or even while the optimization is in progress.

• Constrained optimization: like the other characteristics, the constrained opti-

mization Zhou et al. (2011), Bonyadi et al. (2016) is also a desirable

characteristic because most of the MOPs also include constraints. This, in other

words, determine the capacity of an algorithm to determine whether if a solution is

feasible or infeasible. This generally is achieved through some techniques which

include, but are not limited to:

Feasibility rules: when selecting the best solutions for reproduction to the

next generation, generally the solutions are compared against each other. If the

subjects of a given comparison are two feasible solutions, the one with the best

objective function will be selected. In the other hand, if two infeasible solutions are

compared, the one that is less violating the constraints will be selected. If,

however, a feasible

42 Chapter 1. BACKGROUND

Figure 9 – Example of the convergence concept for a multi-objective evolutionary algorithm,

where the continuous curved line represents the real, unknown Pareto front,

and the squares were the results found by an algorithm. Under the

convergence characteristic an algorithm must found solutions as close as

possible to the real Pareto front - i.e. after each iteration the solutions would

follow the direction shown by the arrows until they theoretically reach the

real Pareto front.

solution is being compared against an infeasible solution, the feasible solution should

be used.

Stochastic ranking and novel penalty functions: penalty scores and special

opera- tors are implemented to handle over solutions that do not meet the

requirements of the constraints. Under such scenarios the objective function value is

modified in order to differ them from other valid solutions - for minimization problems

a high value might overwrite the calculated objective values, for example.

Depending on the number of constraints breached this number might increase

meaning that both the feasible solutions can be compared and ranked against each

other as well as the infeasible ones. Please note, however, that a feasible solution

does not necessarily mean that it is also part of the approximated Pareto front as

explained in the section 1.1. Novel penalty functions and their operators can

implement different approaches, although based on the same concept of

1.3. Multi-objective Evolutionary Algorithms 43

differing and organizing the

44 Chapter 1. BACKGROUND

Figure 10 – Example of the diversity characteristic for a multi-objective evolutionary

algorithm, where the continuous curved line represents the real, unknown

Pareto front, and the squares were the results found by an algorithm. Under

this characteristic the solutions must be both spread along the real Pareto

front as well as distributed among themselves, as shown by the solutions

highlighted with the arrows - notice the distance across them.

infeasible solutions from the solution ones.

Multi-objective concepts: in this scenario, the constraint can be treated as

an additional objective to be optimized.

• Many-objectives Optimization: one of the challenges the algorithms should

resolve is the optimization in a m-dimensional objective space if the solutions are

dominance resistant while attempting to keep an acceptable degree of diversity,

specially when there are five or more objectives involved Cai et al. (2015).

Techniques to resolve this situation could be:

Reducing the number of objectives;

Making use of the region of interest for the decision maker;

Define a metric based on the number of objectives to determine what would

define when a feasible solution is better than the other;

1.3. Multi-objective Evolutionary Algorithms 45

Figure 11 – Example of the pertinence characteristic for a multi-objective evolutionary

algorithm, where the dashed box represents an example of a region of

interest to the decision maker. Depending on the algorithm it is possible to

determine the area beforehand or determine it after the algorithm

execution. In this case, the decision maker would need to manually filter out

the solutions most useful for him - i.e. only the ones inside the box.

Modification of the Pareto dominance logic, therefore changing the selection

pressure towards the Pareto front;

Using scalarizing functions;

Using performance indicators of the quality of the Pareto front approximation.

• Dynamic Optimization: under some scenarios, specially when involving motors

and control-based applications, there is an additional requirement to modify the

objective function dynamically depending on the current situation Farina, Deb and

Amato (2004) - i.e. the objective function in use halfway through the MOO process

might differ from the one used in the initial iteration.

• Multi-modal Optimization: similarly, for other real world applications there might

be in the approximated Pareto front some solutions sharing the same objective

vector Qu et al. (2016) - i.e. they might meet all the constraints and have

the

46 Chapter 1. BACKGROUND

1.4. Large-scale Optimization 45

same result. However, for the decision maker it can make sense to see both of

them instead of just one, selected previously by the algorithm itself. This case

can appear when other subjective and/or tangible aspects can be considered:

back in the production plan example, two solutions can achieve the same profit and

costs of production. However, they have minor Legal and HR differences that would

require the comparison and decision from these departments. In this scenario, it

would make sense to have available both solutions.

• Robust Optimization: this characteristic refers to the models used to measure the

robustness of the algorithm Gabrel, Murat and Thiele (2014) - i.e. how much, by the

influence and presence of uncertainities, the objective vector could be degraded.

• Computionally Expensive Optimization: Depending on the complexity of the

objective function, its evaluation can use too many computer resources Akhtar

and Shoemaker (2016). Depending on the case, this expense could be reduced

by Neural Networks or through the generation of a surface within the objective

space on runtime.

• Large-scale Optimization: Since different algorithms have tradeoffs when com-

pared against each other, logically some of them should perform better under some

situations than others. By extension, some algorithms should perform quite well

within solutions with a relatively small amount of variables while having a poor

performance or even not working at all. Therefore, a desirable capacity of any MOO

algorithm is to solve any problem regardless of the quantity of variables involved -

even when the problem is considered as large-scale such that it has a high

amount of decision variables Cheng et al. (2016). More on this topic will be

discussed on the Section 1.4.

1.4 Large-scale Optimization

According to Cheng et al. (2016), a large-scale problem generally has

hundreds or thousands of decision variables. By increasing the number of variables, the

volume of the search space and its complexity also increases exponentially in what is

called curse of dimensionality, according to Bergh and Engelbrecht (2004). Also,

many evolutionary algorithms that perform well with low-dimension problems often fail

to approximate to the real Pareto front, as shown by Yang, Tang and Yao (2008).

For this reason, one of the proposed approaches to large problems is to

separate the search space into smaller, lower dimensional subspaces in what is called

Cooperative Coevolutionary Genetic Algorithm (CCGA), explained in Potter and Jong

(1994). This algorithm has the following assumptions:

46 Chapter 1. BACKGROUND

• A species is a subcomponent of a potential solution;

• By combinating members of each one of the species available it is possible to

find complete solutions;

• The fitness of a given subpopulation member is determined through combination

with the current best subcomponents of the other subpopulations;

• The evolution of each subpopulation is given by a standard genetic algorithm (GA);

• When required, the number of subpopulations will evolve by itself.

The original algorithm, therefore, works under the following structure:

Algorithm 3: CCGA

Data: objective vector

Result: the Pareto front approximation

1 separate the objective vector into one-dimensional subcomponents;

2 for each segment do

3 optimize cooperatively the subcomponent through an evolutionary algorithm

through a fixed number of fitness evaluations or until the stopping criterion is

4 end
satisfied.

However, although this solution can lead to significant performance improvements,

it may deteriorate when there is a dependence among parameters. Furthermore, the

partitioning may create pseudominima, as explained in greater detail by Bergh and

Engelbrecht (2004) - that is, minima created as a side effect of the aforementioned

partitioning of the search space.

Also, since this concept mainly revolves around the problem decomposition, it is

by itself critical. The existing techniques mainly use two simple decomposition methods,

as shown in Yang, Tang and Yao (2008). The first one, one-dimensional based,

simply decomposes a high-dimensional vector into individual, separate variables. This

was the strategy used by the CCGA originally proposed. The other option, splitting-in-

half, decomposes the vector into two halves. Due to their nature, their shortcomings

are foreseeable - the first strategy do not consider interdepencies between the

variables while the second one may still suffer from performance issues depending on

their size. Furthermore, if two given variables are dependent among themselves but are

located along the original vector in a way that they do not belong to the same half

after the split their interdependency may be affected. As it was also mentioned in

Yang, Tang and Yao (2008), cooperative co-evolutionary algorithms were rarely tested

against high dimensional problems (i.e. with more than 100 dimensions).

1.5. Hybrid Optimization 47

In order to tackle down the shortcomings from the original CCGA and/or to adapt it

for multi-objective problems, alternatives such as the cooperative particle swarm optimiza-

tion (CPSO), shown in Bergh and Engelbrecht (2004); the Self-adaptive Neighbourhood

Search Differential Evolution algorithm (SaNSDE), shown in Yang, Tang and Yao (2008);

the Multi-objective Cooperative Coevolutionary Genetic Algorithm (MOCCGA), explained

by Keerativuttitumrong et al. (2002) and the Cooperative Coevolutionary Generalized

Differential Evolution (CCGDE3) algorithm were proposed over the last years, as seen in

Antonio and Coello (2013). The cooperation logic of the latter works through the following

structure:

Algorithm 4: Cooperation logic for the CCGDE3 algorithm
Data: a set of components (generation)

Result: the Pareto front approximation

1 if it is the first generation then

2 form random collaborations between the subpopulations;

3 else

4 from the best non-dominated species in the subpopulations of the previous

population form new collaborations with randomly selected components;

5 end

6 evaluate these collaborations - i.e. individuals forming a set of solutions - in their

objective functions;

7 assign back the results to the individuals under evaluation.

In general, it differs from the original CCGA by separating the objective vector

into S subcomponents of equal size where each one represents a subset of all the

decision variables at a time. Each subcomponent is created by randomly grouping the

variables. Also, S subpopulations are created with a given number of individuals, where

the decision variables are randomly assigned to each subpopulation - i.e. a subcomponent

corresponds to a subpopulation. This algorithm is based on the third version of the

Generalized Differential Evolution (GDE3) algorithm.

1.5 Hybrid Optimization

It is important to note that GAs in general require a great number of iterations and

also they converge slowly - the nearer they are from the global optimum the slower they

get. As explained in Kelner et al. (2008), due to this weakness, one proposal is to enhance

a GA with an additional local search step before the selection of the individuals, for

example. This way, the individuals should be optimized to their locally optimal positions

before going to the next generation - in other words, the generations are enhanced

and their evolution speed is increased. Therefore, less iterations should be needed by the

algorithms.

48 Chapter 1. BACKGROUND

There are a myriad of algorithms including recent implementations such as the

ones shown in Lin et al. (2015), Harris, Mumford and Naim (2014), Kuroda et al. (2015).

Another example, as shown by Sindhya, Deb and Miettinen (2011), involved a modified

version of the NSGA-II algorithm, a well-known genetic algorithm also explained by Deb et

al. (2002). A new operator responsible for the local search was introduced in the algorithm

as well as a new convergence-based termination criterion.

In the Algorithm 5, the stopping criteria can include, but are not limited to: timeout,

number of generations without improvement or maximum number of generations. In short,

the algorithm works as follows:

Algorithm 5: Hybrid optimization algorithm

Data: design space, objective vector

Result: the Pareto front approximation

1 separate the objective vector into one-dimensional subcomponents;

2 generate a random initial population;

3 while the stopping criteria are not satisfied do

4 sort it to different non-domination levels, assigning to each one of the

individuals a fitness equal to the level they belong to;

5 create offspring through binary tournament, recombination and mutation;

6 perform local search on some individuals picked through a probability value

from the offspring. The picked individuals will be replaced by the improved

individuals resulted from the local search;

7 combine both parent and offspring populations;

8 execute non-dominated sorting and identify the different non-domination levels

again;

9 set a new empty population and populate it from the best down to the worst

level while the population size is less than or equal the original population size;

10 run a crowding-sort procedure, including the most widely spread individuals of

each level through the crowding distance values;

11 form new collaborations with randomly selected components from the best

non-dominated species in the subpopulations of the previous population;

12 evaluate these collaborations - i.e. individuals forming a set of solutions - in

their objective functions;

13 assign back the results to the individuals under evaluation;

14 end

In fact, while hybrid optimization strategies are more used in combinatorial opti-

mization problems, as seen in Ahn et al. (2010) they can also be implemented in problems

within a continuous domain, similar to the ones that will be used in this research.

1.6. Benchmarks 49

1.6 Benchmarks

Considering the shortcomings of the different strategies presented in the previous

sessions it is worth noting the requirement to compare the performance of them all under

standardized tests. Since this research intends to show a new approach on multi-objective

optimization problems more likely to happen in real world scenarios, the aim is to test it

against such problems.

From a implementation perspective, one of the natural challenges is to test the

algorithm against more complex problems due to their size and the time taken to address

any issue found and/or to optimize the algorithm itself. Let us consider a given problem

that took eight hours to run in a given machine - should any error appear at the end of

the process or during the process, all of the hours taken during the processing will be

wasted. Additionally, depending on the implementation techniques used there might be

complicated issues to address and debug on execution time that might get harder

according to the MOP used - e.g. if there are three or more objectives in use.

Furthermore, for performance tuning purposes it is interesting to use smaller,

mathematical MOPs - since the results are more predictable, it is easier to find potential

bottlenecks prone to optimization. After the results are satisfactory bigger scenarios can

be evaluated and compared against other known algorithms. It might be possible to find

out that the algorithm to be proposed performs better or worse depending on the type of

the problem.

If the new algorithm is quicker on the first, smaller tests against other algorithms

but is unacceptably slower as the problem scales up while the quality of the Pareto front

approximation is acceptable it might mean that the algorithm may have potential bottle-

necks - if there is not a obvious roadblock in the pseudocode then the implementation itself

could be tuned - e.g. the parallelism settings could be adjusted, a possible sorting criterion

could be fixed or a programming language particularity could be subject of a workaround.

On the other hand, the new algorithm might quickly generate the final approximate Pareto

front under any test of any size. However, the results can be considerably farther from the

real Pareto front as the problem scales up in size. In this scenario, the algorithm must be

tested again through bench testing with the pseudocode and, if it proves that it is not

causing the issue, then the code implemented must be checked for possible issues when

iterating through the different objectives.

For these reasons, a list of tests was created, as follows:

• A set containing 9 test problems reminiscent of industrial (production line) problems,

shown in Cheng et al. (2016);

• Poultry dataset.

50 Chapter 1. BACKGROUND

. . .

A set of large-scale multi-objective test problems had been created by Cheng

et al. (2016). According to Cheng et al. (2016), previous test sets did not consider different

characteristics of the decision variables, even if in theory they are scalable to support any

number of decision variables. This test set made use of the following basic principles, as

recalled by Deb et al. (2005), Huband et al. (2006):

• Scalable to have a given number of objective functions;

• Scalable to have a given number of decision variables;

• Known, easy to understand shapes and locations of the Pareto front approximations;

• Generated with a uniform design formulation.

Overall, in this set the formulation used was:

f2(x) = h2(xf)(1 + g2(xs)

fM (x) = hM (xf)(1 + gM
(xs)

(1.12)

With M objective functions, where fn is an objective function. The decision vector

x was split in two parts - xf and xs. The hn functions are responsible for defining the

Pareto front shape while the gn functions are in charge of defining the fitness

landscape.

The set also have these characteristics:

• Nonuniform grouping of decision variables;

• Different correlations between variable groups and objective functions;

• Mixed separability between the decision variables;

• The decision variables have linkages on the Pareto sets.

All of the proposed tests shares these characteristics by implementing, for

example, a chaos-based pseudo random number generator (to address the nonuniform

grouping), a correlation matrix to keep track of the correlations between variable groups

and the objec- tive groups, different basic fitness landscape functions (to achieve the

mixed separability) and also making use of a linkage function to define the variable

linkages.

All the tests uses a combination of six basic single-objective functions. These

f1(x) = h1(xf)(1 + g1(xs)

1.6. Benchmarks 51

functions are the sphere function, the Schwefel’s function, the Rosenbrock’s function, the

Rastrigin’s function, the Griewank’s function and the Ackley’s function.

52 Chapter 1. BACKGROUND

Σ
2() = (

) (1.13)

i

i

i

|x|

Σ i

4000
−

√

i

η6(x) = −20exp − 0.2,
|x|

 xi
 − exp

|x|

|x|cos(2πxi) + 20 + e (1.18)

i=1

Sphere function, an unimodal and separable problem:

|x|
η1 x xi

i=1

Schwefel’s function, an unimodal and non-separable problem:

η2(x) = max{|xi|, 1 ≤ i ≤ |x|} (1.14)

Rosenbrock’s function, a multi-modal and non-separable problem:

|x|−1

η3(x) =
Σ

[100(x2 − xi+1)2 + (xi − 1)2] (1.15)

i=1

Rastrigin’s function, a multi-modal and separable problem:

η4(x) =
Σ

(x2 − 10cos(2πxi) + 10) (1.16)

i=1

Griewank’s function, a multi-modal and non-separable problem:

|x| x2

|x|
xi

Ackley’s function, a multi-modal and separable problem:

 ‚

. 1 Σ|x|

2

 1 Σ

All the problems part of this set have user-defined parameters for the number

of variables and number of objectives. As such, these quantities are later defined in

the Section 4.1. The problems composing this test set are the following:

1.6.1 LSMOP1

This is an unimodal problem with a fully separable fitness landscape. It generates

a linear Pareto front and has following variable linkage function:

x8 ←

1 + i

× (x8 − li) − xf × (ui − li)
|x8| i 1

i = 1, . , |x8|
(1.19)

i=1

i=1

 η5(x) =
i=1

cos + 1 (1.17)

1.6. Benchmarks 53

i,j

k

1

M −1 j=1

fM (x) = (1 − xf) cM,j × g (x8)

η1(xi,j)

2

g

nk
8

This function has the following objective functions:

f1(x) = xf . . . xf

1 +
ΣM c1,j × g (x8)

1 M −1
 j=1 1 j

 f2(x) = xf . . . (1 − xf) 1 +
ΣM c2,j × g

(x8)
fM−1(x) = xf (1 − xf)

1 + ΣM

cM −1,j × g

(x8)

1 2 j=1
M −1 j

with

and

ci
,j

=
1, if i = j

0, otherwise

(1.21)

g

(x8) =

1
Σnk

η1(x8)

2k−1

i nk j=1
Σ 8

i

,

j

8

(1.22)

2k i

n j=1 , ,
i,j |

1.6.2 LSMOP2

k = 1, . . . , M

| |x (x8) = 1

j M

M
j=1 1

Σ
1 +

|x

. . .

2 j

(1.20)

54 Chapter 1. BACKGROUND

This is a problem with mixed modality and partially separable fitness landscape.

It generates a linear Pareto front and has following variable linkage function:

1.6. Benchmarks 55

1

Σ
1 +

j

. . .

1 M −1 j=1 2 j

(1.24)

fM (x) = (1 − xf) M
j=1 cM,j × g M (x8)

x8 ←

1 + i

× (x8 − li) − xf × (ui − li)

|x8| i 1

i = 1, . , |x8|

56 Chapter 1. BACKGROUND

(1.23)

1.6. Benchmarks 57

This function has the following objective functions:

58 Chapter 1. BACKGROUND

f1(x) = xf . . .

xf

1 +
ΣM c1,j × g (x8)

1.6. Benchmarks 59

1 M −1

60 Chapter 1. BACKGROUND

j=1 1 j

f2(x) = xf . . . (1 − xf) 1 +
ΣM c2,j × g

1.6. Benchmarks 61

(x8)

62 Chapter 1. BACKGROUND

fM−1(x) = xf (1 − xf)

1 + ΣM

1.6. Benchmarks 63

cM −1,j × g

64 Chapter 1. BACKGROUND

(x8)

1.6. Benchmarks 65

1 2 j=1

66 Chapter 1. BACKGROUND

M −1 j

1.6. Benchmarks 67

i,j

k

η2(xi,j)

. . .

1 M −1 j=1 2 j

(1.28)

2

g

nk 8

with

and

ci,j =

1, if i = j

0, otherwise

(1.25)

g

(x8) =

1
Σnk

η5(x8)

2k−1

i nk j=1
Σ 8

i

,

j

8

(1.26)

2k i

n j=1 , ,
i,j |

1.6.3 LSMOP3

k = 1, . . . , M

This is a multi-modal problem with a mixed separable fitness landscape. It generates

| |x (x8) = 1

|x

68 Chapter 1. BACKGROUND

1

Σ
1 +

j

i,j

|x

k

 |x
g (x8) = 1

nk η3(xi,j)

k = 1, . . . , M
2

|

8

a linear Pareto front and has following variable linkage function:

x8 ←

1 + i

× (x8 − li) − xf × (ui − li)

|x8| i 1

i = 1, . , |x8|

1.6. Benchmarks 69

(1.27)

70 Chapter 1. BACKGROUND

This function has the following objective functions:

1.6. Benchmarks 71

f1(x) = xf . . . xf

72 Chapter 1. BACKGROUND

1 +
ΣM c1,j × g (x8)

1.6. Benchmarks 73

1 M −1

74 Chapter 1. BACKGROUND

1.6. Benchmarks 75

j=1 1 j

76 Chapter 1. BACKGROUND

1.6. Benchmarks 77

f2(x) = xf . . . (1 − xf) 1 +
ΣM c2,j × g

(x8)

fM−1(x) = xf (1 − xf)

1 + ΣM

cM −1,j × g

78 Chapter 1. BACKGROUND

(x8)

1 2 j=1

1.6. Benchmarks 79

M −1 j

80 Chapter 1. BACKGROUND

with

1.6. Benchmarks 81

fM

82 Chapter 1. BACKGROUND

(x)

1.6. Benchmarks 83

= (1

84 Chapter 1. BACKGROUND

− xf

1.6. Benchmarks 85

)

86 Chapter 1. BACKGROUND

M

1.6. Benchmarks 87

j=1

cM,j × gM

88 Chapter 1. BACKGROUND

(x8)

1.6. Benchmarks 89

and

ci,j

=
1, if i = j

0,
otherwise

90 Chapter 1. BACKGROUND

(1.2

1.6. Benchmarks 91

9)

92 Chapter 1. BACKGROUND

g

(x8) =

1 Σnk

η4(x8)

1.6. Benchmarks 93

2k−1

94 Chapter 1. BACKGROUND

i nk j=1
Σ

1.6. Benchmarks 95

8

96 Chapter 1. BACKGROUND

i,j

1.6. Benchmarks 97

8

98 Chapter 1. BACKGROUND

(1.30)

1.6. Benchmarks 99

2k i

100 Chapter 1. BACKGROUND

n j=1
, ,

1.6. Benchmarks 101

i,j |

102 Chapter 1. BACKGROUND

i,j

k

1

M −1 j=1

fM (x) = (1 − xf) cM,j × g (x8)

η5(xi,j)

k = 1, . . . , M
2

g

nk

8

1.6.4 LSMOP4

This is a problem with mixed modality and a mixed separable fitness landscape. It

generates a linear Pareto front and has following variable linkage function:

x8 ←

1 + i

× (x8 − li) − xf × (ui − li)
|x8| i 1

i = 1, . , |x8|
(1.31)

This function has the following objective functions:

f1(x) = xf . . . xf

1 +
ΣM c1,j × g (x8)

1 M −1
 j=1 1 j

 f2(x) = xf . . . (1 − xf) 1 +
ΣM c2,j × g

(x8)
fM−1(x) = xf (1 − xf)

1 + ΣM

cM −1,j × g

(x8)

1 2 j=1
M −1 j

with

and

ci
,j

=
1, if i = j

0, otherwise

(1.33)

g

(x8) =

1
Σnk

η6(x8)

2k−1

i nk j=1
Σ 8

i

,

j

8

(1.34)

2k i

n j=1
, ,

| |x (x8) = 1

j M

M
j=1 1

Σ
1 +

|x

. . .

2 j

(1.32)

1.6. Benchmarks 103

i,j |

1.6.5 LSMOP5

This is an unimodal problem with a fully separable fitness landscape. It generates

a nonlinear Pareto front and has following nonvariable linkage function:

x8 ←

1 + cos

0.5π i

× (x8 − li) − xf × (ui − li)

i = 1, ..., |x8| |x8| i 1

104 Chapter 1. BACKGROUND

(1.35)

1.6. Benchmarks 105

i,j

|x

. . .

M −2 M −1 j=1

2 1 j=1

(x8) = 1
 η1(xi,j)

|

8

2 1 2

2

This function has the following objective functions:

f1(x) = cos

π xf ... cos

π

xf

cos

π

xf

1 + ΣM
c1,j ×
g

(x8)

2 1 2

M

−2

2 M

−1

j=1 1 j

f2(x) = cos

π xf

. . . cos

π xf sin

π xf 1 + ΣM

c2,j ×

g

(x8)

fM−1(x) = cos

π xf

sin

π xf

1

+
ΣM

cM −1,j

× g

(x8)

2 1 2 2

j=1 M −1 j
fM (x) = sin

π xf

× 1 + ΣM

cM,j × g (x8)

with

and

ci,j

=
1, if i = j or j = i +

1

0, otherwise

(1.37)

g

(x8) =

1 Σnk

η1(x8)

2k−1

i nk j=1
Σ

8

i

,

j

8

j 2

|x

(1.36)

M

j

g

nk

106 Chapter 1. BACKGROUND

k

2

(1.38)

2k i

n j=1 , ,
i,j |

1.6. Benchmarks 107

. . .

2 1 2 M −2 2

2 1 j=1

1.6.6 LSMOP6

k = 1, . . . , M

108 Chapter 1. BACKGROUND

M −1 j=1 2 j

(1.40)

M j

This is a problem with mixed modality and partially separable fitness landscape.

1.6. Benchmarks 109

It generates a nonlinear Pareto front and has following nonvariable linkage function:

110 Chapter 1. BACKGROUND

x8 ←

1 + cos

0.5π i

× (x8 − li) − xf × (ui − li) i = 1, ..., |x8| |x8| i 1

1.6. Benchmarks 111

(1.39)

112 Chapter 1. BACKGROUND

This function has the following objective functions:

1.6. Benchmarks 113

f1(x) = cos

π xf ... cos

π x f

cos

π xf

114 Chapter 1. BACKGROUND

1 +
ΣM

c1,j × g (x8)

 2 1 2

1.6. Benchmarks 115

M −2

116 Chapter 1. BACKGROUND

2 M −1

1.6. Benchmarks 117

j=1 1 j

118 Chapter 1. BACKGROUND

f2(x) = cos

π xf

. . . cos

π xf sin

π xf 1 + ΣM

c2,j × g

1.6. Benchmarks 119

(x8)

fM−1(x) = cos

π xf

sin

π xf

1

+
ΣM

120 Chapter 1. BACKGROUND

cM −1,j × g

1.6. Benchmarks 121

(x8)

122 Chapter 1. BACKGROUND

2 1 2 2

1.6. Benchmarks 123

j=1

124 Chapter 1. BACKGROUND

M −1 j

1.6. Benchmarks 125

fM (x) = sin

π xf

× 1 + ΣM

cM,j × g (x8)

126 Chapter 1. BACKGROUND

i,j

k

η2(xi,j)

. . .

2 1 2 M −2 2 M −1 j=1 2 j

2

g

nk 8

with

and

ci
,j

=
1, if i = j or j = i +

1

0, otherwise

(1.41)

g

(x8) =

1 Σ

nk

η3(x8)

2k−1

i nk j=1
Σ 8

i

,

j

8

(1.42)

2k i

n j=1 , ,
i,j |

1.6.7 LSMOP7

k = 1, . . . , M

This is a multi-modal problem with a mixed separable fitness landscape. It generates

| |x (x8) = 1

|x

1.6. Benchmarks 127

a nonlinear Pareto front and has following nonvariable linkage function:

x8 ←

1 + cos

0.5π i

× (x8 − li) − xf × (ui − li)

i = 1, ..., |x8| |x8| i 1

128 Chapter 1. BACKGROUND

(1.43)

1.6. Benchmarks 129

i,j

|x

k

 |x

(1.44)

g (x8) = 1

nk η3(xi,j)

k = 1, . . . , M
2

|

8

This function has the following objective functions:

130 Chapter 1. BACKGROUND

f1(x) = cos

π xf .. cos

π xf

cos

π xf

1 +
ΣM

1.6. Benchmarks 131

c1,j × g (x8)

2 1 2

132 Chapter 1. BACKGROUND

M −2

1.6. Benchmarks 133

2 M −1

134 Chapter 1. BACKGROUND

j=1 1 j

1.6. Benchmarks 135

f2(x) = cos

π xf

. . . cos

π xf sin

π xf 1 + ΣM

c2,j × g

136 Chapter 1. BACKGROUND

(x8)
fM−1(x) = cos

π xf

sin

π xf

1

+
ΣM

1.6. Benchmarks 137

cM −1,j × g

138 Chapter 1. BACKGROUND

(x8)

1.6. Benchmarks 139

2 1 2 2

140 Chapter 1. BACKGROUND

j=1

1.6. Benchmarks 141

M −1 j

142 Chapter 1. BACKGROUND

fM (x) = sin

π xf

× 1 +
ΣM cM,j × g (x8)

1.6. Benchmarks 143

with

144 Chapter 1. BACKGROUND

2 1 j=1 M j

and

ci,j
=

1, if i = j or j = i +
1

0, otherwise

(1.45)

g

(x8) =

1 Σnk

η6(x8)

2k−1

i nk j=1
Σ

8

i

,j

8

1.6. Benchmarks 145

(1.46)

146 Chapter 1. BACKGROUND

2k i

1.6. Benchmarks 147

n j=1
, ,

148 Chapter 1. BACKGROUND

i,j |

1.6. Benchmarks 149

i,j

2 1 2 M −2 2 M −1

j=1

η1(xi,j)

2 1 j=1
M j

g

nk 8

1.6.8 LSMOP8

This is a problem with mixed modality and a mixed separable fitness landscape. It

generates a nonlinear Pareto front and has following nonvariable linkage function:

x8 ←

1 + cos

0.5π
i

× (x8 − li) − xf × (ui − li)

i = 1, ...,
|x8|

|x8| i 1 (1.47)

This function has the following objective functions:

f1(x) = cos

π xf ... cos

π

xf

cos

π
xf

1 + ΣM

c1,j ×
g

(x8)

2 1 2
M
−2

2 M
−1

j=1 1 j

f2(x) = cos

π xf

. . . cos

π xf sin

π xf

1 + ΣM c2,j × g (x8)

fM−1(x) = cos

π xf

sin

π xf

1
+

ΣM

cM −1,j × g

(x8)

2 1 2 2

j=1 M −1 j
fM (x) = sin

π xf

× 1 + ΣM

cM,j × g (x8)

with

and

ci,j

=
1, if i = j or j = i +

1

0, otherwise

(1.49)

g

(x8) =

1
Σnk

η5(x8)

2k−1

i nk j=1
Σ 8

i

,

j

8

(1.50)

| |x (x8) = 1

. . .

|x

2 j

(1.48)

150 Chapter 1. BACKGROUND

k

2

2k i

n j=1 , ,
i,j |

1.6.9 LSMOP9

k = 1, . . . , M

This is a problem with mixed modality and a fully separable fitness landscape. It

generates a disconnected Pareto front and has following nonvariable linkage function:

x8 ←

1 + cos

0.5π i

1.6. Benchmarks 151

× (x8 − li) − xf × (ui − li)

i = 1, ..., |x8| |x8| i 1

152 Chapter 1. BACKGROUND

(1.51)

1.6. Benchmarks 153

 2 2

f (x) = x1

Σ
2+

j

f

This function has the following objective functions:

f
1

f (x) = xf

. . .
fM−1(x) = xf

(1.52)

M −1

 (x) = M −
ΣM

−1

xf

(1+sin(3π

xf))

 ×

2 +
ΣM

c

× g (x8)

M

with

i=

1

1

M

j=

1

i

cM,j ×gM

(x8) j=1

154 Chapter 1. BACKGROUND

i,j

|x

k

 |x

nk η6(xi,j)

|

8

2

M,j M j

ci,j = 1 (1.53)

1.6. Benchmarks 155

(x8) = 1

and

g

g

156 Chapter 1. BACKGROUND

(x8) =

1 Σnk

1.6. Benchmarks 157

η1(x8)

158 Chapter 1. BACKGROUND

2k−1

1.6. Benchmarks 159

i nk j=1
Σ

160 Chapter 1. BACKGROUND

8

1.6. Benchmarks 161

i,j

162 Chapter 1. BACKGROUND

8

1.6. Benchmarks 163

(1.54)

164 Chapter 1. BACKGROUND

2k i

n j=1 , ,

1.6. Benchmarks 165

i,j |

166 Chapter 1. BACKGROUND

1.6.10 Poultry dataset

1.6. Benchmarks 167

k = 1, . . . , M

168 Chapter 1. BACKGROUND

The poultry dataset is based on a real world problem of production plan optimization

1.6. Benchmarks 169

created by the author of this research, as presented in Monteiro and Reynoso-Meza (2017).

170 Chapter 1. BACKGROUND

The supply chain in the industry is, by definition, a complex set of operations and resources

1.6. Benchmarks 171

that must be extremely optimized in order to achieve its maximum potential which does

172 Chapter 1. BACKGROUND

include the management of upstream and downstream relationships in order to achieve an

1.6. Benchmarks 173

outcome which is more profitable to all the parties in the chain, as shown by Christopher

174 Chapter 1. BACKGROUND

(2016). One of its parts is the Production Plan, which defines what should one or more

1.6. Benchmarks 175

plants build considering a myriad of variables - i.e. market demand, production line capacity,

176 Chapter 1. BACKGROUND

logistics and stock limits, suppliers constraints, raw material limits, etc. Therefore, an

1.6. Benchmarks 177

accurate Production Plan is a key component to maximize the potential profits.

178 Chapter 1. BACKGROUND

In the real world scenarios, however, the comparison between the proposed pro-

1.6. Benchmarks 179

duction plans and the production real output are commonly different. For example, due

180 Chapter 1. BACKGROUND

to both internal (worker strikes, human fatigue, machine unscheduled maintenance, lack

1.6. Benchmarks 181

of raw material, damaged goods) or external (issues with the suppliers, weather), the

182 Chapter 1. BACKGROUND

resulting production plan may suffer unexpected impacts. In order to keep track of these

1.6. Benchmarks 183

differences, KPIs (Key Performance Indicators) may be implemented where one or more

184 Chapter 1. BACKGROUND

factors are taken into account to rank one or more production lines or plants.

1.6. Benchmarks 185

In the poultry industry, the challenges are considerably greater. Since it is a livestock

type of material, the supply chain must be at the same time very large and very tight,

as seen in Flanders and Gillespie (2015). Large since the livestock production

involves genetics, feeding, breeding and growth control up to the chicken grandparents

and tight since during the whole process there are very strict sanitary controls with the

ration, water, diseases, effluents, vaccination and temperature, for example. Furthermore,

due to the demand from various markets and to minimize the waste, almost all the parts of

the chicken must be industrialized.

Considering these challenges, the production planners need to create production

plans for a given product line and distribute it accordingly along with its plants. Since

the variables are prone to changes over the time (depending, for example, on the market

seasonal demands and the plant availability), the production plans are usually

changed periodically.

In order to automate the creation of such plans, many industries use software

algorithms where proposed solutions are generated based on these ever-changing

variables. In the poultry industry, these algorithms are exposed to a larger degree of

complexity since the number of materials to be produced are higher than the number of

materials in the other industries summed with the higher volatility of the market.

However, many algorithms used by these industries will attempt to optimize a

single objective - the profits. Of course this poses as an additional problem because,

as exposed earlier, the estimated profits are not true since they are theoretical profits -

the real world situations would then attenuate these profits. Since this consideration is

not taken in account by simple, single-objective algorithms, it is likely that there are

better alternatives with slightly lower theoretical profits but, at the same time, with

higher reliability. From these alternatives the solution designer should then be able to

do the choices accordingly.

The proposed MOP should have two objectives - reliability and profitability. There-

fore, it is expected to have a Pareto front generated with the best solutions found considering

the tradeoffs between both objectives and shown graphically for comparison

purposes. Although it seemingly is not complex since it only have two objectives it

does have on the other hand a high amount of constraints and variables which makes the

work difficult for a given multi-objective algorithm. In this MOP, the reliability is a

percentage of how much a given plant historically covers the production plans and the

weighted profitability Wr is determined as the equation (1.55), where is determined by

the sum of the products of the reliability R of the plant p by the profitability P found for

the same plant p for all the four weeks and all the plants. This weighted profitability

should show that it is less than the value returned for the profitability by any solution.

Therefore, proposed solutions with higher reliability rates are expected to have less

differences between the theoretical

186 Chapter 1. BACKGROUND

Σ
∗

and the weighted profitabilities even though both of them should be lesser than the ones

found by the solutions geared towards the profitability in mind.

4
Wr = Rip Pip (1.55)

i=1

The problem shown in Monteiro and Reynoso-Meza (2017) was built around the

following rules:

1. There are nine plants;

2. All of them must be used. Also, all of the plants have a reliability rate assigned

to them according to historical data. 6 plants were rated as 55.6% while the

remaining 3 were rated as 77.8%;

3. A minimum quantity must be assigned for production for 124 materials according to

the market demand. This quantity should be distributed along four weeks;

4. Each material belongs to one of the 11 available material groups and each material

has a different value for sale;

5. There are varying production availabilities depending on the material group, plant

and week. In other words, a given plant may offer varying maximum production

capabilities for a given material group depending on the week. Also, one plant can

hold the production of more than one material group which, in turn, may distribute

the production along one or more materials within a given material group;

6. If a plant is able to produce stock from a material group it does not necessarily

mean that all of the materials under that group are allowed for that plant.

Therefore, a list of allowed materials per plant was provided as well.

Since in the provided data the sum of the monthly supply and demand were equal,

naturally there is less freedom to explore the possible solutions - i.e. if the algorithm

cannot take advantage of the most profitable materials in the expense of the lesser

ones and manufacture more of them, the maximum it can do is to try to push the

production of the most profitable materials to the most reliable plants.

Based on all the aforementioned information, the MOP has the following charac-

teristics:

1. 2 objectives: maximize the profitability and maximize the reliability;

2. 2032 variables - 508 per week. The variables are the production assigned for

each material, for each plant. Most of the variables are integers with the remainder

being floating point values.

1.6. Benchmarks 187

3. 488 constraints - 124 of them are the market demands and all the others are

the plant capacities for each week.

These values were retrieved out of the ERP (Enterprise Resource Planning)

system responsible of collecting and managing this information. The ERP follows strict

Audit and Compliance rules and, therefore, the information is as close as possible to the

reality. The data is also managed by the Planning team inside the company, a

specialized team composed of 10+ analysts.

63

2 PRELIMINARY CONTRIBUTIONS

During the research period, other contributions were created as part of the direct

path towards the algorithm proposed by this document. Although they were not created

independently from the main research, it is important to highlight they were created as

side objectives and results of it. The poultry dataset mentioned in the Section 1.6.10,

for example, gave the grounds to test whether it was feasible to run a multi-objective

optimization algorithm for this and other similar problems which, in turn, resulted in the

COBEM 2017 paper.

2.1 Poultry dataset

The poultry dataset, as shown in the Section 1.6.10, was a dataset originated

out of a company real-world situation. The complexity of this problem was important to test

a multi-objective optimization implementation for it - specially considering the company, at

that given moment, did not had implemented any multi-objective optimization scenarios.

This dataset had the following characteristics:

1. 2 objectives: maximize the profitability and maximize the reliability of the production

plan;

2. 2032 variables - 508 per week. The variables are the production assigned for

each material, for each plant.

3. 488 constraints - 124 of them are the market demands and all the others are

the plant capacities for each week.

While the dataset creation proved itself successful as in enabling the evaluation

of a multi-objective optimization algorithm for it, after the results shown in the Section 2.2

the company itself found additional opportunities for improvement from a data quality

standpoint. For instance, the reliability grades retrieved from the plants were very similar

one from the other, which could result in suboptimal business decisions. Therefore, while

this dataset could be used in one of the preliminary contributions, it could not be adopted

in the main research afterwards since it was under business review for a newer, improved

version.

64 Chapter 2. PRELIMINARY CONTRIBUTIONS

2.2 Results published in COBEM 2017

The multi-objective optimization algorithm tested in a real-world scenario using the

poultry dataset mentioned in the Sections 1.6.10 and 2.1 was presented in the COBEM

2017 congress (24th ABCM International Congress of Mechanical Engineering), held in

Curitiba, Paraná, Brazil and available in Monteiro and Reynoso-Meza (2017).

Considering the quantity of objectives and solutions generated, instead of mathe-

matical tools or other visual strategies such as radar plots or parallel coordinates, simple

two-dimensional scatter plots were chosen instead. These plots uses the median reliability

rates and the sum of the profitability for the suggested production distribution in its axes.

The points in the plot shows the position of the solutions relative to both axes. If the

number of proposed solutions were bigger to a point that the decision-making was difficult

to the problem designer other strategies could be used instead.

Figure 12 – Results of the first run done with 350000 iterations. The first plot shows the

tradeoffs between both objectives while the second plot shows the

comparison between the theoretical maximum profits and the more realistic

profits taking in account the reliability rates found for each solution.

As seen in the first plot of the Fig. 12, below, running with 430 thousand iterations

proved that the available window to optimize the reliability was very small, with less than

2% of difference between both anchor points. However, by maximizing the reliability the

profitability would be too affected, with a financial difference of approximately 3 ∗ 108, or

more than 50%, from the anchor point belonging to the profitability maximization. Even

2.2. Results published in COBEM 2017 65

after considering the difference caused by the changes in the reliability the variance in the

weighted profitability would still be too high, as seen in the bottom plot of the Fig. 12.

By choosing the best solution found (i.e. the only solution with more than 5 ∗ 108

in profitability found) it was possible to determine that, although there was in fact an

inverse relationship between profitability and reliability, the differences were negligible. By

choosing this solution instead of the solution found in a single-objective approach - i.e the

profitability anchor point - there was an increase of approximately 0.3% in the reliability

with a decrease in the profits of around 3.2% or, when the own reliability is taken in

account in the determination of the weighted profitability, the decrease is of approximately

2.7%. Also, since all but one solution had expected profits closer to the maximum profits

and the difference in the reliability is small in percentage, it is possible to verify that more

accurate solutions could be generated if more iterations were provided.

Figure 13 – Results of the second run done with 1 million iterations. The first plot shows the

tradeoffs between both objectives while the second plot shows the

comparison between the theoretical maximum profits and the more realistic

profits taking in account the reliability rates found for each solution.

In order to test this hypothesis, the second run, with 1 million iterations took place.

As seen in first plot of the Fig. 13, the results were more evenly spread as expected.

The profitability anchor point had higher values for both objectives, with all the

solutions following the same pattern. However, the reliability anchor could not be

improved since it had already reached its best value. Also, as shown in the second plot,

the same situation of the first run repeated itself - by choosing almost any solution the

tradeoffs would be

66 Chapter 2. PRELIMINARY CONTRIBUTIONS

negligible - although the reliability improvement could be a higher, but still under 1%,

the reduction in the weighted profitability would stay between 2% and 3% for the best

solutions within the Pareto front.

Figure 14 – Comparison between both runs. The second run achieved noticeably

better results.

In this MOP, it is also important to note a pattern associated with the number of

iterations used. As seen in the Fig. 14, the results had better solutions with their general

positions located both to better reliability and profitability, mainly due to the increased

number of iterations. As seen in the second plot of the Fig. 14, for example, the

anchor point for the profitability in the first run is worse than at least three solutions

found for the second run from a profitability standpoint.

On the other hand, the maximum reliability possible could not be improved due to

the limits placed by the problem. Since the losses in the profitability would be too high for

small improvements in the reliability, for both runs the solutions would be more oriented

towards the profitability anchor.

This problem, using an i7-3770K desktop, took around 30 hours to properly execute

in a single run in the simplest scenario. Under business reviews, while the company deemed

the results as acceptable, the time taken was too high to be feasible in daily business

situations - specially considering the algorithm would likely take more time to execute

using off-the-shelf laptops with less powerful specifications. This situation was one of the

main motivators behind the main research.

67

3 PROPOSAL

Considering the differences between single and multi-objective optimization as

well as the background of the current research in the form of preliminary contributions,

the effective challenge is given in the form of a multi-objective optimization algorithm

capable of solving large-scale problems with low computer resource usage. As such, it is

relevant to highlight the importance of the preliminary contributions in providing the

grounds for the current proposal, even though the original dataset (poultry) could not be

used due to company internal data reviews. However, in order to validate the proposal,

other mathematical problems with similar features from a complexity standpoints are

adopted instead. The algorithm proposed in this document was also presented in the

HPOI 2018 conference (International Conference on High-Performance Optimization in

Industry), part of the 21st International Multiconference of the Information Society held in

Ljubljana, Slovenia and available in Monteiro and Reynoso-Meza (2018). As a direct result

from the COBEM 2017 presentation and proposal, a hybrid multi-objective optimization

evolutionary algorithm built towards large-scale problems and with low computer resource

usage was created and evaluated in the scenarios shown in the Section 4.

3.1 Context

The objective of this research, considering all the topics presented in the previous

section, is to propose a new optimization algorithm that meets the following criteria:

• The algorithm must solve multi-objective problems;

• The algorithm must be targeted towards large-scale, multi-variable problems;

• The algorithm must be able to attempt to quickly reach the real Pareto front;

• The algorithm must not be resource-intensive;

• It is easy to evaluate, adapt and port.

Considering the big picture, there are multiple multi-objective algorithms already

available, specially in the EMO field Coello et al. (2007) However, they are mostly tested

against 2-3 objective problems instead of 5+ or 10+ objectives, for example. Furthermore,

the number of variables presented in some datasets is small (≤ 100). It is acknowledged,

though, that this is a well-explored field with many variants, each with their trade-offs.

For this reason, the framework shown in the Section 1.6 which in turn allows a range of

known algorithms will be used in this research.

68 Chapter 3. PROPOSAL

In that sense, as shown earlier there are also some techniques targeted to large-

scale optimization. The increased number of variables and objectives present itself as a

harder challenge due to the computational power required to attempt to draw the feasible

space and, therefore, the feasible solutions based on the allowed variable values are

considerably harder to identify - by extension, to improve them until they reach the Pareto

front. There are cooperative co-evolutionary strategies looking forward to tackle down this

issue. Since they use a EMO algorithm behind the scenes, it was one of the alternatives

considered to be the basis of the strategy presented by this document.

Another strategy considered was the implementation of a hybrid algorithm. From

the start it was considered as a viable option to be taken considering it is easiness to

test, adapt during the development phase and possibly port to other languages - specially

considering one of its main intended use is to be used in corporate environments. Therefore,

it is not possible to guarantee said environments will always have MATLABⓍc

Furthermore, the proposed hybrid algorithm offered good results in the tests.

available.

3.2 Overview

The algorithm hereby proposed is a hybrid multi-objective optimization strategy

intended for large scale problems focused on performance in corporate environments. It is

important to mention this research heavily focused on the multi-objective optimization

(MOO) algorithm (explained in the Section 1.2.2) instead of the multi-criteria decision

making (MCDM) since it is understood that the output of the MOO phase can be used

with some MCDM strategies later on in the decision-making process. Furthermore, the

intention of the current research is more focused in generating solutions instead of

ensuring any of them is chosen in the end of the process - mostly because the

decision-making process has larger human involvement.

The high-level structure of the algorithm is shown in Algorithm 6 and will be

explained in more detail in the subsequent sections. The lines 1 and 2 are in charge

of generating a n set of random solutions as well as evaluating themselves based on

their Pareto front values. Then, for each generation it will store the previous generated

solutions (lines 3 and 4). Based on these solutions it will generate offspring and join them

with all the other solutions (lines 5 and 6). Then, from all of these solutions the algorithm

will only select the best ones and replace them with their locally improved counterparts

(lines 7 to 9). Finally, it will rank all of these solutions again (line 10). Finally, some of the

solutions will be pruned before moving to the next generation (line 11).

In the aforementioned algorithm all of the underlined key components are shown

in more detail below.

3.2. Overview 69

Algorithm 6: New algorithm

Data: design space, objective vector, parameters (Section 3.2.1)
Result: the Pareto front approximation

1 generate n random solutions;
2 evaluate the solutions;

3 rank the solutions through a dominance filter (Algorithm 8);

4 for each generation until it reaches the stopping criteria do

5 store the previous generated solutions as well as their front values;

6 generate and evaluate offspring through

tournament, recombination and mutation (Algorithm 9);

7 join the offspring to the other solutions;

8 partially rank the joined solutions through a dominance filter (Algorithm 8);

9 locally improve the best solutions (Algorithm 13);

10 replace the best solutions with the locally improved solutions;

11 rank all the joined solutions through a dominance filter (Algorithm 8);

12 prune the number of solutions generated (Algorithm 15).

13 end

3.2.1 Parameters

In order to best suit the different algorithm needs a set of parameters is used.

Considering the current implementation this set is loaded before the execution of the

algorithm itself. The parameters used are as follows:

1. Problem bounds (design space);

2. Maximum number of generations allowed;

3. Mutation α probability (from 0.0 to 1.0) (Algorithm 11);

4. Mutation x Recombination probability (from 0.0 to 1.0) (Algorithm 9);

5. Number of objectives (of the problem);

6. Number of variables (of the solutions);

7. Initial population size;

8. Maximum front size per front level;

9. Maximum number of generations in sequence without improvements before stopping

the algorithm (Algorithm 7);

10. Percentage used to determine if a generation was improved in relation to the

previous one (from 0.0 to 1.0) (Algorithm 7);

11. Maximum non-domination level to be considered between generations (Algorithm

15);

70 Chapter 3. PROPOSAL

min(previousGenF ront)

12. Maximum non-domination level to be considered for the local search (Algorithm 15);

13. Number of random neighbors for the local search (optional) (Algorithm 13);

14. Flag responsible to whether the algorithm should forcefully prune each generation

(Algorithm 15).

This set of parameters is used considering the requirement of improving the

algorithm performance depending on the problem used as well as providing means of

tuning the algorithm itself in order to ensure it will get to the true Pareto front.

The problem bounds as well as the number of variables, although quite

redundant (from the characteristics of the bounds it is possible to know the number of

variables), are identified as separate parameters for the sake of algorithm speed

improvement since the algorithm would only need to access one integer instead of

deriving that information out of the bounds vector every time it needs to use that

information.

The number of objectives and the initial population size are self-explanatory -

they keep track of how many objectives the problem being tested has as well as its

initial, random population size. A population too high will lead to a large number of

offspring, leading in turn to poorer performance. On the other hand, an initial population

too small will likely lead to a higher amount of generations required in order to arrive to

the true Pareto front.

The maximum number of generations, the maximum number of generations in

sequence without improvements before stopping the algorithm and the

percentage used to determine if a generation was improved in relation to the previous

one compose the algorithm stopping criteria. At least one of these criteria must be

met before stopping the algorithm altogether. The first one limits how many

generations the algorithm will support for a given problem. The second and the third

criteria (from now on named as MaxGenWithoutImprovement and P

ercentageImprovement respectively) are used together:

ObjectivesImproved =
Σ

1 −

min(currentGenFront)
≥ P ercentageImprovement

(3.1)

Equation (3.1) (adapted for minimization problems only, but able to be modified

to also suit maximization objectives) determines how many objectives had been improved.

The percentage of improvement from the current to the previous generation is determined

considering the minimum value found for both generations from each one of the objectives.

In the end, ObjectivesImproved would store how many objectives would be

indeed

3.2. Overview 71

improved. After finishing a given generation, the Algorithm 7 tests if the current generation

had actually improved itself over the previous one, as shown here:

Algorithm 7: Check for improvements

Data: solutions from the current generation and from the past generation
Result: true if the current generation improved over the past one and false if not

1 if any objective was improved equation (3.1) then

2 LocallyImprove = true;

3 CountGenW ithoutImprovement = CountGenW ithoutImprovement + 1 ;

4 else

5 LocallyImprove = false;

6 CountGenW ithoutImprovement = 0.

7 end

Two variables are important in the global algorithm - LocallyImprove is a flag in

charge of enabling the local search for the next generation. As explained in more

detail in the Section 3.2.4, the implementation of local search shown important

improvements in the preliminary tests over not using it at all. On the other hand, it

heavily made use of computational resources to the point of making its use in all of

the generations counterproductive. For this reason, instead of using a probability-

driven parameter to locally improve the offspring a given generation, the Algorithm 7 is

the one in charge of triggering it - if it detected the current generation improved over

the previous one as is, then the chances it is in the right path are higher. However, if it

detected no improvements in the current generation happened, the local search might be

required to get out from a theoretical plateau, if it exists. The Algorithm 7 should only

use as input the solutions part of the first γ non-dominating levels, where γ is the

value set by the maximum non- domination level to be considered for local search

parameter. Each of these solutions will generate a number of η random neighbors - if

the number of random neighbors for the local search parameter had been set, η will

be equal to that parameter. Otherwise, η will be equal to the number of variables in

the problem.

CountGenWithoutImprovement is the other variable. In the start of the global

algorithm it would be initialized as zero and it is a counter used to keep track of how many

subsequent generations did not improve. The global algorithm will then stop as soon as

its value equals MaxGenWithoutImprovement.

The mutation x recombination probability is the ratio (between 0.0 and 1.0) on

which a given set of solutions will be used for mutation with the remainder used for

recombination. On an example, if this ratio is set to 0.6, 60% of the solutions will be used

for mutation while the other 40% will be used for recombination. Inside the mutation

algorithm the mutation α probability is used to pick the variables to be mutated. More

on it on the Section 3.2.3.

72 Chapter 3. PROPOSAL

The maximum non-domination level to be considered between generations,

maximum front size per front level and flag responsible to whether the algorithm

should forcefully prune each generation determines the depth and width of a given

generation to be transported from one generation to its successor. Let us consider that a

given generation ended with 400 solutions, distributed in 7 different non-domination levels.

If maximum non-domination level to be considered between generations is set to 4,

only the solutions that are members of the first four non-domination levels will be

transported to the next generation, with the remainder being removed. On the other

hand, if this parameter is set to 10, all of the solutions will be transported to the next

generation since it would support up to 10 non-domination levels and only seven were

available at that time. Moreover, if the flag responsible to whether the algorithm should

forcefully prune each generation is set to true, all of the solutions part of the non-

domination levels that will be transported to the next generation will be scanned. If any of

those non-domination levels have more solutions than the maximum amount set in

maximum front size per front level the excesses will be pruned out according to the

algorithm shown in the Section 3.2.5.

3.2.2 Dominance Filter

The dominance filter is one of the key elements of the algorithm since it is in charge

of determining the non-dominating levels of a given set of solutions. Its logic is described

as shown in the Algorithm 8.

This algorithm basically compares all the unassigned solutions amongst

themselves. From these solutions, the non-dominated ones are assigned with the current non-

domination level, starting with 1 and increasing afterwards. Then, another comparison

starts, again considering only the non-dominated solutions iteratively until all the solutions

have been assigned. Understandably, one can conclude it results in smaller solution

pools as the algorithm passes through the non-domination levels.

Nevertheless, depending on the scenario it is not required to know all the non-

domination levels - for example, looking through the Algorithm 6 it is possible to notice that

one of the steps mentioned partially ranks the solutions. In other words, it is only

needed to know the solutions in the first γ non-domination levels, as set by the maximum

non-domination level to be considered for local search parameter (section 3.2.1) since

they will be used in the local search. γ is assigned to the MaximumAllowedLevel

variable in this case, causing an early finish (and, therefore, faster performance when it is

needed) of the new algorithm as soon as it reaches that value. Also, it is important to

highlight the for-loop is parallelized in this implementation leading to further improvements

as far as memory consumption and CPU (Central Processing Unit) usage are

concerned.

On the other hand, in the other scenarios mentioned in the Algorithm 6 when this

same dominance filter is called it is also possible to assign to

3.2. Overview 73

MaximumAllowedLevel

74 Chapter 3. PROPOSAL

∞

≥

Algorithm 8: Dominance Filter

Data: the Pareto front approximation, MaximumAllowedLevel (optional)
Result: the non-domination levels for all the Pareto front approximations

1 CurrentN onDominationLevel = 1;

2 if MaximumAllowedLevel is not informed then

3 MaximumAllowedLevel = ;

4 end

5 while there are solutions unassigned to any non-domination level do

6 get all the unassigned solutions;

7 for all the unassigned solutions in the Pareto front approximation do

8 if the current solution is non-dominated by all the unassigned solutions

then

9 assign CurrentN onDominationLevel to the current solution;
10 end

11 end

12 if CurrentN onDominationLevel MaximumAllowedLevel then

13 assign CurrentN onDominationLevel + 1 to the remaining
unassigned solutions;

14 end
15 CurrentN onDominationLevel = CurrentN onDominationLevel + 1.

16 end

the maximum non-domination level to be considered between generations parameter

since this will be the threshold used by the algorithm when handling the solutions

from one generation to its successor, meaning it is also feasible to experience

improvements in memory and CPU usage by limiting the non-domination levels in

these cases as well.

3.2.3 Tournament, mutation and recombination

The tournament, mutation and recombination are three steps done in

sequence according to the following logic:

Algorithm 9: Tournament, mutation and recombination
Data: the Pareto front approximation

Result: mutated and recombined solutions

1 get the best solutions through tournament (Algorithm 10);

2 λ = MutationProbability ∗ NumberOf BestSolutions;

3 get the mutated solutions from the 1st to the λ-th best solutions (Algorithm 11));

4 get the recombined solutions from the (λ + 1)-th to the last best solutions

(Algorithm 12).

According to this algorithm, the Pareto front (which includes all the non-domination

levels) is used to generate offspring (i.e. the mutated and recombined solutions). The

offspring is generated from the best solutions found from a tournament. These solutions -

3.2. Overview 75

which are in a random order - are separated into two groups with λ being the divider. λ is

the product of the number of solutions in the output of the tournament and the mutation

x recombination probability shown in the Section 3.2.1. λ therefore would be the index

of the solution used as cutoff - if 100 solutions compose the output of the tournament and

λ equals 60, then the first 60 solutions are used in the mutation while the last 40 solutions

are used in the recombination. The tournament logic in itself is shown as follows:

Algorithm 10: Tournament
Data: a Pareto front approximation

Result: tournament winners

1 calculate the crowding distances for all the solutions;

2 create

MaximumFrontSize ∗ MaximumN onDominationLevelBetweenGenerations

brackets;

3 foreach bracket do

4 randomly assign 2 Pareto front solutions for the bracket;

5 if both solutions have the same non-dominating level then

6 winner = solution with the largest crowding distance;

7 else

8 winner = solution with the smallest non-domination level;

9 end

10 end

The Algorithm 11 shows the mutation logic. There, Random is an array with a

size equal to the number of variables with all of its values randomly generated

between

0.0 and 1.0. Then, as shown in the equation (3.2), these numbers are compared

against the α mutation probability (a parameter with a value between 0.0 and 1.0, as

shown in the Section 3.2.1). All of the values below this threshold will have a logical

false value (0) as a result while all of the values with the same value or above it will have

the logical true value (1) assigned to it. Naturally, if a variable was not chosen to be

mutated it will have the final value of zero while the variables chosen to be mutated will

have a random value respecting both the upper and lower bounds.

Mutate = (Random < α)∗(LowerBounds+((U pperBounds−LowerBounds)∗Random))

(3.2)

The Algorithm 12 shows the recombination logic. It will generate a number of

children equal to half the size of the Pareto front approximation given to it. Each children is

generated from two solutions of the Pareto front approximation according to the (3.3)

equation. It is important to remember that the Pareto front approximation fed to this

algorithm is based on some of the tournament winners and, as shown in the Algorithm 10,

76 Chapter 3. PROPOSAL

∗ ∗ −

Algorithm 11: Mutation

Data: a partial Pareto front approximation
Result: the mutated Pareto front approximation

1 foreach solution of the Pareto front approximation do

2 Random = random array with values between 0.0 and 1.0;

3 Mutate = equation (3.2);

4 foreach position in Mutate different from zero do

5 change the value in the solution to the value in Mutate for the same index;

6 end

7 end

8 evaluate the mutated solutions.

the order on which these winners are presented is random.

Algorithm 12: Recombination
Data: the Pareto front approximation
Result: recombined solutions

1 define as the NumberOf Children half the size of the Pareto front approximation;

2 foreach integer i between 1 and NumberOf Children do

3 get the (i 2)-th and (i 2) 1-th solutions;

4 assign the i-th children according to the equation (3.3);

5 end

6 evaluate the recombined solutions.

Children = FirstSolution + (SecondSolution − FirstSolution) ∗ Random
 (3.3)

3.2.4 Local Search

The local search algorithm ensures the best solutions are forcefully improved

before moving to the next generation. Therefore, the general idea is to minimize the

number of generations by attempting to find better solutions beforehand through forced

evolutions instead of just relying upon a standard genetic algorithm. As an expected

result, there could be improvements in speed, convergence and efficiency in the general

algorithm. The local search strategy employed in this proposal is shown in the

Algorithm 13.

The MaxNonDominationLevelForLocalSearch parameter in the Algorithm 13

refers to the maximum non-domination level to be considered for local search parameter

mentioned in the Section 3.2.1. This algorithm divides the solutions in two parts based

on their non-domination levels. All of the solutions members of a non-domination level up

to this threshold are added to the improvedSolutions matrix. Then, these solutions are

processed through a Pareto improvement algorithm. These new, Pareto improved

3.2. Overview 77

solutions are also added to improvedSolutions.

78 Chapter 3. PROPOSAL

Algorithm 13: Local Search

Data: the Pareto front approximation
Result: the improved Pareto front approximation

1 initialize improvedSolutions;

2 get all the solutions up to the MaxN onDominationLevelF orLocalSearch;

3 evaluate these solutions;

4 add all these solutions to improvedSolutions;
5 foreach solution part of the non-domination levels up to

MaxN onDominationLevelF orLocalSearch do
6 Pareto improve the current solution (Algorithm 14);

7 add the Pareto improved solutions to improvedSolutions;

8 end

9 rank the best solutions in improvedSolutions through a dominance filter;
10 concatenate these solutions with the other solutions above the

MaxN onDominationLevelF orLocalSearch threshold.

All of the solutions in improvedSolutions - i.e. the original solutions selected

from MaxN onDominationLevelF orLocalSearch and their Pareto improved children

- are processed through the dominance filter (Section 3.2.2). Only the best ones (the

solutions in the first non-domination level) are picked and joined with all the other

solutions that where not selected since their non-domination level was greater than

MaxN onDominationLevelF orLocalSearch. This modified Pareto front

approximation is then returned.

On the Pareto improvement, the Algorithm 14 shows how does it work. The

number of random neighbors for the local search, an optional parameter shown in the

Section 3.2.1 and represented by NumberOf RandomN eighbors, is used to improve

the performance in scenarios where there are too many variables and this algorithm

would take too long to process all of the variables.

For example - if a solution has 1000 variables and this parameter is not informed,

this algorithm will create 1000 new solutions based on the original solution where the first

solution assigned a new random value for the first variable while keeping all the other

variables with the same value equation (3.4); the second solution assigned a new random

value for the second variable while keeping all the other variables with the same value and

so on. If 100 solutions are involved in the local search, at least 1e5 new solutions would

be created as a result. On the other hand, if a solution had 15000 variables, considering

the same 100 solutions as a result 1.5 million new solutions would be created.

Considering the local search would happen more than once during the algorithm

execution, this method - as seen in Liefooghe et al. (2012) and based on the

3.2. Overview 79

exhaustive neighborhood exploration,

80 Chapter 3. PROPOSAL

would take a long time to run.

NewV alue = (LowerBounds + ((U pperBounds − LowerBounds) ∗ Random))
 (3.4)

When using the aforementioned parameter, on the other hand, it would greatly

improve the speed and memory consumption. Bearing in mind the same case of 15000

variables but with the parameter NumberOf RandomN eighbors set to 1000, for each

solution it would only pick 1000 out of 15000 variables randomly (instead of all the 15000).

That way, the total amount of new solutions generated is dramatically decreased from 1.5

million (considering the same total of 100 solutions to be executed by the local search) to

1e5. This strategy is, according to Liefooghe et al. (2012), in practice a partial

neighborhood exploration strategy.

Algorithm 14: Pareto improvement

Data: a solution

Result: Neighbors

1 initialize the list of neighbors Neighbors;

2 if NumberOf RandomN eighbors was informed then

3 select NumberOf RandomN eighbors random variables;

4 else

5 select all the variables;

6 end

7 foreach one of the variables selected do

8 copy the original solution;

9 modify the variable value according to the equation (3.4);

10 evaluate the new solution;

11 add it to Neighbors;

12 end

13 replace Neighbors with only its anchors.

3.2.5 Pruning

At the end of each generation a situation might happen where the amount of

solutions available per non-domination level is way too high for performance reasons. Or,

in some cases where the solutions are spread almost linearly across the Cartesian plane,

as the generation passes the amount of solutions in the first non-domination levels quickly

increases causing performance impacts.

Seen in the 15, the maximum non-domination level to be considered

between generations (MaxNonDominationLevelBetweenGens), maximum front

size per front level (MaxFrontSizePerFrontLevel) and flag responsible to whether the

algorithm should forcefully prune each generation (ForcePrune) parameters shown in

the Section 3.2.1 are used to control the pruning.

3.2. Overview 81

Algorithm 15: Pruning

Data: the full Pareto front approximation
Result: the pruned Pareto front approximation

1 if F orceP rune is true then

2 foreach non-domination level up to MaxN onDominationLevelBetweenGens

do

3 if NumSolutionsInCurrentLevel > MaxFrontSizeP erF rontLevel then
4 calculate the crowding distances (Algorithm 16);

5 sort the solutions from the largest to the smallest distance;
6 add the first NumberOf SolutionsInCurrentLevel solutions to

the new Pareto front;

7 else

8 add all of the solutions in the current level to the new Pareto front

approximation;

9 end

10 end
11 overwrite the current, full Pareto front with the new front.

12 else

13 remove all the solutions part of the non-domination levels above
MaxN onDominationLevelBetweenGens.

14 end

If F orceP rune is not active (i.e. set to false), the algorithm will only remove from

the Pareto front approximation all of the solutions that belong to non-domination levels

above the threshold established by MaxNonDominationLevelBetweenGens. All the

other solutions in the other non-domination levels will be kept in the front regardless of

how many solutions actually remain.

However, if F orceP rune is active (i.e. set to true), the algorithm will iterate

through all of the non-domination levels up to MaxNonDominationLevelBetweenGens

(thus not considering the solutions in the other levels in the same way as when F orceP

rune is set to false). If the number of solutions in the current level

(NumSolutionsInCurrentLevel) is greater than the value in MaxFrontSizePerFrontLevel,

the algorithm will ensure the excesses will be pruned out by removing in that non-

domination level the solutions with the smallest crowding distances through the 2-nearest

neighbors approach, as shown in more detail in Chaudhuri and Dasgupta (2014).

The crowding distance determination logic, as described in the Algorithm 16,

normalizes all the solutions for all the objectives and sorts them accordingly. For each

objective it will assign ∞ to the solutions with the largest and smallest values. Then, all the

other solutions will have the distance calculated by the equation (3.5). Since the solutions

are sorted by the current objective, the neighbors immediately before and after it have the

nearest values from its own. The difference between their values is then responsible

for

82 Chapter 3. PROPOSAL

∞

3.3. Strategies Previously Used 79

helping in the determination of the crowding distance for the current solution.

Distance = Distance + (values(i + 1) − values(i − 1)) (3.5)

Algorithm 16: Crowding Distance Data:

the Pareto front approximation Result:

the crowding distances

1 set the distances for all the solutions to zero;
2 foreach objective do
3 normalize the Pareto front approximation values for the current objective;
4 get the values of the current objective;

5 sort the values in ascending order;

6 for first and last sorted solutions do

7 distance = ;
8 end

9 i = 2;

10 while i < NumberOf Solutions do

11 set the distance to the solution in the i position according to the equation
(3.5);

12 i = i + 1;

13 end

14 end

3.3 Strategies Previously Used

Considering the algorithm proposal, several modifications happened during the

course of the algorithm implementation. The tournament, for example, originally employed

the automatically selection of all the solutions from the first non-domination level plus a

parameter p to determine the possibility to select the solutions in the following levels such as

pcurrentNonDominationLevel−1. However, as its results were not satisfactory, the

implementation of the bracked system took place instead.

Also, the mutation logic solely included mixing the variables from two parents

instead of using the logic shown in (3.2). However, it brought a slower pace on the

improvements done through the generations.

Another strategy taken was the implementation of the Genetic Queued Pareto

Local Search (GQPLS) strategy presented by Inja et al. (2014) for the local search due

to its nature of preventing premature exclusion of dominated solutions. On the other hand,

however, its implementation took too much time per call - therefore, it was dropped out

from the final implementation.

It is relevant to highlight that in the overall implementation process several opti-

mizations took place using the standard MATLABⓍc function calls and best programming

80 Chapter 3. PROPOSAL

practices such as parallelization, matrix manipulation, code refactoring and parameter

handling. As seen in the Section 4, these optimizations resulted in better resource

usage as well as an acceptable performance.

81

4 RESULTS

The new, proposed algorithm as well as the other algorithms were tested in

an i7-3770K desktop equipped with 16 GB RAM (Random Access Memory) with a

dedicated

video card running Windows 10 Pro and MATLABⓍc R2015a. This desktop ran all the

tests over the course of three weeks with one weekly system restart. In MATLABⓍ

c , the start and end time of each algorithm were tracked (therefore storing the time

taken for each execution) as well as the Pareto front approximation found for each

execution. Outside MATLABⓍc , the Windows Performance Monitor (perfmon.exe, a

known, built-in performance monitor tool in Windows) was used to track the performance

and memory usage in MATLABⓍc . As such, it was able to properly track the resource

usage by each algorithm.

4.1 Evaluation Methods

With the aforementioned tools the following characteristics were measured:

• The time taken for each execution (also named as run);

• The best Pareto front approximations (i.e. the first non-domination level) found for

each algorithm;

• The hypervolume found for each algorithm considering the best Pareto front approx-

imations found for them;

• The memory and processor usage for each algorithm.

Five different tests were executed:

• 1000 variables:

9 problems (LSMOP1-LSMOP9 - more details in the Section 1.6);

3 algorithms tested for each problem: gamultiobj; sp-MODE II; the new algorithm; 51

runs for each algorithm.

• 5000 variables:

9 problems (LSMOP1-LSMOP9);

3 algorithms tested for each problem: gamultiobj; sp-MODE II; the new algorithm; 51

runs for each algorithm.

82 Chapter 4. RESULTS

• 15000 variables:

9 problems (LSMOP1-LSMOP9);

2 algorithms tested for each problem: gamultiobj; the new algorithm; 51

runs for each algorithm.

• 30000 variables:

9 problems (LSMOP1-LSMOP9);

1 algorithms tested for each problem: the new algorithm;

51 runs for each algorithm.

• 50000 variables:

9 problems (LSMOP1-LSMOP9);

1 algorithms tested for each problem: the new algorithm;

51 runs for each algorithm.

From the problems with 15000 variables onwards not all of the three algorithms

were tested since they started to trigger out of memory errors caused by their own

memory allocation requirements. However, whenever applicable (i.e. some of the steps

below were omitted should their algorithm was left unused due to the out of memory

errors) the actions took place in the order shown below:

1. 51 runs for the new algorithm, LSMOP1;

2. 51 runs for gamultiobj, LSMOP1;

3. 51 runs for sp-MODE II, LSMOP1;

4. 51 runs for the new algorithm, LSMOP2;

5. 51 runs for gamultiobj, LSMOP2;

6. 51 runs for sp-MODE II, LSMOP2;

7. 51 runs for the new algorithm, LSMOP3;

8. 51 runs for gamultiobj, LSMOP3;

9. 51 runs for sp-MODE II, LSMOP3;

10. 51 runs for the new algorithm, LSMOP4;

11. 51 runs for gamultiobj, LSMOP4;

12. 51 runs for sp-MODE II, LSMOP4;

4.1. Evaluation Methods 83

13. 51 runs for the new algorithm, LSMOP5;

14. 51 runs for gamultiobj, LSMOP5;

15. 51 runs for sp-MODE II, LSMOP5;

16. 51 runs for the new algorithm, LSMOP6;

17. 51 runs for gamultiobj, LSMOP6;

18. 51 runs for sp-MODE II, LSMOP6;

19. 51 runs for the new algorithm, LSMOP7;

20. 51 runs for gamultiobj, LSMOP7;

21. 51 runs for sp-MODE II, LSMOP7;

22. 51 runs for the new algorithm, LSMOP8;

23. 51 runs for gamultiobj, LSMOP8;

24. 51 runs for sp-MODE II, LSMOP8;

25. 51 runs for the new algorithm, LSMOP9;

26. 51 runs for gamultiobj, LSMOP9;

27. 51 runs for sp-MODE II, LSMOP9.

The poultry dataset will not be used. This dataset, from Monteiro and Reynoso-

Meza (2017) and shown in the 1.6.10, is under re-evaluation by the company in order

to ensure it is more detailed and accurate to the current business needs.

Besides, for all the algorithms the following stopping criteria were considered:

• Maximum number of generations allowed: 200 ∗ NumberOf V ariables (applicable

for the three algorithms);

• Mutation α probability: 0.5 (applicable for the new algorithm and gamultiobj);

• Mutation x Recombination probability: 0.8 (applicable for the new algorithm and

gamultiobj);

• Initial population size: 20 (applicable for the three algorithms);

• Maximum front size per front level: 40 (applicable for the new algorithm);

• Maximum number of generations in sequence without improvements before stopping

the algorithm: 5 (applicable for the new algorithm and gamultiobj);

84 Chapter 4. RESULTS

• Percentage used to determine if a generation was improved in relation to the

previous one: 0.0001 (applicable for the new algorithm and gamultiobj);

• Maximum non-domination level to be considered between generations: 5 (applicable

for the new algorithm);

• Maximum non-domination level to be considered for the local search: 1 (applicable

for the new algorithm);

• Number of random neighbors for the local search: 50 (applicable for the new algo-

rithm);

• Limit in seconds: 300 (applicable for the three algorithms);

• Flag responsible to whether the algorithm should forcefully prune each generation:

false for the problems LSMOP5 and LSMOP8, true for all the others (applicable

for the new algorithm).

4.2 Pareto fronts and Hypervolume

The hypervolume determination algorithm, as implemented in MATHWORKS

(2015), starts by first defining the utopia and nadir points out of the consolidated Pareto

front approximation determined for that problem and for each algorithm. For instance, for a

given problem n, 51 runs for the sp-MODE II, 51 runs for the gamultiobj and another 51

runs for the new algorithm were executed. Each one of these 153 runs had their own

Pareto front approximations formed by different non-domination levels apart from some

cases as explained later in more detail. Regardless, those 153 different fronts were

summarized into three fronts (one per algorithm) and considering only the non-

dominated solutions (i.e. the first non-domination level) under that algorithm. As such, the

resulting Pareto front approximation charts show three fronts, each for each algorithm.

All of the solution values found for these fronts are normalized considering the fronts

generated for all the algorithms – consequently, the utopia point has the value 0 assigned for

all of its objectives and the nadir point has 1 assigned for all of its objectives. Considering

these two points, a high amount (in these tests, 1000000) of random solutions (henceforth

named samples) is generated between these two points and across the hyperplane (i.e.

for all the objectives).

Then, for each one of the solutions belonging to the front of a given algorithm, only

the samples fully dominated by the solution are considered. These samples are

included in a counter and are also removed from the list (so that they are not tested

another time against another solution). The overall count is then divided by the original

number. As such, if in a given case 700000 samples were found to be dominated out of

1000000,

4.3. Findings 85

then the hypervolume calculation results in 0.700 (700000/1000000). Therefore, if all the

samples are found to be dominated by the solutions in the front the hypervolume will be

1.000. On the other hand, if no solutions dominated the samples the hypervolume will

be 0.000. By conclusion, the closest the algorithm is to 1.000 the better it will be from a

Pareto front approximation analysis standpoint.

4.3 Findings

Initially, with few (1000) variables the new algorithm took longer and was not

able to provide the best results - although it fared generally better than the sp-MODE II

algorithm, it stood behind gamultiobj. Also, it only had its execution completed as soon

as it reached the time limit. On the other hand, in more than half of the problems it found

at least one solution that fared better in at least one objective than all the others found

by the other algorithms as seen in the Figure 15.

Moreover, as soon as the number of variables was increased it was possible to

better see the benefits of the new algorithm. When it reached 15000 variables it was

able to generate a greater amount of solutions (seen in the Figure 17) using way less

resources than gamultiobj, as shown in the Figure 25. sp-MODE II, for instance, was not

able to be initiated since it required more than 70 GB of available RAM for problems with

this size. The same situation happened with 30000 and 50000 variables, but with

gamultiobj.

Additionally, it is important to note the algorithm, as shown in the Table 4, could

properly finish itself earlier even with a high amount of variables (116 seconds for LSMOP2

with 50000 variables) since it quickly found it was not able to improve itself. As also shown

in the Table 5, the solutions found by it, even with a high amount of variables, were diverse

and could even be better improved if more time was allocated for its execution. This

is noted by the differences between its minimum, maximum and median hypervolumes for

30000 and 50000 variables. If the three values were consistent one could conclude the

solutions found were very similar among themselves for all the runs and, therefore, the

algorithm would hardly find better solutions with more time.

This is further corroborated by the Figures 20 to 24. In these figures, it is possible

to verify that, in general, as the problems grew in complexity, the new algorithm kept

providing more consistent values when compared against other algorithms. Starting in the

Figure 21 and being more noticeable in the Figure 22, the new algorithm has a

thicker violin area as well as less outliers. Contrarily, the gamultiobj box plot has a

larger area with a less noticeable violin plot and with more outliers.

Supporting the hypervolumes shown in the Table 5, the Figures 15 to 19 also

show the behavior of the Pareto front approximation as the algorithm and the problem

complexity were changed. In these figures, it is better noticeable that the Pareto front

86 Chapter 4. RESULTS

approximation generated by the new algorithm already have some solutions that are

members of the overall front (i.e. when the three algorithms are considered) with 1000

variables. Then, as the number of variables grow, more solutions found by the new algorithm

are closer and/or part of the overall front until the point where only the new algorithm is

capable of generating a Pareto front approximation at all.

The Table 6 also shed a different view on the hypervolumes. This table uses

the Wilcoxon signed rank test as shown by Devore (2011). The objective of this test is

to evaluate the null hypothesis (i.e. whether there is no significant difference between

both populations). If the null hypothesis is rejected, then both sets are considered to be

different between themselves. Considering the results from the 51 runs for sp-MODE II and

the 51 runs for gamultiobj compared against the 51 runs for the new algorithm for each

problem, it is possible to verify that the null hypothesis was rejected against all

problems and all sizes - therefore, the results by the new algorithm are statistically

different from the ones presented by the other algorithms for all the problems.

From another perspective, the Figure 25 shows the algorithm comparison concerning

specifically the resource usage. From a performance standpoint, the memory and footprint

recorded consumption were consistent for the new algorithm. Considering the memory and

usage patterns were similar for all the algorithms for a given problem and size combination,

the Figure 25 to use the results found for LSMOP5, where all the 51 runs take place

sequentially for each one of the algorithms. From a processor usage standpoint, the metric

used was the % Privileged Time as used in Gough, Steiner and Saunders (2015) and, for

memory, the number of Particular Bytes was used, following Darabont, Kiss and Domokos

(2015). On both cases, the best-case scenario is to have both values as small as

possible, representing lower resource usage.

For better comparison purposes, the y-axis scale remains unchanged for all

the scenarios. As seen in the Figure 25, the memory recorded usages are similar between

the three algorithms as far as 1000 variables are concerned, and with around 1 GB used.

The sp-MODE II algorithm recorded faster times and lower processor usage while

gamultiobj, although with the best hypervolumes, used way more processor

resources. Then, with 5000 variables, sp-MODE II used way more memory resources

with around 4 to 5 GB in memory usage while at the same time keeping the processor

usage low. On the other hand, the new algorithm used the least memory from them all,

with less than 2 GB used. Comparing the changes from the problems with this magnitude

with the ones with 1000 variables it is possible to notice the other algorithms started to use

way more resources as the problem became more complex while the new algorithm kept

itself using less resources.

With 15000 variables, sp-MODE II was unable to run due to an out-of-memory

error since it attempted to allocate more than 70 GB. The new algorithm kept with its

premise of low resource usage, consuming around 2 GB in memory while gamultiobj

4.3. Findings 87

used

88 Chapter 4. RESULTS

5 times more than that. This behavior also made gamultiobj cause an out-of-memory error

with the problems with 30000 and 50000 variables. For both cases it is visible that the

new algorithm kept its low memory footprint, still consuming less than 2 GB in memory

while using less than 40% of the processor resources.

With 30000 variables, both gamultiobj and sp-MODE II were unable to generate

any solutions. Therefore, for all the problems with this size as well as 50000 variables, the

new algorithm was the only one capable of generating the solutions.

It is also important to highlight the scalability of the proposed algorithm. When

the memory and CPU consumption are considered it is possible to note the low footprint

given by the new algorithm. In practice, if the algorithm was executed in a corporate

environment in an off-the-shelf computer, its user could arguably keep working in another

tasks in parallel using the same equipment without the need to allocate a separate server.

Moreover, it also adds the possibility for each analyst to run its own algorithm without

the need to worry about the server shared usage, for example.

4.3. Findings 89

Figure 15 – The results for all the problems tested with 1000 variables. From left to right: first

row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4, LSMOP5,

LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9. Circles: gamultiobj,

asterisks: sp-MODE II, stars: new algorithm.

90 Chapter 4. RESULTS

Figure 16 – The results for all the problems tested with 5000 variables. From left to right:

first row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4, LSMOP5,

LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9. Circles: gamultiobj,

asterisks: sp-MODE II, stars: new algorithm.

4.3. Findings 91

Figure 17 – The results for all the problems tested with 15000 variables. From left to right: first

row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4, LSMOP5,

LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9. Circles: gamultiobj,

stars: new algorithm.

92 Chapter 4. RESULTS

Figure 18 – The results for all the problems tested with 30000 variables. From left to right:

first row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4, LSMOP5,

LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9. Stars: new algorithm.

4.3. Findings 93

Figure 19 – The results for all the problems tested with 50000 variables. From left to right: first

row - LSMOP1, LSMOP2, LSMOP3. Second row: LSMOP4, LSMOP5,

LSMOP6. Third row: LSMOP7, LSMOP8, LSMOP9. Stars: new algorithm.

94 Chapter 4. RESULTS

Problem NVar

LSMOP1 1000

LSMOP2 1000

LSMOP3 1000

LSMOP4 1000

LSMOP5 1000

LSMOP6 1000

LSMOP7 1000

LSMOP8 1000

LSMOP9 1000

LSMOP1 5000

LSMOP2 5000

LSMOP3 5000

LSMOP4 5000

LSMOP5 5000

LSMOP6 5000

LSMOP7 5000

LSMOP8 5000

LSMOP9 5000

LSMOP1 15000

LSMOP2 15000

LSMOP3 15000

LSMOP4 15000

LSMOP5 15000

LSMOP6 15000

LSMOP7 15000

LSMOP8 15000

LSMOP9 15000

LSMOP1 30000

LSMOP2 30000

LSMOP3 30000

LSMOP4 30000

LSMOP5 30000

LSMOP6 30000

LSMOP7 30000

LSMOP8 30000

LSMOP9 30000

LSMOP1 50000

LSMOP2 50000

LSMOP3 50000

LSMOP4 50000

LSMOP5 50000

LSMOP6 50000

LSMOP7 50000

LSMOP8 50000

LSMOP9 50000

gamultiobj sp-MODE II new algorithm

204.6695 18.8369 300.5821

179.0439 77.5965 56.4962

194.1867 22.2022 300.6393

185.2759 61.2616 300.4007

203.9149 17.5401 302.7825

174.2944 22.3451 300.5714

207.0651 22.9051 300.5503

206.9397 24.5861 302.9819

203.9316 23.1693 300.8249

212.4453 61.9577 301.1190

212.4953 475.4843 39.1407

211.7594 62.9883 301.0384

212.6598 213.7962 301.1508

212.5400 51.4895 305.6372

210.5775 67.8386 301.3732

213.5732 58.4579 301.2659

213.5123 65.1098 304.5328

209.5527 63.1830 301.1826

320.0012 - 301.9038

318.4921 - 44.1292

326.5167 - 301.2525

317.6301 - 302.4874

316.6140 - 305.6782

315.4029 - 302.1086

316.7320 - 301.6089

317.1549 - 312.3363

313.5930 - 301.2109

- - 303.9869

- - 71.1807

- - 302.7238

- - 305.0936

- - 317.2387

- - 301.6293

- - 303.0287

- - 315.4613

- - 302.4290

- - 302.9240

- - 116.3987

- - 304.2338

- - 307.7581

- - 313.8191

- - 301.2501

- - 304.3168

- - 311.4810

- - 302.5563

Table 4 – Median time taken for each algorithm considering 51 runs. NVar represents the

number of variables. The algorithms with the best median values are in bold.

4.3. Findings 95

Problem NVar

gamultiobj sp-MODE II new algorithm

LSMO
P1

100
0

0.9897
06

0.5159
83

0.9865
51

0.5435
32

0.8929
86

0.9374
07

0.9893
53

0.8948
03

0.7271
11

0.9785
04

0.5043
13

0.9843
09

0.5382
81

0.8839
99

0.8852
46

0.9853
58

0.9071
93

0.7191
77

0.9488

0.9995
27

0.5369
64

0.9999
60

0.5715
30

0.9991
72

0.9998
19

0.9999
99

0.9985
73

0.9947
42

0.9937
91

0.5162
85

0.9995
39

0.5480
65

0.9977
73

0.9996
52

0.9999
76

0.9974
83

0.9967
53

0.9857

0.9989
33

0.5319
42

0.9998
81

0.5623
90

0.9974
82

0.9995
99

0.9996
44

0.9951
52

0.9910
79

0.9905
06

0.5128
29

0.9960
04

0.5456
65

0.9952
79

0.9471
14

0.9994
11

0.9938
57

0.9584
39

0.9797

0.911
590

0.922
737

0.9169
51

0.9573
59

0.4882
40

0.9553
86

0.5130
55

0.6011
09

0.8719
86

0.9226
84

0.6724
84

0.6506
11

0.9556
49

0.4826
73

0.9463
54

0.5089
65

0.5854
20

0.6265
55

0.8548
19

0.6033
66

0.5257
13

0.9431

0.9721
75

0.5008
43

0.9666
92

0.5293
36

0.6670
64

0.9420
22

0.9639
04

0.7214
65

0.7749
93

0.9632
43

0.4932
89

0.9584
51

0.5222
43

0.6160
79

0.7260
76

0.8956
01

0.6168
27

0.6229
79

0.9515

0.966
355

0.497
616

0.960
246

0.521
077

0.628
847

0.916
751

0.947
478

0.686
416

0.695
966

0.958
904

0.488
354

0.954
693

0.516
004

0.609
145

0.677
455

0.882
027

0.609
580

0.593
416

0.945

LSMO
P2

100
0

0.467
864

0.473
460

0.4722
04

LSMO
P3

100
0

0.911
393

0.920
265

0.9163
40

LSMO
P4

100
0

0.491
091

0.496
510

0.4944
51

LSMO
P5

100
0

0.391
758

0.497
825

0.4274
28

LSMO
P6

100
0

0.607
114

0.644
470

0.6268
70

LSMO
P7

100
0

0.585
608

0.643
794

0.6159
92

LSMO
P8

100
0

0.493
677

0.533
760

0.5089
90

LSMO
P9

100
0

0.465
631

0.497
300

0.4834
26

LSMO
P1

500
0

0.926
591

0.939
028

0.9312
65

LSMO
P2

500
0

0.468
779

0.471
864

0.4703
81

LSMO
P3

500
0

0.921
576

0.933
001

0.9250
04

LSMO
P4

500
0

0.494
375

0.498
301

0.4968
39

LSMO
P5

500
0

0.554
203

0.577
637

0.5616
39

LSMO
P6

500
0

0.563
983

0.595
354

0.5757
06

LSMO
P7

500
0

0.737
682

0.776
020

0.7528
61

LSMO
P8

500
0

0.589
561

0.615
597

0.5996
94

LSMO
P9

500
0

0.500
476

0.516
116

0.5074
50

LSMO
P1

150
00

- - -

LSMO
P2

150
00

- - -

LSMO
P3

150
00

- - -

LSMO
P4

150
00

- - -

LSMO
P5

150
00

- - -

LSMO
P6

150
00

- - -

LSMO
P7

150
00

- - -

LSMO
P8

150
00

- - -

LSMO
P9

150
00

- - -

LSMO
P1

300
00

- - -

LSMO
P2

300
00

- - -

LSMO
P3

300
00

- - -

LSMO
P4

300
00

- - -

LSMO 300 - - -

9
4

C
h

ap
ter 4

. R
E

S
U

L
T

S

 minimum maximum median minimum maximum median minimum maximum median

P5 00 50

0.5115
24

0.9536
95

0.5329
45

0.7546
04

0.6577
02

0.8701
61

0.7481
59

0.5499
97

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

81

0.5141
72

0.9995
76

0.5379
77

0.9933
60

0.9995
25

0.9997
15

0.9924
55

0.9982
70

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

83

0.5133
71

0.9986
51

0.5358
47

0.9741
57

0.7717
05

0.9990
59

0.9892
29

0.9907
60

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

82

0.4731
44

0.9392
23

0.5023
06

0.6855
95

0.5714
92

0.8395
20

0.6737
50

0.4802
48

0.8380
55

0.4445
10

0.8846
19

0.4817
29

0.1562
84

0.5641
66

0.0982
36

0.1705
07

07

0.4916
00

0.9497
65

0.5155
80

0.7013
02

0.6090
21

0.8599
87

0.6987
94

0.5622
70

0.8440
85

0.4761
45

0.8938
15

0.4920
74

0.2152
70

0.6149
24

0.2515
62

0.2025
35

874

0.484
434

0.941
039

0.510
049

0.688
771

0.585
666

0.845
907

0.680
188

0.540
451

0.8403
06

0.4663
73

0.8858
42

0.4868
88

0.1922
26

0.6042
63

0.2232
34

0.1840
88

LSMO
P6

300
00

- - -

LSMO
P7

300
00

- - -

LSMO
P8

300
00

- - -

LSMO
P9

300
00

- - -

LSMO
P1

500
00

- - -

LSMO
P2

500
00

- - -

LSMO
P3

500
00

- - -

LSMO
P4

500
00

- - -

LSMO
P5

500
00

- - -

LSMO
P6

500
00

- - -

LSMO
P7

500
00

- - -

LSMO
P8

500
00

- - -

LSMO
P9

500
00

- - -

4.3. Findings 97

-

-

-

-

-

-

-

-

-

0.6605
07

0.8301
94

0.4679
06

0.8850
75

0.4780
48

0.2098
41

0.5686
98

0.0546
04

0.1960
41

0.6185
96

0.6756
92

0.8391
40

0.4819
69

0.8916
33

0.4919
21

0.2298
32

0.5793
56

0.1116
07

0.2272
83

0.6835
85

0.6688
66

0.8319
89

0.4767
13

0.8877
29

0.4852
69

0.2202
66

0.5735
81

0.0810
00

0.2088
53

0.6690
33

Table 5 – Hypervolumes for each algorithm considering 51 runs. NVar represents the

number of variables. The algorithms with the best median values are shown in

bold.

4.3. Findings 95

Figure 20 – The hypervolume distribution for all the problems tested with 1000 variables.

The vertical axis represents the hypervolume values, where ga represents the

runs with gamultiobj, sp with sp-MODE II and new with the new algorithm.

The density of the violin refers to the distribution of all the hypervolume

values for a given problem, the box height determines the interquartile range,

the strip in the box represents the median and the dots represent the outliers.

96 Chapter 4. RESULTS

Figure 21 – The hypervolume distribution for all the problems tested with 5000 variables.

The vertical axis represents the hypervolume values, where ga represents the

runs with gamultiobj, sp with sp-MODE II and new with the new algorithm.

The density of the violin refers to the distribution of all the hypervolume

values for a given problem, the box height determines the interquartile range,

the strip in the box represents the median and the dots represent the outliers.

4.3. Findings 97

Figure 22 – The hypervolume distribution for all the problems tested with 15000 variables.

The vertical axis represents the hypervolume values, where ga represents the

runs with gamultiobj and new with the new algorithm. The density of the

violin refers to the distribution of all the hypervolume values for a given

problem, the box height determines the interquartile range, the strip in the

box represents the median and the dots represent the outliers.

98 Chapter 4. RESULTS

Figure 23 – The hypervolume distribution for all the problems tested with 30000 variables.

The vertical axis represents the hypervolume values, where new represents

the runs with the new algorithm. The density of the violin refers to the

distribution of all the hypervolume values for a given problem, the box height

determines the interquartile range, the strip in the box represents the

median and the dots represent the outliers.

4.3. Findings 99

Figure 24 – The hypervolume distribution for all the problems tested with 50000 variables.

The vertical axis represents the hypervolume values, where new represents

the runs with the new algorithm. The density of the violin refers to the

distribution of all the hypervolume values for a given problem, the box height

determines the interquartile range, the strip in the box represents the

median and the dots represent the outliers.

100 Chapter 4. RESULTS

Problem NVar new vs. gamultiobj new vs sp-MODE II

LSMOP1 1000 true true

LSMOP2 1000 true true

LSMOP3 1000 true true

LSMOP4 1000 true true

LSMOP5 1000 true true

LSMOP6 1000 true true

LSMOP7 1000 true true

LSMOP8 1000 true true

LSMOP9 1000 true true

LSMOP1 5000 true true

LSMOP2 5000 true true

LSMOP3 5000 true true

LSMOP4 5000 true true

LSMOP5 5000 true true

LSMOP6 5000 true true

LSMOP7 5000 true true

LSMOP8 5000 true true

LSMOP9 5000 true true

LSMOP1 15000 true -

LSMOP2 15000 true -

LSMOP3 15000 true -

LSMOP4 15000 true -

LSMOP5 15000 true -

LSMOP6 15000 true -

LSMOP7 15000 true -

LSMOP8 15000 true -

LSMOP9 15000 true -

Table 6 – Wilcoxon signed rank test results compared against the median hypervolumes

found for each algorithm and problem. True indicates a rejection of the null

hypothesis at 5% significance level while false indicates a failure to reject

the null hypothesis. The problems with 30000 and 50000 variables are not

available in this table since only the new algorithm was capable to run them.

4.3. Findings 101

Figure 25 – The memory and processor usages registered through the perfmon tool. From

top to bottom, left to right: results for LSMOP5 with 1000 variables, 5000

variables, 15000 variables, 30000 and 50000 variables. The memory usage is

registered by the continuous lines while the processor usage is registered by

the dashed lines. The y-axis represents the percentage of processor usage,

for the processor usage lines (meaning the value of 60 represents 60% in

processor usage), and the usage in hundreds of megabytes in memory for the

memory usage lines (meaning the value of 60 means 6.0 GB in memory

usage). The vertical, dotted lines represent the division between the algorithm

execution as referred in the Section 4.1 (I: new algorithm; II: gamultiobj; III:

sp-MODE II).

103

5 CONCLUSIONS

The key objective of this research was to present a new strategy targeted to multi-

objective problems with a large amount of variables. This strategy must focus first on

the resource usage with the trade-off of possibly producing solutions that would perform

worse than others generated by other strategies. On this end, the suggested

strategy,

implemented in MATLABⓍc proved it could be easily scalable offering low resource usage

to the point of being capable to run problems with more than 50000 variables in off-the-

shelf computers with less memory available. Moreover, this algorithm was also able to

offer better performance as soon as the problems grew in complexity. From a solution

quality standpoint, the solutions found were mildly inferior than the solutions generated

by the best algorithm. However, it is equally important to note these scenarios happened

only when the problem sizes were way smaller - at the same time, in the scenarios

were the proposed algorithm is intended to run better not only it used few

computational resources, but was the only one to effectively generate new solutions

and their offspring. It is important to note that all of the key objectives originally

expected by this strategy were met successfully within the scope of the problems

used in the test.

Considering these criteria, while the findings analyzed were satisfactory, more

opportunities are now available. For example, while the algorithm worked as intended in

MATLABⓍc , an open possibility is to port the algorithm to the R and Python programming

environments. Furthermore, with the user experience and usability in mind, a visual front-

end can be created for the problem designers. Although the original idea is to ensure the

algorithm can be executed in an off-the-shelf computer, it is also possible to use it in a

dedicated server in order to reduce the time taken for a given run.

Another possibility is to further improve the proposed algorithm or offer an alterna-

tive to the same problem. Other improvements could include, for example, the deployment

of other local search and offspring generation algorithms as either additional, sequential

steps or parallel ones. An alternative, on the other hand, could make use of market data in

order to help the business decisions before the production plan itself - i.e. in determining

the demand with greater accuracy. This implies in problems with even greater magnitude

that, when combined with the production plan itself, can further increase the expected

profits as well as reducing possible issues caused by the production planning (i.e. additional

costs with stock management due to material that could not be sold due to changes in the

market demand).

However, these scenarios represent a harder challenge that, although it is indeed

feasible, might require additional time. Therefore, these possibilities - summed with the

104 Chapter 5. CONCLUSIONS

poultry database fixes from the business lines - can be implemented and tested in

later opportunities.

Finally, this research also enables future steps such as the inclusion of optimizations

to run in servers and/or clusters; the use of additional algorithms to pre-process the multi-

objective problem before executing it; and the use of surrogate models and/or sensitivity

analysis.

105

References

ABDULLAH, L.; ADAWIYAH, C. R. Simple additive weighting methods of multi criteria

decision making and applications: A decade review. International Journal of

Information Processing and Management, Advanced Institutes of Convergence

Information Technology,

v. 5, n. 1, p. 39, 2014. Cited in the page 34.

AHN, C. W. et al. A hybrid multiobjective evolutionary algorithm: Striking a balance

with local search. Mathematical and Computer Modelling, Elsevier, v. 52, n. 11-12, p.

2048–2059, 2010. Cited in the page 48.

AKHTAR, T.; SHOEMAKER, C. A. Multi objective optimization of computationally

expensive multi-modal functions with rbf surrogates and multi-rule selection. Journal of

Global Optimization, Springer, v. 64, n. 1, p. 17–32, 2016. Cited in the page 45.

ALBLIWI, S. et al. Critical failure factors of lean six sigma: a systematic literature review.

International Journal of Quality & Reliability Management, Emerald Group Publishing

Limited, v. 31, n. 9, p. 1012–1030, 2014. Cited in the page 21.

ANTONIO, L. M.; COELLO, C. A. C. Use of cooperative coevolution for solving

large scale multiobjective optimization problems. In: IEEE. 2013 IEEE Congress on

Evolutionary Computation (CEC). Cancun, Mexico: IEEE, 2013. p. 2758–2765.

Cited 2 times in the pages 34 and 47.

BEHZADIAN, M. et al. Promethee: A comprehensive literature review on methodologies

and applications. European Journal of Operational Research, Elsevier, v. 200, n. 1,

p. 198–215, 2010. Cited 2 times in the pages 35 and 36.

BERGH, F. Van den; ENGELBRECHT, A. P. A cooperative approach to particle swarm

optimization. IEEE Transactions on Evolutionary Computation, IEEE, v. 8, n. 3, p.

225–239, 2004. Cited 3 times in the pages 45, 46, and 47.

BEYER, H.-G.; SENDHOFF, B. Robust optimization–a comprehensive survey.

Computer Methods in Applied Mechanics and Engineering, Elsevier, v. 196, n. 33, p.

3190–3218, 2007. Cited in the page 40.

BLASCO, X. et al. A new graphical visualization of n-dimensional pareto front for

decision-making in multiobjective optimization. Information Sciences, Elsevier, v.

178, n. 20, p. 3908–3924, 2008. Cited in the page 40.

BONISSONE, P. P.; SUBBU, R.; LIZZI, J. Multicriteria decision making (mcdm): a

framework for research and applications. IEEE Computational Intelligence

Magazine, IEEE, v. 4, n. 3, p. 48–61, 2009. Cited in the page 33.

BONYADI, M. R. et al. Evolutionary computation for multicomponent problems:

opportunities and future directions. arXiv preprint arXiv:1606.06818, 2016. Cited in the

page 41.

BOUSSAÏD, I.; LEPAGNOT, J.; SIARRY, P. A survey on optimization metaheuristics.

Information Sciences, Elsevier, v. 237, p. 82–117, 2013. Cited in the page 22.

106 References

CAI, L. et al. A clustering-ranking method for many-objective optimization. Applied Soft

Computing, Elsevier, v. 35, p. 681–694, 2015. Cited in the page 43.

CHAUDHURI, K.; DASGUPTA, S. Rates of convergence for nearest neighbor

classification. In: Advances in Neural Information Processing Systems. Montreal,

Canada: NIPS, 2014. p. 3437–3445. Cited in the page 78.

CHENG, R. et al. Test problems for large-scale multiobjective and many-objective

optimization. IEEE Transactions on Cybernetics, IEEE, 2016. Cited 4 times in the

pages 23, 45, 49, and 50.

CHRISTOPHER, M. Logistics & supply chain management. Harlow, United Kingdom:

Pearson UK, 2016. Cited in the page 58.

COELLO, C. A. C. A comprehensive survey of evolutionary-based multiobjective

optimization techniques. Knowledge and Information Systems, Springer, v. 1, n. 3, p.

269–308, 1999. Cited in the page 33.

COELLO, C. A. C. et al. Evolutionary algorithms for solving multi-objective

problems. New York, U.S.A.: Springer New York, 2007. Cited 2 times in the pages 40

and 67.

COELLO, C. C. Evolutionary multi-objective optimization: a historical view of the field.

IEEE Computational Intelligence Magazine, IEEE, U.S.A., v. 1, n. 1, p. 28–36,

2006. Cited in the page 33.

CORNE, D. W.; KNOWLES, J. D. Techniques for highly multiobjective optimisation:

some nondominated points are better than others. In: ACM. Proceedings of the 9th

Annual Conference on Genetic and Evolutionary Computation. London, United

Kingdom: ACM Press, 2007. p. 773–780. Cited in the page 40.

CRAFT, D. et al. Shared data for intensity modulated radiation therapy (imrt)

optimization research: the cort dataset. GigaScience, BioMed Central, v. 3, n. 1, p.

37, 2014. Cited in the page 22.

DARABONT, Ö.; KISS, K. J.; DOMOKOS, J. Performance analysis of remote

desktop virtualization based on hyper-v versus remote desktop services. MACRo 2015,

De Gruyter Open, v. 1, n. 1, p. 125–134, 2015. Cited in the page 86.

DAS, S. et al. Real-parameter evolutionary multimodal optimization - a survey of the

state-of-the-art. Swarm and Evolutionary Computation, Elsevier, v. 1, n. 2, p. 71–88,

2011. Cited in the page 40.

DEB, K. et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE

Transactions on Evolutionary Computation, IEEE, v. 6, n. 2, p. 182–197, 2002.

Cited in the page 48.

DEB, K. et al. Scalable test problems for evolutionary multiobjective optimization.

Springer, p. 105–145, 2005. Cited in the page 50.

DEVORE, J. L. Probability and Statistics for Engineering and the Sciences.

U.S.A.: Cengage learning, 2011. Cited in the page 86.

References 107

FARINA, M.; DEB, K.; AMATO, P. Dynamic multiobjective optimization problems: test

cases, approximations, and applications. IEEE Transactions on Evolutionary

Computation, IEEE, v. 8, n. 5, p. 425–442, 2004. Cited 2 times in the pages 40 and

44.

FLANDERS, F.; GILLESPIE, J. R. Modern livestock & poultry production. U.S.A.:

Cengage Learning, 2015. Cited in the page 59.

FONSECA, C. M.; FLEMING, P. J. et al. Genetic algorithms for multiobjective

optimization: Formulationdiscussion and generalization. In: Proceedings of the 5th

International Conference on Genetic Algorithms. San Francisco, U.S.A.: Morgan

Kaufmann Publishers Inc., 1993. v. 93, n. July, p. 416–423. Cited in the page 31.

GABREL, V.; MURAT, C.; THIELE, A. Recent advances in robust optimization: An

overview. European Journal of Operational Research, Elsevier, v. 235, n. 3, p. 471–

483, 2014. Cited in the page 45.

GOUGH, C.; STEINER, I.; SAUNDERS, W. Monitoring. In: Energy Efficient

Servers. New York, U.S.A.: Springer, 2015. p. 209–268. Cited in the page 86.

HALLAC, D.; LESKOVEC, J.; BOYD, S. Network lasso: Clustering and optimization

in large graphs. In: ACM. Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. Sydney, Australia: ACM

Press, 2015. p.

387–396. Cited in the page 22.

HAO, J. et al. Optimization of key parameters of energy management strategy for hybrid

electric vehicle using direct algorithm. Energies, Multidisciplinary Digital Publishing

Institute, v. 9, n. 12, p. 997, 2016. Cited in the page 26.

HARRIS, I.; MUMFORD, C. L.; NAIM, M. M. A hybrid multi-objective approach to

capacitated facility location with flexible store allocation for green logistics modeling.

Transportation Research Part E: Logistics and Transportation Review, Elsevier, v.

66, p. 1–22, 2014. Cited in the page 48.

HUANG, H.-Z.; GU, Y.-K.; DU, X. An interactive fuzzy multi-objective optimization

method for engineering design. Engineering Applications of Artificial Intelligence,

Elsevier, v. 19, n. 5, p. 451–460, 2006. Cited 3 times in the pages 23, 27, and 36.

HUBAND, S. et al. A review of multiobjective test problems and a scalable test

problem toolkit. IEEE Transactions on Evolutionary Computation, IEEE, v. 10, n. 5, p.

477–506, 2006. Cited in the page 50.

HWANG, C.-L.; LAI, Y.-J.; LIU, T.-Y. A new approach for multiple objective decision

making. Computers & Operations Research, Elsevier, v. 20, n. 8, p. 889–899, 1993.

Cited 2 times in the pages 34 and 36.

ICHROME. Grapheme | Data visualisation. 2016. Available at: <http://ichrome.com/

grapheme>. Accessed on: 19 dez. 2016. Cited in the page 39.

INJA, M. et al. Queued pareto local search for multi-objective optimization. In:

SPRINGER. International Conference on Parallel Problem Solving from Nature.

Ljubljana, Slovenia: Springer, 2014. p. 589–599. Cited in the page 79.

INSELBERG, A. A visual excursion into parallel coordinates. In: Man-Machine

Interactions 3. Gliwice, Poland: Springer, 2014. p. 43–52. Cited in the page 37.

http://ichrome.com/grapheme
http://ichrome.com/grapheme

108 References

JMP. Scatterplot Matrix. 2016. Available at: <http://www.jmp.com/support/help/

Scatterplot_Matrix.shtml>. Accessed on: 20 dez. 2016. Cited in the page 39.

JUANG, C.-F. A hybrid of genetic algorithm and particle swarm optimization for recurrent

network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), Citeseer, v. 34, n. 2, p. 997–1006, 2004. Cited in the page 22.

KEERATIVUTTITUMRONG, N. et al. Multi-objective co-operative co-evolutionary

genetic algorithm. Parallel Problem Solving from Nature - PPSN VII, Springer, p.

288–297, 2002. Cited in the page 47.

KELLEY, C. Chapter 38: Implicit filtering and hidden constraints. In: Advances and

Trends in Optimization with Engineering Applications. Philadelphia, U.S.A.: SIAM,

2017.

p. 507–517. Cited in the page 26.

KELLEY, C. T. Iterative methods for optimization. Philadelphia, U.S.A.: SIAM,

1999. Cited in the page 26.

KELNER, V. et al. A hybrid optimization technique coupling an evolutionary and a local

search algorithm. Journal of Computational and Applied Mathematics, Elsevier, v.

215, n. 2, p. 448–456, 2008. Cited in the page 47.

KLEIN, K.; NEIRA, J. Nelder-mead simplex optimization routine for large-scale problems: A

distributed memory implementation. Computational Economics, Springer, v. 43, n. 4, p.

447–461, 2014. Cited in the page 26.

KURODA, K. et al. A hybrid multi-objective optimization method considering

optimization problems in power distribution systems. Journal of Modern Power

Systems and Clean Energy, Springer, v. 3, n. 1, p. 41–50, 2015. Cited in the page

48.

LEE, J. W.; KIM, S. H. Using analytic network process and goal programming for

interdependent information system project selection. Computers & Operations

Research, Elsevier, v. 27, n. 4, p. 367–382, 2000. Cited in the page 34.

LIAO, T. et al. Ant colony optimization for mixed-variable optimization problems. IEEE

Transactions on Evolutionary Computation, IEEE, v. 18, n. 4, p. 503–518, 2014. Cited

in the page 22.

LIEFOOGHE, A. et al. On dominance-based multiobjective local search: design,

implementation and experimental analysis on scheduling and traveling salesman problems.

Journal of Heuristics, Springer, v. 18, n. 2, p. 317–352, 2012. Cited 2 times in the

pages 76 and 77.

LIN, Q. et al. A novel hybrid multi-objective immune algorithm with adaptive differential

evolution. Computers & Operations Research, Elsevier, v. 62, p. 95–111, 2015. Cited

in the page 48.

LIN, W.; MA, Z.; COOPER, P. Thermal performance evaluation and optimal design of

buildings with integrated air-based photovoltaic thermal collectors and phase change

materials using the hooke-jeeves pattern search method. 2016. Cited in the page 26.

http://www.jmp.com/support/help/Scatterplot_Matrix.shtml
http://www.jmp.com/support/help/Scatterplot_Matrix.shtml

References 109

LOZANO, M.; MOLINA, D.; HERRERA, F. Editorial scalability of evolutionary

algorithms and other metaheuristics for large-scale continuous optimization problems.

Soft Computing - A Fusion of Foundations, Methodologies and Applications, p. 1–3,

2010. Cited in the page 40.

MATHWORKS. Hypervolume approximation - MATLAB Central. 2015.

Available at: <https://www.mathworks.com/matlabcentral/fileexchange/

50517-hypervolume-approximation>. Accessed on: 29 mai. 2018. Cited in the

page 84.

MERTINS, A.; MEI, T.; KALLINGER, M. Room impulse response shortening/reshaping

with infinity-and p-norm optimization. IEEE Transactions on Audio, Speech, and

Language Processing, v. 18, n. 2, p. 249, 2010. Cited in the page 33.

MESSAC, A. Physical programming: effective optimization for computational design.

AIAA journal, v. 34, n. 1, p. 149–158, 1996. Cited in the page 34.

MESSAC, A.; ISMAIL-YAHAYA, A.; MATTSON, C. A. The normalized normal

constraint method for generating the pareto frontier. Structural and Multidisciplinary

Optimization, Springer, v. 25, n. 2, p. 86–98, 2003. Cited in the page 32.

MIETTINEN, K. Nonlinear Multiobjective Optimization, volume 12 of International

Series in Operations Research and Management Science. Dordrecht, Netherlands:

Kluwer Academic Publishers, 1999. Cited in the page 30.

MIETTINEN, K. Survey of methods to visualize alternatives in multiple criteria decision

making problems. OR Spectrum, Springer, v. 36, n. 1, p. 3–37, 2014. Cited 2 times in the

pages 37 and 38.

MONTEIRO, W. R.; REYNOSO-MEZA, G. A multi-criteria based approach for the

production distribution in the poultry industry. In: 24th ABCM International Congress of

Mechanical Engineering. Curitiba, Paraná, Brazil: ABCM, 2017. Cited 4 times in the

pages 58, 60, 64, and 83.

MONTEIRO, W. R.; REYNOSO-MEZA, G. A hybrid optimization strategy with low

resource usage for large scale multi-objective problems. In: 21ST INTERNATIONAL

MULTICONFERENCE OF THE INFORMATION SOCIETY. International

Conference on High-Performance Optimization in Industry. Ljubljana, Slovenia: Jozef

Stefan Institute, 2018. p. 19–22. Cited in the page 67.

NAIDU, K.; MOKHLIS, H.; BAKAR, A. A. Multiobjective optimization using weighted

sum artificial bee colony algorithm for load frequency control. International Journal of

Electrical Power & Energy Systems, Elsevier, v. 55, p. 657–667, 2014. Cited in the

page 31.

ORIGINLAB. Origin: Data Analysis and Graphing Software. 2016. Available at:

<http://www.originlab.com/index.aspx?go=PRODUCTS/Origin>. Accessed on: 12 dez.

2016. Cited in the page 40.

PAULA, M. S. et al. Modelling and multi-objective optimisation for simulation of

cyanobacterial metabolism. 2017. Cited in the page 29.

https://www.mathworks.com/matlabcentral/fileexchange/50517-hypervolume-approximation
https://www.mathworks.com/matlabcentral/fileexchange/50517-hypervolume-approximation

110 References

PLOTLY. Plotly | Make charts and dashboards online. 2016. Available at:

<https://plot.ly>. Accessed on: 16 dez. 2016. Cited in the page 40.

POTTER, M. A.; JONG, K. A. D. A cooperative coevolutionary approach to function

optimization. In: SPRINGER. International Conference on Parallel Problem Solving

from Nature. Jerusalem, Israel: Springer, 1994. p. 249–257. Cited in the page 45.

QU, B. et al. Novel benchmark functions for continuous multimodal optimization with

comparative results. Swarm and Evolutionary Computation, Elsevier, v. 26, p. 23–

34, 2016. Cited in the page 44.

RAO, S. S. Engineering optimization: theory and practice. Hoboken, U.S.A.: John

Wiley & Sons, 2009. Cited 2 times in the pages 25 and 26.

REYNOSO-MEZA, G. Controller Tuning by Means of Evolutionary Multiobjective

Optimization: A holistic multiobjective optimization design procedure. Phd Thesis

(PhD Thesis) — Universitat Politècnica de València, 2014. Cited 5 times in the pages 9,

29, 30,

40, and 41.

REYNOSO-MEZA, G. et al. Controller tuning using evolutionary multi-objective

optimisation: current trends and applications. Control Engineering Practice, Elsevier,

v. 28, p. 58–73, 2014. Cited in the page 29.

REYNOSO-MEZA, G. et al. Algoritmos evolutivos y su empleo en el ajuste de

controladores del tipo pid: Estado actual y perspectivas. Revista Iberoamericana de

Automática e Informática Industrial RIAI, Elsevier, v. 10, n. 3, p. 251–268, 2013.

Cited in the page 36.

ROY, B. The outranking approach and the foundations of electre methods. In:

Readings in Multiple Criteria Decision Aid. Lisbon, Portugal: Springer, 1990. p. 155–

183. Cited in the page 34.

SANTANA-QUINTERO, L. V.; MONTANO, A. A.; COELLO, C. A. C. A review of

techniques for handling expensive functions in evolutionary multi-objective optimization.

In: Computational Intelligence in Expensive Optimization Problems. Berlin, Germany:

Springer, 2010. p. 29–59. Cited in the page 40.

SIGMAXL. SigmaXL | Create a Scatter Plot Matrix in Excel using SigmaXL. 2016.

Available at: <http://www.sigmaxl.com/ScatterPlotMatrix.shtml>. Accessed on: 15 dez.

2016. Cited in the page 39.

SINDHYA, K.; DEB, K.; MIETTINEN, K. Improving convergence of evolutionary

multi-objective optimization with local search: a concurrent-hybrid algorithm. Natural

Computing, Springer, v. 10, n. 4, p. 1407–1430, 2011. Cited in the page 48.

SOFTWARE, S. Sliver Data Visualization Software. 2016. Available at: <http:

//www.sliversoftware.com/index.htm>. Accessed on: 10 dez. 2016. Cited in the page 39.

STADLER, W. Multicriteria Optimization in Engineering and in the Sciences. New York,

U.S.A.: Springer Science & Business Media, 2013. Cited in the page 21.

TORCZON, V. On the convergence of pattern search algorithms. SIAM Journal on

Optimization, SIAM, v. 7, n. 1, p. 1–25, 1997. Cited in the page 26.

https://plot.ly/
http://www.sigmaxl.com/ScatterPlotMatrix.shtml
http://www.sliversoftware.com/index.htm
http://www.sliversoftware.com/index.htm

References 111

VALIRIS, G.; CHYTAS, P.; GLYKAS, M. Making decisions using the balanced

scorecard and the simple multi-attribute rating technique. Performance Measurement

and Metrics, Emerald Group Publishing Limited, v. 6, n. 3, p. 159–171, 2005. Cited in

the page 34.

VELDHUIZEN, D. A. V.; LAMONT, G. B. Evolutionary computation and convergence

to a pareto front. In: Late Breaking Papers at the Genetic Programming 1998

Conference. Madison, U.S.A.: Omni Press, 1998. p. 221–228. Cited in the page 29.

WARD, M. O.; GRINSTEIN, G.; KEIM, D. Interactive data visualization: foundations,

techniques, and applications. U.S.A.: AK Peters/CRC Press, 2015. Cited in the page

37.

XDAT. XDAT - A free parallel coordinates software tool. 2016. Available at:

<http://www.xdat.org/>. Accessed on: 25 dez. 2016. Cited in the page 39.

YANG, Z.; TANG, K.; YAO, X. Large scale evolutionary optimization using

cooperative coevolution. Information Sciences, Elsevier, v. 178, n. 15, p. 2985–2999,

2008. Cited 3

times in the pages 45, 46, and 47.

ZHOU, A. et al. Multiobjective evolutionary algorithms: A survey of the state of the art.

Swarm and Evolutionary Computation, Elsevier, v. 1, n. 1, p. 32–49, 2011. Cited in

the page 41.

http://www.xdat.org/

