
2020 

 

PONTIFICAL CATHOLIC UNIVERSITY OF PARANÁ 

POLYTECHNIC SCHOOL 

GRADUATION PROGRAM IN PRODUCTION AND SYSTEMS ENGINEERING 

 
 

 
FLÁVIO PIECHNICKI 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
A SMART RCM FRAMEWORK TO SUPPORT DECISION-MAKING PROCESSES 

IN INDUSTRIAL MAINTENANCE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CURITIBA 



1  

FLÁVIO PIECHNICKI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A SMART RCM FRAMEWORK TO SUPPORT DECISION-MAKING PROCESSES 

IN INDUSTRIAL MAINTENANCE 

 
PhD thesis presented to the Graduate 
Program in Production and Systems 
Engineering, in the area of concentration: 
Modeling, Control and Automation of 
Systems, of the Polytechnic School, of the 
Pontifical Catholic University of Paraná, as 
a partial requirement to obtain a PhD 
degree in Production Engineering and 
Systems. 

 
Supervisor: Prof. Dr. Eduardo de Freitas 
Rocha Loures 
Co-supervisor: Prof. Dr. Eduardo Alves 
Portela dos Santos 

 
 
 
 
 

 
CURITIBA 

2020 



2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Dados da Catalogação na Publicação 

Pontifícia Universidade Católica do Paraná 

Sistema Integrado de Bibliotecas – SIBI/PUCPR 
 

  
Piechnicki, Flávio 

P613s A Smart RCM framework to support decision-making processes in industrial 

2020 maintenance / Flávio Piechnicki; supervisor: Eduardo de Freitas Rocha Loures; 
 co-supervisor: Eduardo Alves Portela dos Santos. – 2020. 

 142 f. : il. ; 30 cm 

 
Tese (doutorado) – Pontifícia Universidade Católica do Paraná, 

 Curitiba, 2020 

 Bibliografia: f.131-142 

 
1. Engenharia Produção. 2. Confiabilidade (Engenharia). 3. Engenharia de 

 sistemas - Indústrias. 4. Padrões de desempenho. 5. Processamento de dados 

 I. Loures, Eduardo de Freitas Rocha. II. Santos, Eduardo Alves Portela dos. 

 III. Pontifícia Universidade Católica do Paraná. Pós-Graduação em Engenharia 

 de Produção e Sistemas. IV. Título. 

 
CDD 20. ed. – 670 

Biblioteca Central 
Pamela Travassos de Freitas – CRB 9/1960 



3  

FLÁVIO PIECHNICKI 

 
 

A SMART RCM FRAMEWORK TO SUPPORT DECISION-MAKING PROCESSES 

IN INDUSTRIAL MAINTENANCE 

 
PhD thesis presented to the Graduate Program in Production and Systems 
Engineering, Area of concentration: Modeling, control and automation of systems, of 
the Polytechnic School, of the Pontifical Catholic University of Paraná, as a partial 
requirement to obtain a PhD degree in Production Engineering and Systems. 

 
 

EXAMINING COMMITTEE 
 
 

 

Professor Dr. Eduardo de Freitas Rocha Loures 

Pontifical Catholic University of Paraná 

 
 
 

Professor Dr. Eduardo Alves Portela dos Santos 

Pontifical Catholic University of Paraná 

 
 
 

Professor Dr. Max Mauro Dias Santos 

Federal Technological University of Paraná – Campus Ponta Grossa 
 
 

 

Professor Dr. Emerson Rigoni 

Federal Technological University of Paraná – Campus Curitiba 
 
 

 

Professor Dr. Fernando Deschamps 

Pontifical Catholic University of Paraná 

 
 

Curitiba, 05 de março de 2020. 



4  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This work is dedicated to God, omnipotent creator and inspirer; 

to my family, especially my companion and patient wife, Evelyn, 

to my mother and in memory of my father, examples of strength and faith, 

to Eduardo's professors, for productive experiences and valuable teachings. 



5  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Wisdom must be intuitive reason 

combined with scientific knowledge. 

(ARISTOTLE, Nicomacheian Ethics, VI.7) 



6  

ABSTRACT 

 
 

Amongst the contemporary maintenance methodologies used to increase the reliability 
of industrial systems is the Reliability Centered Maintenance (RCM), which is 
employed to ensure that any components of an asset or operating system maintain 
their functions with efficiency, performance, safety, quality and economy, without 
impacting on the environment. However, with the improvement in technology and the 
consequent increase in quantity and quality of information available in industrial 
systems, it is necessary to customize and optimize RCM program. Thus, it is important 
to review the traditional methodology, as its implementation stages have many 
information-dependent decision-making processes, which are predominantly 
qualitative and used without appropriate criteria, making it difficult to manage. The 
proper collection and treatment of qualitative information and the denser insertion of 
quantitative information from the PIS (Production Information System) and MIS 
(Maintenance Information System) support the RCM, improving the quality of decisions 
and enabling program dynamization. This transformation from a predominantly static 
to dynamic data structure makes it possible to make maintenance more predictive and 
operation more responsive to deviations in the behavior of plant assets. The dense 
and diversified data sources, included related to Industry 4.0 technology enablers, help 
decision support mechanisms to make the processes more responsive and smart, 
allowing to choose the most appropriate decisions. In this context, the present research 
proposes a Smart-RCM framework that fusion qualitative and quantitative information, 
used to analyze and improve decisions in a customized model deployment. The choice 
of the best indicators to be used in the implementation and evaluation of the RCM, as 
well as the formalization of the information for its better use in the decision-making are 
important to guarantee the success of the program. It is proposed to create the 
Decision-making Database (DMD), whose purpose is to store and make available 
dynamic information to support decision-making in the RCM program phases. By 
identifying trends and applying Data and Process Mining techniques, hidden patterns 
and relationships can be discovered. MCDM (Multi Criteria Decision-making) methods 
support the decisions in the RCM implementation. It is proposed a Smart-RCM 
approach, which provides a model for the collection and use of indicators, used as 
inputs in MCDMs, prioritizing and ranking the Maintenance Significant Items (MSIs) 
and selecting the appropriate maintenance strategy to be implemented. The Smart- 
RCM approach can provide visibility and agility in maintenance processes. Even 
companies that work with calendar-oriented maintenance planning can gain an 
advantage in business agility, capacity assurance, and more informed decision making 
by analyzing the available indicator data. Whether making a business case for new 
machines, changes to current maintenance plans, or modifying a contract for a major 
equipment or asset, organizations need the physical data available to support these 
decisions and a way to present them to superior level decision makers. 

 

Key-words: Reliability Centered Maintenance, Decision-making, Data analysis, 
Industry 4.0, Smart Maintenance. 
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1 INTRODUCTION 

 

 
The current industrial systems need to ensure the availability and reliability of 

the equipment, in order to achieve the predefined goals and parameters in productive 

systems. In many manufacturing environments, the condition of the equipment or 

process has a significant impact on the quantity and quality of units produced [1]. In 

this context, the maintenance function aims to increase the equipment life, or at least 

the average time for the next failure, whose repair can be costly. Furthermore, it is 

expected that the maintenance policy be effective and reduce the frequency of job 

interruptions and your unwanted effects for the process as a whole. 

Researchers around the world are striving to develop and apply new techniques 

and methodologies for the improvement of maintenance processes. The goal is to use 

them for optimal maintenance policies, impacting positively on MPI's (Maintenance 

Performance Indicators), increasing quality and performance and reducing costs. In 

this scenario, methods like Decision-making [2], Statistics [3], Failure analysis [4], 

Fuzzy logic [5], Modeling [6], among others are employed, in the most of the time, in 

isolation, addressing the use of tacit or explicit information, with qualitative or 

quantitative approaches. Some efforts are made to integrate information from 

maintenance collaboratively, exploring frameworks under aspects of maintenance 

function development [7,8]. 

Industrial systems have different levels of maturity, under human, technological 

and organizational aspects, requiring customized database models that can provide 

the maximum information available and generate an appropriate knowledge base. 

Companies must evolve from a classical data management approach to using 

information and knowledge as critical business assets. Quality practices and data 

management are still essential, but these practices must be improved to meet the 

demands of the environment and business, with an appropriate cost-benefit ratio. 

In this context emerges the RCM methodology that provides a framework 

capable of reducing maintenance activities and costs related to them as far as possible 

without affecting the performance of the plant, product quality, safety or environmental 

integrity [9]. However, for the program success, aspects should be observed of each 

RCM approach and the specific variables of the industrial system selected. This 

perception becomes difficult for the diversity of technologies involved in MMIS 
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(Maintenance Management Information Systems), EAM (Enterprise Asset 

Management), existence or not of Industry 4.0 aspects, level of automation systems, 

organizational characteristics and the maintenance structure as a whole. 

The organization should consider the monitoring, measuring, analyzing and 

evaluating needed to drive and support its decision making on improvement actions. 

When deciding what to measure, how to measure, what to analyze, etc., it is important 

for the organization to understand what type of behavior and actions it wants to achieve 

from the asset management objectives before implementing them. The asset 

management objectives should be aligned to the organizational objectives and should 

promote collaboration with stakeholders. 

According to the ISO 50002 standard [10] the asset management objectives 

should be specific, measurable, achievable, realistic and time-bound (i.e. “SMART” 

objectives). They can be both quantitative measurements (e.g. mean time between 

failure) and qualitative measurements (e.g. customer satisfaction). 

The smart concept has been diffused in the literature under influence of the 

advances in context of Industry 4.0. Smart refers to systems that advance in 

communication and information technology to increase the degree of automation and 

digitization of production, manufacturing and industrial processes. The ultimate goal is 

to manage the entire value chain process, improving efficiency in the production 

process and obtaining superior products and services. 

Thus, by linking maintenance management to the information context in the 

industry scenario 4.0, the need for adjustments in the traditional RCM methodology 

models is noticeable. In their implementation models, the decision-making processes 

have gaps regarding the quality and availability of information used. Available data 

needs to be better treated and structured to increase information reliability, increasing 

the maturity of the company's maintenance function and contributing to various 

operational and financial aspects. 

The knowledge of the specialists combined with the use of process information 

promotes the joining of qualitative and quantitative metrics, reaching the entire scope 

of the company. The use of tools and methods to better structure this information 

assists in the success of RCM program, supporting the different decisions to be taken 

at each stage of the development of the methodology. In this direction, this research 

proposes a customized framework for the provision of qualitative and quantitative data 
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applicable in a Smart RCM. Figure 1 presents the research scope and the dimensions 

involved. 

 
 

Figure 1. General research scope 

 
In this information context, the CMMS (Computerized Maintenance 

Management Systems) manage the life cycle of the maintenance work-orders in 

accordance with selected maintenance policy (it contains knowledge about 

maintenance actions, past and planned, degradation models, limit threshold) [11]. 

However, measurement metrics are not adapted to real needs, which have a strong 

human factor; nor is there a roadmap of the amount of data to be collected, their 

processing or how they are used in decision-making [12]. 

Thus, the goal of this study is to create a conceptual framework, to address and 

process qualitative and quantitative information to a single database under 

measurements aspects, in order to support the decision dimensions of Smart RCM. 

This base should be explored in search of consistent patterns, detecting systematic 

relationships between variables through the application of process mining techniques. 

With the identification of trends in the maintenance actions, it is possible to discover 

hidden patterns and relationships that will support in the maintenance decisions 

making, making it the most productive companies, increasing quality and reducing 

costs. 
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The rule of maintenance in modern manufacturing systems is becoming more 

important with companies that adopt maintenance as an element of profit for business 

[13]. Systems are operating more efficiently, effectively and economically to sustain 

their long-term survival [14]. Within this context, RCM seeks to direct maintenance 

efforts to components and systems where reliability is paramount. The main objective 

is to guarantee the performance, security and preservation of the environment at a 

better cost-benefit level [14,15]. 

Qualitative information from process and maintenance sources based on the 

experience of specialists is not always treated in a way that is reliable for the 

application of RCM. The dynamism of industrial facilities, under human, technological 

and organizational issues, makes it difficult to maintain RCM programs. Even with a 

well-established audit plan, the information that is used is being updated all the time, 

especially the quantitative ones, that come from the process itself. Issues involving 

operational, environmental and safety aspects often undergo unexpected changes, 

changing their indicators dynamically. 

 
1.1 PROBLEM STATEMENT 

 
 

In the industry value chain, maintenance plays a key role in maintaining 

productive availability and enabling the use of assets throughout their life cycle at the 

lowest operating cost. In this context, this research brings new concepts to the RCM 

methodology, culminating in a modern approach conceptualized by "Smart-RCM". The 

originality and complexity of the research are characterized in several aspects, listed 

below. 

• The proposed Smart-RCM model presents solutions that can be modeled with 

the company's vision through top-down approach (strategic, tactical and 

operational). 

• The mapping of indicators used in RCM approaches in the literature gives the 

system a strong initial basis for applying the methodology. However, the system 

demonstrates flexibility, allowing the insertion of any qualitative or quantitative 

indicator, even those specific to the business process in question, ensuring the 

use of the most important metrics to achieve maintenance goals, focusing on 

reliability and availability. 
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• To maintain aligned and structured equipment and processes for Industry 4.0, 

Smart-RCM develops a consistent database that portrays the reality of the 

installed base in a structured, standardized manner and with a maintenance 

strategy appropriate to a Maintenance Management Program. 

• The collection and structuring of qualitative and quantitative data provides 

robustness to information from maintenance information systems and 

processes, and from the experience of experts and analysts involved in 

maintenance, operation, safety and environmental processes, classic aspects 

of RCM approaches. These aspects support the creation of a database, to feed 

the Decision-Making Database (DMD), which will store and provide the data to 

RCM program. 

• The focus is on the proposed phases for the implementation and maintenance 

of the program, with the strategic selection of the systems to be analyzed, 

complex analysis of the criticality of the most significant maintenance items, 

definition or review of the maintenance strategies with contemporary approach, 

highlighting the 4th. maintenance, enabling greater transparency in the leveling 

and utilization of its resources and asset management. 

• The combination of classic RCM standards and publications with contemporary 

approaches, such as ISO 55000 (Asset Management) [10], supports the need 

to update the methodology, one of the shortcomings of the new generation of 

maintenance. 

• The proposed methodology has the aid of consolidated analytical tools, which 

support the standardized structuring of the systems information and consumes 

it through multicriteria decision making methods. 

• Management tools support the structuring of decision-making models, 

optimizing the way decision structures are built, improving the vision and 

purpose of metrics for company goals, highlighting strategic, tactical and 

operational aspects. 

• Process Mining emerges as a powerful tool for discovering behaviors in 

systems, machines or equipment, helping to extract information and generate 

knowledge. 

• Decision making is present in the daily routine of maintenance, which deals with 

complex and competitive environments. Thus, the need for quick and accurate 
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decisions becomes even greater. Within the scope of Smart-RCM multicriteria 

decision methods are well explored and used for a better structuring of problems 

involving decision making, based on a series of data, either quantitative or 

qualitative. 

 
Maintaining Maintenance Management to better control costs and minimize 

unplanned downtime is a challenge for companies today, and the Smart-RCM 

methodology will support implementation at all stages, from selecting the most critical 

systems to the consolidation of an updated and adequate maintenance policy, in a 

structured and dynamic manner. 

 
1.2 RESEARCH OBJECTIVES 

 
 

1.2.1 General objective 

 
 

Design, implementation and assessment of a Smart RCM framework, focusing 

on dynamic decision making, fusioning qualitative and quantitative data in advanced 

models of MCDMs, to increase the reliability of information and responses in the 

implantation and evaluation phases of methodology. 

 
1.2.2 Specific objectives 

 
 

• Conduct a general literature review on RCM approaches and criticality and fault 

analysis, as well as researches about multi-criteria decision-making methods, 

process mining and information in RCM and Industry 4.0 context; 

• Map and feature qualitative and quantitative indicators currently used in RCM 

approaches; 

• Develop a dynamic framework for RCM methodology with focus on reconciling 

and treatment of knowledge and use in multi-criteria decision-making 

processes; 

• Deploy Smart RCM in a simulated process, performing the steps of the 

methodology to evaluate the proposed methods and tools. 
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• Analyze the results under aspects of optimization in decision making and 

improvements in maintenance strategies in the Smart RCM scenario. 

 
1.3 RESEARCH DESIGN 

 
 

In order to better present the contributions and structure of this research under 

methodological aspects, DSRM (Design Science Research Methodology) is used. In 

this context, [16] present a general methodological guideline for effective research on 

DSRM, that incorporates principles, practices, and procedures required to carry out 

such research. It is of importance in a discipline oriented to the creation of successful 

artifacts (may include constructs, models, methods, and instantiations), as a solution 

to a research problem through complex research. It includes six steps: (i) problem 

identification and motivation, (ii) definition of the objectives for a solution, (iii) design 

and development, (iv) demonstration, (v) evaluation, and (vi) communication. 

Figure 2 shows the domain of the DSR methodology for this thesis. It also relates the 

elements to the chapters of this document, which are described below. 

Process iteration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Research methodology instantiated to this thesis. Adapted from [16]. 

 

 
Chapter 1 already presented gives an introduction to the research, with an 

overview of the project, including methodological aspects. Topics involving the RCM 
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making processes whose inputs are information and knowledge presented and 
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discussed initially in Chapter 4. This presents a mapping of indicators used in RCM 

processes through a systematic review, output) is the basis of the Smart RCM data 

fusion model presented in Chapter 5. Chapter 6 presents an application of Smart RCM 

in a simulated process, discussing preliminary results. Chapter 7 shows the initial 

conclusions of the project, emphasizing the future work of the research. Figure 2 

presents the structure of the document, with all the topics involved in this research 

project. 

 
1.4 RESEARCH METHODOLOGY 

 
 

The present work comprises 5 steps that begin with the design of the project 

until its validation through the application of a practical experimentation. Figure 3 

presents the steps through the IDEF0 (Integration Definition for Function Modeling), 

which is a technique used to model decisions, actions and activities of an organization. 

Using this diagram, it is easy to read the methodology and the processes that involve 

the present research project, helping the understanding among those involved in its 

development. The 5 steps (A0-A4) are explained below. 
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Figure 3. IDEF0 diagram from research methodology 

A0 - Research conception 

Through the initial analysis of Problem Space and Solution Space, observations 

are made in research already presented around RCM and the tools and methods used 

are studied. The classic RCM approaches serve as a basis for the conceptual 

implementation model. 

Figure 4. Phase A0 from research methodology 

 
The need to conciliate qualitative and quantitative information is observed, 

generating the possibility of the proposal of a smart model, focusing on the decision 

making. The initial research phase generates an overview of the scope of the research, 

highlighting gaps among the elements involved, generating parameters and references 

for the construction of the project. 

 
A1 – Conceptual Smart-RCM Design 

In this phase a review is performed, under the themes that involve the project. 

Publications involving RCM and decision making are analyzed, with formats of 

scientific research projects, standards, norms and technical articles. Also, the 

requirements for the implementation of RCM are raised, crossing the information with 

the possibilities of using MCDMs tools. 
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A2 

Figure 5. Phase A1 from research methodology 

The outputs of this phase are: (i) a flowchart with the conceptual model for 

implementation and evaluation of the RCM and (ii) conceptual parameters for the 

general Smart-RCM framework and for future application in a simulated experiment. 

 
A2 – Development of Decision Making Database (DMD) 

This phase creates the basis of indicators used in RCM to support decision 

making processes. Thus, systematic review is proposed to verify the "state of the art" 

of RCM, focusing on information of indicators / metrics in the process of implementation 

of the methodology. 

The database is available in the DMD (Decision-making Database), with the 

fusion of qualitative and quantitative indicators and periodic updates. With exits are 

presented the classified and characterized indicators, to select the best opportunity of 

its use in the decision processes. 
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Figure 6. Phase A2 from research methodology 

 

A3 – Smart RCM Framework development 

An adapted, customized and simplified model is presented for the 

methodological structuring of the proposed Smart RCM model. The steps are 

operationalized in the framework through the MCDM models. This phase receives the 

information made available in the DMD as input for decision-making. 
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Figure 7. Phase A3 from research methodology 

 

The inputs of this phase consist of conceptual parameters, as well as a 

customized RCM application model and a range of indicators extracted from 

contemporary RCM applied research. Furthermore, the outputs of phase A2 are used 

as inputs in the decision models of the RCM stages. Utilizing process information, 

company goals and expert experience, decision models are executed, supported by 

process mining (quantitative data), MCDM methods and specific software. 

The dynamics of the systems involved characterize Smart RCM terminology for 

the present project. As a result of this phase the framework has been finalized, but with 

feedback after specific audit analysis. 

 
A4 – Simulated Smart-RCM experiment 

With the Smart RCM ready to be deployed, a practical experiment is proposed 

for validation of further discussion of evaluations. Using the information available on 

DMD as well as expert consultation, the model is implemented in a simulated 

environment using Process Mining techniques. 
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This phase will allow the validation of the proposed model, as well as a revision 

of the conceptual data collected in the previous phases of the research, allowing the 

continuous improvement of the program. 

In order to support the design and development of this research, the following 

topics (2-4) present a literature review of the themes involved, according to the needs 

of the proposed Smart RCM model. 
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2 RELIABILITY CENTERED MAINTENANCE 

 

 
Contemporary approaches involving reliability concepts have been widely used 

in business maintenance with the aim of increasing equipment availability. The 

intention is to keep the plant as available as possible (uptime). For this, reliability 

management is used to eliminate the effects of system failures caused by equipment 

problems and often by human factors. In its most common definition, reliability is the 

probability that a component will not fail to perform its function within the limits specified 

by the production system [15, 17-19]. 

In this scenario is Reliability Centered Maintenance (RCM) which consists of a 

methodology capable of determining the most effective maintenance strategy, 

reducing maintenance activities and related costs without affecting performance plan, 

product quality, safety or environmental integrity [9]. Initially oriented to the 

aeronautical industry, its objective is to direct maintenance efforts to components and 

systems where reliability is paramount, ensuring performance, safety and 

environmental preservation at a better cost-benefit ratio [14,15]. 

In the historical context, the aeronautics industry was the forerunner in reliability 

research and the effects of maintenance failures in order to meet the requirements of 

the FAA (Federal Aviation Agency), which was concerned about the high failure rate 

of aircraft engines of the time. In the late 1960s, the Air Transport Association of 

America (ATA) created the Maintenance Steering Group (MSG), a task force for 

reviewing the application of existing maintenance methods and techniques for aircraft 

maintenance [20]. 

In the early 1970s, Nowlan and Heap [21], reporting to ATA, published the MSG- 

1 and MSG-2 standards presenting a new form of approach to aircraft maintenance, 

focused on the impact of unreliable operation and safety, a methodology that became 

known with Reliability-Centered Maintenance [22]. 

The 1980 MSG-3 included the previous standards, and a joint overview of the 

entire aircraft industry process, being adopted as a mandatory maintenance 

methodology for new aircraft by the US Department of Defense - DoD, which is 

currently used after its last revision in 2002 [15]. 
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The industrial needs of the 1980s led to the application of RCM in other sectors 

of industry, especially mining and manufacturing [20]. This spread of RCM has led to 

the emergence of slightly different versions of MSG-3, such as RCM II proposed by 

Moubray [15], the Abbreviated Classical RCM, and Smith-Hinchcliffe's [23] 

Experience-Centered Maintenance (ECM). 

To meet the implementation of these RCM steps in a contemporary approach 

and in an industrial environment, the criteria that an RCM process must meet is 

basically defined by standards and technical publications, such as: (i) IEC 60300-3-11 

[24]; (ii) SAE-JA1011 [25]; (iii) SAE-JA1012 [19,26]; Moubray (RCM II) [15] among 

others. The evolution of RCM patterns is shown in Figure 9 [27]. 
 

 

Figure 9: RCM's timeline [27] 

 
[28] states that the outcome of an RCM program is related to the objectives of 

its implementation, the resources (time, physical and technical work) applied and the 

organization's commitment during its implementation. [20] justifies that, in order to 

achieve a maximum RCM result, there must be mutual support among those 

responsible for system design, operation and maintenance, and once the program is 

implemented, it must be updated periodically to include new information and possible 

changes. RCM also adds intangible benefits, which are often overlooked as having a 

negligible financial impact [20]. 
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The literature presents different versions for the application of RCM. These 

versions may vary in the number of steps, deployment order, and tools used, driven by 

the need for the process or the author / analyst experience. However, in essence, they 

have a similar approach and goals. Briefly, the RCM flow can be summarized in three 

steps (Figure 10): 
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Figure 10. RCM development flow 

 

The first step consists of an initial planning. The methodology is honorable, 

being necessary to delimit its application. This step results in the selection of the 

system to be analyzed, its hierarchical structure of equipment and the level of analysis 

to be performed in relation to items (machine, equipment and component). Items are 

analyzed in the next step by applying failure analysis methods. In this analysis, 

information is collected on the basis of the items, their failures and the effects of the 

failures and their criticism in operational, safety and environmental aspects. As a result, 

we obtain a criticality rating of the items, which will be reviewed later in the third step, 

to select the appropriate maintenance plan. The more critical the item, the more 

specialized its maintenance policy should be. The cycle is closed with results analysis 

and program feedback if necessary. 

Research on the use of RCM in industrial systems is commonly found in the 

literature since its inception, with the aim of increasing system reliability. Over time, a 

number of advanced techniques have been added to the program standards, creating 

RCM extensions to suit your program requirements. Increasing the quantity and quality 
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of asset information has driven this advance in research, which has helped decision- 

making processes. 

Asset reliability is determined from the RCM design phase. Deficiencies can be 

detected in the design, installation, commissioning and operation phases due to human 

errors in decision making, leading to consequences. Skills and behavioral factors can 

affect equipment performance and the production process [29]. Asset reliability 

depends on the reliability of people, production processes and equipment. Qualitative 

information is incorporated into all maintenance management. Quantitative information 

is generated largely by systems and processes. 

Recent research [30] conducts a SWOT analysis (Strengths, Weaknesses, 

Opportunities, and Threats) of RCM structures between 1978 and 2014. Performed by 

professionals or consultants, RCM models have often been used for analysis methods. 

of reliability with a qualitative nature. The research points out the main activities of the 

RCM, and its elements are identified, presented and analyzed. The results show 

difficulties in the RCM development due to the quantity and quality of the maintenance 

information. Qualitative tools such as FMEA (Failure Modes and Effects Analysis), FFA 

(Functional Failure Analysis), decision diagrams, among others, are widely used in 

RCM implementation. These studies bring together the human factor, which makes it 

difficult to generate a solid and reliable knowledge base for asset maintenance to be 

used in decision making. Quantitative approaches are related, such as analysis of the 

relationship between system reliability and maintenance effort, logical and structured 

reliability analysis, failure rate modeling, economic analysis of maintenance tasks, and 

the use of standard components for reliability analysis. 

[23] point out the following considerations about the RCM methodology: 

(i) the RCM process is not perfect, and may require periodic adjustments to 

baseline results; 

(ii) the system or plant may undergo changes, such as design changes, equipment 

inclusion, technical or operational changes, which infer from the result of the 

analysis; 

(iii) the knowledge acquired during the analysis and implementation process may 

be useful in revalidating the results. 
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2.1 FAILURE ANALYSIS 

 
 

The prevention or elimination of failures is one of the basic objectives of 

maintenance. Component failures have the potential to overthrow RCMs first goal of 

"preserving system function" [23]. 

Once the system functions are defined, this second stage of the deployment 

tries to determine how the system can stop performing this function, determining 

actions to prevent, reduce or detect the beginning of the function loss. 

[23] highlight two key points at this stage of the process: (i) the focus of the 

analysis is on loss of function and not loss of equipment and (ii) failures are more than 

just a single and simple statement of loss of a function, since most functions have two 

or more loss conditions, where not all are equally important. 

 
2.1.1 Failure Classification 

 
 

Failure can be defined as the interruption or alteration in the capacity of an item 

to perform its required or expected function, classifying it on aspects such as: origin, 

extension, speed, manifestation, criticality and age [15]. 

In RCM, faults are classified by their effect on the function of the system, being 

functional or potential. 

Functional failure the inability of any physical item to perform a function with a 

pattern of performance desired by the user, being differentiated into [17]: 

• Obvious failures: when detected during normal team work; 

• Hidden failures: a failure not detected by the team during normal work; 

• Multiple failures: When a hidden fault combined with a second fault becomes 

evident. 

Potential failure presents with an identifiable and measurable condition of the 

imminence of a functional failure or its process of occurrence [15]. This concept is 

possible because many failures do not occur suddenly, but evolve over a period of 

time. 

The onset of a potential failure is established when the system begins to show 

a change in the performance of its function, and may evolve into a functional failure. 

Figure 11 shows this relationship [31]. 
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Figure 11. P-F curve [31] 

 

The interval between the initiation of the potential failure and the occurrence of 

functional failure is determined "P-F range". The maintenance actions under condition 

must occur within this period, however their interval must be smaller than the P-F 

interval, detecting the potential failure before its development in functional failure [31]. 

 
2.1.2 Failure Modes 

 
 

The standard SAE -J1739 [32] define failure mode as "the way a fault occurs in 

an item" and "the way a fault is observed in a subsystem function or component". While 

failure is associated with the system function, the failure mode is associated with the 

event that causes the transition to the failure state. 

Identifying all modes of system failure allows predicting what happens when it 

occurs, assessing its impact and deciding what can be done to anticipate, prevent, 

detect, correct or even eliminate it [14]. 

 
2.1.3 Causes of failures 

 
 

Generally, a failure mode can have different causes, characteristic of its 

manufacturing technology and its mode of operation, capable of generating own and 

specific failure modes. The cause of a failure may be associated with [33]: (i) project 

failures; (ii) defects in material; (iii) component manufacturing process; (iv) installation 

failures; (v) unforeseen operating conditions; and (vi) maintenance or operational 

failures. 
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All causes must be identified, including those of human origin, and that in the 

identification process, individuals with a total understanding of the equipment, 

especially from the point of view of maintenance and projects, should be involved, 

defining actions to avoid failures or eliminate them through their causes [33]. 

Due to the different phenomena that can induce a failure, the failure modes can 

be classified by their impact on the level of performance of the function performed [14]: 

(i) capacity below the desired performance; (ii) desired performance above initial 

capacity; and (iii) failed to perform from the outset. 

 
2.2 FMECA – FAILURE MODE, EFFECTS AND CRITICALITY ANALYSIS 

 
 

The documentation and analysis of the failures in the RCM methodology can be 

performed by the tools: (i) Failure Mode and Effects Analysis (FMEA); and (ii) Failure 

Mode, Effects and Criticality Analysis [33]. They consist of a sequence of logical steps, 

starting with the analysis of lower level elements (subsystems or components), 

identifying the potential failure modes and failure mechanisms, tracing the effect of this 

failure in the various levels of the system. 

 
2.2.1 FMEA Analysis 

 
 

FMEA as a systematic approach focusing on the prevention of system, design 

and / or process failures through an approach of identification, frequency and impact 

of failure modes on them [34]. The FMEA procedure is a sequence of logical steps, 

starting with the analysis of lower level elements (subsystems or components), 

identifying potential failure modes and failure mechanisms, tracing the effect of this 

failure at the various levels of the system [35]. 

The analysis of the processes can be performed in a bottom-up, when initiated 

by identifying the failure modes at the lowest level of the system, tracing their effects 

at higher levels, until reaching the highest level. Another way to perform the analysis 

is called top-down with an analysis of the functional and potential failures that affect 

the final system, identifying the causes of these failures at the lower levels of the 

system [36]. 
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The analysis of the FMEA can be classified into two levels [32], which are similar 

in the conduction of their steps and analyzes, being different in their application focus: 

• Project or Product FMEA: carried out after the project design, identifying each 

component of the system and the associated possible failure modes, as well as 

their effects on the system in question and on the product as a whole. 

• Process FMEA: analysis of manufacturing systems that can infer about the 

quality and reliability of the product, identifying the modes of process failures 

and their effects on the product. 

 
2.2.2 FMECA analysis 

 
 

The FMECA is composed of two separate analyzes, the FMEA and a Criticality 

Analysis (CA). The FMEA analyzes different failure modes and their effects while the 

CA prioritizes its level of importance based on the rate and severity of the failure effect. 

The results of the FMEA analysis make it possible to know and understand the 

weaknesses of a system (failure modes) [31], acting as a source of information in the 

creation of a reliability model and in the decision-making process to be taken to avoid 

and eliminate these failure modes. 

Developed by the US Department of Defense in the 1970s as a reliability tool, 

FMECA was tested in a wide range of industrial applications, resulting in modified 

versions of the methodology, according to the application segment, MIL-1629-A 

(Department of SAE-J1739) and SAE-ARP5580 (automotive industry) and IEC-60812 

and STUK-YTO-TR190 (electronics industry). Although each of the standards presents 

different versions, the main concepts and procedures are similar, however a detailed 

procedure must be performed for each specific application [37,38]. 

 
2.2.3 FMECA application flow 

 
 

The different versions of the FMECA have a similar application flow between 

them, where for the FMECA analysis, the first step is the realization of an FMEA, used 

as a database for Criticality Analysis (CA). Figure 12 [39] shows the application flow 

for an FMECA according to the IEC 60518 standard. 
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Figure 12. FMECA Application Flow [39] 

 

The FMECA consists on a collection of information, document creation and 

reporting. This information should be documented in a spreadsheet that will ensure the 

documentation of failure modes associated with each functional failure, its causes and 

effects, also assisting the analysis of RCM maintenance actions [38]. 

 
2.3 MAINTENANCE STRATEGIES 

 
 

Traditionally, maintenance classification is performed according to the planning 

of the activities and according to the objectives of the maintenance method applied. 

With regard to planning, maintenance might be carried out in a planned manner, 

executed under a pre-established time and conditions, or in an unplanned manner, as 

the need arises. 

Maintenance methods or policies express the way in which the intervention is 

performed in the equipment [13] and the difference between these methods is at the 

moment the maintenance activity is carried out [35]. 
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In this context, RCM plays an important role at strategic and tactical levels and 

helps design and define maintenance plans that ensure desired equipment reliability 

[7]. 

Basically, maintenance tasks can be summarized into two types: (i) Corrective 

Maintenance and (ii) Preventive Maintenance [24]. Corrective Maintenance is also 

called Reactive Maintenance, or RtF (Run-to-Failure). Preventive Maintenance is 

usually subdivided into TBM (Time Based Maintenance) and CBM (Condition Based 

Maintenance). Figure 13 [24] presents a sample of maintenance classification, with 

types of maintenance tasks, in a classical approach. 

 
 

 
 
 
 
 
 
 

 

Figure 13. Types of maintenance tasks [24] 

 

Modern manufacturing concepts bring new approaches to maintenance 

strategy. In this scenario emerges Prescriptive Maintenance, the most modern and 

advanced of strategies, considered the next step after preventive and predictive 

maintenance for proactive and intelligent maintenance planning [40]. Figure 14 

presents a modern roadmap for classification of maintenance policies. [Adapted from 

41]. 
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Figure 14. Roadmap to prescriptive maintenance. Adapted from [41] 

 

This approach defines 4 maintenance strategies: (i) Reactive Maintenance, (ii) 

Time-based Maintenance, (iii) Condition-based Maintenance and (iv) Prescriptive 

Maintenance. Each strategy is best presented in the following topics. 

 
2.4.1 RM - Reactive Maintenance 

 
 

The unscheduled maintenance or repair to return assets to a defined state, 

performed by maintenance personnel or professionals who have realized these 

deficiencies or failures [13]. Reactive maintenance restores the functions of an item 

after failure has occurred or performance fails to meet stated limits. Some failures are 

acceptable if the consequences of failure (such as production loss, safety, 

environmental impact, failure cost) are tolerable compared to the cost of preventive 

maintenance and the subsequent loss due to failure. This results in a planned run-to- 

failure approach to maintenance [24]. 

 
2.4.2 TbM - Time-based Maintenance 
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All tasks performed in a specific, planned and periodic schedule to maintain an 

asset in defined working conditions through the process of analysis and reconditioning 

[13]. Time-based Maintenance can also be predetermined, based on a fixed interval 

(such as calendar time, operating hours, number of cycles) consisting of scheduled 

refurbishment or replacement of an item or its components [24]. 

 
2.4.3 CbM – Condition-based Maintenance 

 
 

Use of modern methods of signal measurement and processing to accurately 

predict and provide diagnostics of asset conditions during operation [13]. It has 

become possible using smart, connected technologies that unite digital and physical 

assets. Is normally scheduled or based on a predetermined set of conditions while 

corrective maintenance is unscheduled. It is not unusual to defer reactive maintenance 

for a later convenient time when redundancy preserves function [24]. 

 
2.4.4 PRx – Prescriptive Maintenance 

 
 

With industry digitization and the advancement of computing and automation 

technologies, a new era is emerging in maintenance, called Prescriptive Maintenance 

(PRx). Its concept goes beyond fault prediction. Based on analyzes of historical data 

and data received in real time, maintenance decision making is predicted by a system 

and a course of action is prescribed [40]. 

PRx is a component of the Industrial Internet of Things (IIoT). It utilizes machine 

learning and automated data review to prevent machine, equipment or device failures. 

Industry experts call this preventive maintenance with integrated intelligence [42]. 

Prescriptive Maintenance aims to provide a decision on which maintenance to 

perform at what time. It uses historical data and real-time information to provide a 

maintenance decision as an output. This decision can be used to support human 

decision making for maintenance planning or in a fully automated maintenance 

planning system, enabling intelligent maintenance planning to prevent failures and 

increasing machine efficiency, availability and reliability [40]. 

Companies must interpret and consume data before it expires. Enterprises are 

missing out on valuable insights, with many disconnected sources generating and 
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collecting data on their own, contributing only parts of the overall picture rather than 

providing a broad view [42]. 

Recent research [43] predicts that prescriptive maintenance in 2030 

complements the prediction of disturbances and failures, also suggesting the most 

appropriate counteraction. The economic impact will be substantial as fact-based 

planning increases availability, extends equipment life, and enables more economical 

maintenance with fewer resources. The key challenge will be to incorporate predictive 

and prescriptive data analytics into easy-to-use decision support systems. Based on 

reactive, time-based, condition-based and prescriptive maintenance, different 

approaches are taken to maintenance tasks. 

The literature presents other techniques and methods of maintenance, which 

can be classified as types of maintenance or included in the methods already 

described. However, the objectives and all methods are summarized in the correction, 

elimination and prevention of failures, whether or not they are planned. 

In order to be able to make rational and justifiable tactical decisions concerning 

maintenance, one needs to have a clear idea of what the advantages and 

disadvantages of each maintenance policy are. In addition, a supporting maintenance 

concept is required [8]. 

 
2.4 DISCUSSIONS 

 
 

The evolution of industrial information systems and maintenance has provided 

a rapid advance in the maintenance methods implemented in companies. The search 

for increased reliability also encourages developments in new tools and 

methodologies, such as RCM. Thus, this topic presented historical and conceptual 

details of RCM, which is considered the problem space of the present research. 

As it is an already consolidated and flexible methodology, it is noticeable in the 

maintenance timeline the advances in the publications and standards available for the 

most diverse types of business segments. In this context, the present research 

advances with the insertion of a new RCM approach, bringing analyzes of risks and 

reliability of industrial systems in the current context, with information treatment and 

advanced tools for decision making. 
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The RCM approaches raised in the literature provide the necessary support for 

the adaptation of a customized, easy-to-interpret and detailed implementation model 

in its development process. For increased reliability and risk reduction, RCM's main 

focuses, fault analysis is a very important point in the methodology. The objective is to 

perform the verification of the impacts of system failures, as well as their effects and 

their criticality, issues that are developed in the FMECA analysis, central point of the 

implementation of RCM. 

According to [44] RCM has two obvious disadvantages in the current 

application: (i) RCM is an analysis tool based on experience and logical decision, so it 

lacks support from the quantitative model; (ii) for maintenance activities, RCM is 

generally a static maintenance method. In other words, after a review of the RCM, the 

maintenance strategy will be corrected without considering other operating conditions 

of the equipment. 

Traditional RCM approaches need to be improved by considering changes in 

equipment health status and making more accurate maintenance decisions based on 

quantitative analysis. With an in-depth analysis of the strengths of the methodology 

and confronting the shortcomings pointed out by [144], this research represents an 

approach called Smart RCM, with a modern focus, with an emphasis on: (i) fusion of 

qualitative and quantitative data to create a database for be consumed by the RCM 

program steps; (ii) use of quantitative data analysis and processing techniques 

(indicators); (iii) use of modern tools to consume the database built in decision making 

in the RCM stages; (iv) a risk based methodology and alignment with contemporary 

aspects emerging in the fourth generation of maintenance (maintenance analytics); (v) 

use of management tools to support strategic decisions; (vi) use of publications and 

standards consistent with each proposed step; and (vii) presentation of a dynamic 

general framework to adapt the methodology to modern approach, focusing on asset 

management. The result is a more holistic, integrated, and rigorous way to develop 

asset treatment and risk mitigation strategies for physical assets. 

Through a well presented analysis and with reliability in the data and information 

used the choice of the maintenance strategies are better carried out, providing 

improvements in the availability of the assets. 

For a better understanding of the scope of Smart RCM proposed by this 

research, chapter 3 presents the methods and tools used for decision making in the 
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RCM program. It also introduces concepts about data, information and knowledge 

inserted in RCM deployment and evaluation environment, emphasizing the importance 

of updating the methodology with modern concepts and tools. Data structuring 

supported by process mining techniques support the context of prescriptive analysis, 

a modern concept with application space for industrial maintenance. 

3 METHODS, DATA AND KNOWLEDGE TO DECISION-MAKING DIMENSIONS 

 

 
A decision-making is to choose one among a set of countable alternatives - 

usually finite - or uncountable, using two or more criteria (multi-criteria). When it is 

assumed that the criteria are known, the decision problem is called deterministic. When 

values are not known, it is called non-deterministic or stochastic [45]. Thus, several 

tools are employed with the aim of making these processes more agile and reliable. 

Figure 15 presents a decision-making process. 

 
 

Figure 15. DMMs phases 

 

The following topics present the elements that integrate the operationalization of 

a decision-making process, as well as contextualize the inputs and outputs of 

information in the scope of the research. 

 
3.1 DECISION MAKING METHODS 

 
 

The decision-making methods are often characterized by the presence of 

several conflicting criteria, which forces the decision maker to seek reasonable 
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compromises by performing trade-offs between discordant objectives [46]. In this 

context, the present research proposes the use of decision-making tools to provide 

robustness in the decision making stages of the RCM implementation, increasing the 

reliability of the information and improving the quality of the selections of the available 

alternatives. 

MCDM methods are commonly used in maintenance decision-making. These 

techniques allow information on maintenance goals and objectives to be converted into 

evaluation criteria and brought into a framework that incorporates stakeholder views. 

A literature review on researches with applications of MCDMs in the selection of 

maintenance strategies is found in [47]. It is an important intervention to address 

multiple and conflicting goals where decision makers value them differently. 

Applications of MCDM methods allow a structured and consistent evaluation, 

integrating quantitative and qualitative criteria [48,49]. 

The following sections present the decision-making methods employed in 

developing the proposed Smart-RCM. 

 
3.1.1 SWOT - Strengths, Weaknesses, Opportunities and Threats 

 
 

Used in the present research to support the choice of decision criteria, the 

SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is a commonly 

used tool for analyzing external and internal environments simultaneously in order to 

acquire a systematic approach and support for a decision situation [50]. Generally, 

SWOT is a list of statements or factors with descriptions of the present and future trend 

of both internal and external environment; the expressions of individual factors are 

general and brief which describe subjective views [51]. 

The analysis of the factors at a strategic level helps the selection and 

organization of the criteria to be used in decision-making methods, since it presents 

an overview of the business process. Such criteria should be mapping the 

opportunities and challenges of the company, making it possible to choose the best 

alternatives in its decision making. 

The SWOT analysis is commonly used at the beginning of the process (strategic 

planning) or for the optimization of a strategy already implemented. The leadership 

team should be strongly involved as they must be able to analyze the organization and 
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SWOT Matrix 

provide insight into the competitive environment of possible business scenarios. It 

involves systematic thinking and comprehensive diagnosis of factors relating to a new 

product, technology, management, or planning [52]. Figure 16 shows how SWOT 

analysis fits into an environment scan [52]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. SWOT analysis framework [52] 

 

SWOT analysis allows the company to act more reliably in the face of market 

challenges, as it gets to know its strengths, its weaknesses, how it affects the company 

and, mainly, what measures are necessary to achieve better results. 

 
3.1.2 AHP - Analytic Hierarchy Process 

 
 

The AHP method is one of the most classic and popular analytical techniques 

for analyzing complex problems in decision making. It consists of a family of 

procedures that use the pairwise comparison of criteria, where one asks how important 

one criterion is in relation to the other, being a simple, intuitive and flexible way for 

decision makers to analyze the problem [129]. 

Figure 17 presents a generic and hierarchical model of the structure of this 

method, where it is observed that the problem is segmented into sub problems, which 

can be understood and assessed subjectively more easily through objectives, 

attributes, criteria and alternatives. 

Environment 
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Figure 17. AHP hierarchical and generic model. Adapted from [130]. 

 

Therefore, the AHP hierarchy can contain as many levels as necessary to 

characterize the decision-making problem space [68]. In this method, peer-to-peer 

comparisons are made at the same level, that is, alternative with alternative and 

criterion with criterion. The scale used to make this comparison is shown in Table I, 

which is also known as the Saaty scale. 

 
  Table I. Fundamental scale of the AHP method: Saaty scale. Adapted from [130].  

Values Definition Explanation 

1 Equal importance Both activities contribute equally to the objective. 

3 Moderate importance 
Experience and judgment slightly in favor of one 
activity in relation to the other. 

5 Essential or strong importance 
Experience and judgment considerably in favor 
of one activity in relation to the other. 

7 Very strong importance 
One activity is highly valued in relation to the 
other; dominance in practice. 

9 Extreme importance 
The highest possible level of difference between 
activities. 

2, 4, 6 e 8 Intermediate values (if necessary) – 

 
The AHP methodology can be explained by the following steps [131]: 

• The problem must be broken down into a hierarchy (relationship between 

elements at one level with another) of objective, criteria, sub-criteria and 

alternatives; 

• Data are collected by specialists or decision makers corresponding to the 

hierarchical structure in order to carry out a qualitative peer-to-peer comparison 

based on the Saaty scale; 

• The comparisons are then organized into a square matrix (the size of the matrix 

refers to the number of criteria, subcriteria, alternatives, etc.); 

Criteria 3 Criteria 2 Criteria 1 

Goal 

Alternative 3 Alternative 2 Alternative 1 
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• The eigenvalues and their respective eigenvectors are normalized, giving the 

relative importance of the compared criteria, with the elements of the 

eigenvector being the weights of each comparison; 

• The matrix consistency should be calculated / evaluated, and if the consistency 

ratio is greater than 0.1 (10%), it is suggested to reassess the answers; 

• The index of each alternative is multiplied by the weight of each subcriterion and 

/ or criterion, aiming, at the end, to obtain a global ranking of the options. 

It is observed the ease of implementation of this method, which can be 

developed through tables and electronic spreadsheets. Therefore, the AHP method 

has some advantages over other methods, namely: hierarchical structuring of decision 

problems; determining the weights of each criterion; adaptable, easy and intuitive for 

teams that contain more than one decision maker; simplicity in peer-to-peer 

comparison; among others. 

In turn, some of the negative points are: the pairwise comparison can be 

considered a superficial way of comparing a set of options, and if the nine-value Saaty 

scale is considered, this weakness is more evident; for a level of inconsistency greater 

than 10%, it is suggested that decision makers reevaluate their choices; there can 

easily be differences in responses between decision makers and, therefore, different 

results; the data analyzed is based only on the experience of the users; among others 

[132]. 

As already mentioned, the decision makers should assign weights on a scale of 

1 to 9 for each criterion, comparing them pearly [53]. Thus, this method can only be 

used when the parameters are passive and have their importance measured on a 

quotient or ratio scale. 

That is, all parameters must be comparable to each other. As an example, 

comparing the criteria 𝑎1, 𝑎2 and 𝑎3 where 𝑎1>𝑎2>𝑎3, i.e.: 

 
𝑎1 = 𝑝12 ∗ 𝑎2 = 𝑥 ∗ 𝑎2 (1) 

𝑎2 = 𝑝23 ∗ 𝑎3 = 2𝑥 ∗ 𝑎3 (2) 

Consequently, 

𝑎1 = 𝑝13 ∗ 𝑎3 = 3𝑥 ∗ 𝑎3 (3) 
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Where 𝑝𝑖𝑗 represents the degree of importance of criterion 𝑖 in relation to 

criterion 𝑗. With this information the criteria priority table is set up. After this assembly, 

the sum of the lines is obtained obtaining the value 𝑤𝑖𝑗 and then the results obtained 

must be. The subsequent step is the inconsistency test, which is used to verify the 

existence of a deviation between the comparisons, where the zero result indicates the 

perfect consistency, whereas values greater than 0.1 can substantially increase the 

decision error. The Consistency Result (CR) is determined by equation [53]: 

 
𝜇𝑚𝑎𝑥−𝑛 

( 

𝑅𝐶 = 
(𝑛−1)   

)
 

𝑅𝐼 
(4) 

 
 

𝜇𝑚𝑎𝑥 = 
1 

𝑛∗∑ 𝑤𝑛 
(5) 

 
 

Where: 

𝜇𝑚𝑎𝑥 = Index that relates the criteria of the Consistency Matrix and the weights of the 

Criteria; 

𝑛 = Number of criteria; 

𝑅𝐼 = Index table in function of 𝑛 [46]. 

After performing all the previous steps, the calculation of CR will be the decisive 

factor for the acceptance of the result obtained, causing new analysis to be done, 

changing variable weights or momentarily disregarding some restrictions in order to 

understand the logic of the result, if the values found are not satisfactory. 

An example of AHP application is available in [53,119]. 

 
 

3.1.3 ELECTRE - Elimination and Choice Translating Algorithm 

 
 

The ELECTRE method provides a systematic assessment based on the 

concept of prioritization / classification relationships (outranking), which allow the 

decision maker to express preference risk, being able to consider the intangible and 

non-monetary effects of the alternatives [133]. Additionally, this method is capable of 

dealing with discrete criteria of a quantitative and qualitative nature, providing a 

complete ordering of the options [134]. 



 

In this way, the process performed by the ELECTRE family to obtain the results 

(grouping and / or prioritizing the alternatives) is summarized in six stages [135]: 

i. Define the reference actions; 

ii. Determine the agreement indexes (sum of the weights of the attributes for 

which the alternative “a” is better than “b”) by criterion; 

iii. Calculate the global agreement; 

iv. Determine the rates of disagreement (absolute difference between the pair 

of attributes divided by the biggest difference over all pairs) by criterion; 

v. Obtain the degree of credibility; 

vi. Determine the prioritization or grouping relationship (outranking or 

clustering). 

According to [135], the output (result) of ELECTRE differs from other methods, 

in that it provides not only a global preference of the alternatives, but a partial ranking, 

sometimes complete, of the same ones, causing uncertainties and inaccuracies to be 

considered in the analysis. 

In general, the advantages that the ELECTRE family provides for MCDM 

problems are that there is the possibility of using quali-quanti criteria, the results are 

validated and justified, and it is possible to work with heterogeneous scales. Regarding 

the disadvantages, this method is less versatile than the others and requires a good 

understanding of the objective, especially when dealing with quantitative 

characteristics [132]. 

In order to explain the theoretical basis of the ELECTRE method, it is first 

necessary to understand that there are the so-called pseudo-criteria, which are built- 

in adjunct checks in order to better compare the criteria [46]. The traditional 

classification methods start from the relation of preference and indifference to compare 

alternatives. For example, comparing two alternatives "A" and "B", to say that "A" 

exceeds "B", means that "A" is at least as good as "B". On top of the traditional methods 

reasoning, the ELECTRE methods introduced the concept of limits of indifference q, 

which signify the threshold that one alternative can transit until it is indifferent to the 

other. Figure 18 [46] presents the difference limit between the parameters. 

 
 

 

a is strictly 
preferable to b 

 

a is weakly 
preferable to b 

 

a is indifferent 
to b 

 

b is poorly 
preferable to a 

 

b is strictly 
preferable to a 
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aPb aQb aIb e bIa bQa bPa 

g(a) - p g(a) - q g(a) + q g(a) + p g(b) 

 

 
Where: 

Figure 18. Situations of preference for pseudo-criteria [46] 

𝑔(. ) = Evaluation function; 

𝑖 = Preference limit; 

𝑞 = Indifference limit. 

These criteria are introduced in the model to reduce inaccuracies and 

indeterminations in the performance of alternatives, and thus starting from the 

affirmation of overcoming existing between the alternatives, the ELECTRE method 

needs to ensure that this relationship is true and for this it is necessary to calculate the 

criteria of agreement and discordance [53]. 

 
𝐾+

(𝑎,𝑏)+𝐾=
(𝑎,𝑏) 

 
 

Where: 

𝐶(𝑎,𝑏) = 
𝐾+ 

 
(𝑎,𝑏) +𝐾= 

 
(𝑎,𝑏) +𝐾− 

 
(𝑎,𝑏) 

(6) 

𝐾+(𝑎,𝑏) = Sum of the weights of the criteria where 𝑔(𝑎) > 𝑔(𝑏) + 𝑞; 

𝐾=(𝑎,𝑏) = Sum of the weights of the criteria where −𝑞 𝑔(𝑎) − 𝑔(𝑏) 𝑞; 

𝐾−(𝑎,𝑏) = Sum of the weights of the criteria where 𝑔(𝑎) < 𝑔(𝑏) − 𝑞; 

𝐶(𝑎,𝑏) = Value of agreement. 

The discordance calculation can be done in two ways, absolute and relative: 

Absolute: when 𝐷(𝑎,𝑏) is the maximum difference between 𝑔𝑖(𝑏) and 𝑔𝑖(𝑎) for 𝑔𝑖(𝑏) > 𝑔𝑖(𝑎) , 

divided by the scale interval of criterion 𝑖, where 𝑖 represents the criteria. 

 

𝐷(𝑎,𝑏) 
= 𝑚𝑎𝑥(0, 

𝑔𝑖(𝑏) 
−𝑔𝑖(𝑎) , 𝑡𝑜 𝑖 = 1, … 𝑛; (7) 

𝑆𝑐𝑎𝑙𝑒1 

 
 

Relative: relative where 𝐷(𝑎,𝑏) is the maximum value of (𝑔𝑖(𝑏) 
− 𝑔𝑖(𝑎) 

)/𝑔𝑖(𝑎)
, for a criterion 

𝑖 where 𝑔𝑖(𝑏) > 𝑔𝑖(𝑎) . 

 
 

𝐷(𝑎,𝑏) 
= 𝑚𝑎𝑥(0, 

𝑔𝑖(𝑏) 
−𝑔𝑖(𝑎) , 𝑡𝑜 𝑖 = 1, … 𝑛; (8) 
𝑔𝑖 

(𝑎) 
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ELECTRE TRI allows the allocation of a set of alternatives in predefined 

categories, based on the comparison of alternative a with the limits of each category, 

as shown in figure 19 [136]. 

 
 

Figure 19. Modeling example of ELECTRE TRI [137] 

 

In this method the evaluations of the alternatives for each criterion {g1...., gi ..... , gm} 

are considered, a set of profile indices {b1..., bh .... , bp}, where categories (p+1) are then 

defined, where bh represents the upper limit of the category Ch and the lower limit of 

the next category Ch+1, h=1, 2, ... , p. Figure 20 illustrates the limits between categories 

of the method. 
 

 

Figure 20. Limits between categories [137] 

 

Through a pseudo-criterion, preferences are defined for each criterion (g), 

where the preference limits pj [g (bh)] and indifference qj [g (bh)] form the intra-criterion 

information, where qj [g (bh)] specifies the biggest difference (gj (a)-gj (bh)), which 

preserves the indifference between alternative “a” and “bh” using the gj and pj [g (bh)] 

criterion represents the smallest difference (gj (a)-gj (bh)), which is compatible with the 

preference of the alternative “a” over “bh” for the same criterion [137]. The preference 

structure of the method allows for a hesitation zone, represented by a weak preference, 
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not allowing a sudden change between a strict preference and indifference on the part 

of the decision maker. 

Two conditions to validate statement C: 

• Agreement: the overclassification aSbh will be accepted when most criteria are 

in accordance with the statement; 

• Non-disagreement: when the agreement condition does not exist, no criteria can 

oppose the aSbh statement. 

To build the overclassification relationship, ELECTRE TRI uses a set of veto 

thresholds (v1 (bh), v2 (bh), ..., Vm (bh)), applied in the disagreement test, where (vj (bh)) 

represents the smallest difference between gj (bh) - gj (a) incompatible with the 

statement aSbh. The indices of partial agreement cj (a, b), agreement c (a, b) and 

disagreement dj (a, b) are calculated by equations 9, 10 and 11. 

 
 
 

𝑐𝑗(𝑎, 𝑏) = 

0 𝑖𝑓  𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) ≥ 𝑝𝑗(𝑏ℎ) 

1 𝑖𝑓  𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) ≤ 𝑞𝑗(𝑏ℎ) 
𝑝 (𝑏 ) + 𝑔 (𝑎) − 𝑔 (𝑏 ) 

 
 

(9) 
𝑗 ℎ 𝑗 𝑗 ℎ 

𝗅𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠 𝑝𝑗(𝑏ℎ) − 𝑔𝑗(𝑏ℎ) 
 
 

 

𝑐(𝑎, 𝑏) = 
∑𝑗∈𝐹

𝑘𝑗𝑐𝑗(𝑎,𝑏ℎ) 
 

∑𝑗∈𝐹
𝑘𝑗 

 

(10) 

 
 

 
 

𝑑𝑗(𝑎, 𝑏) = 

0 𝑖𝑓  𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) ≤ 𝑝𝑗(𝑏ℎ) 

1 𝑖𝑓  𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) > 𝑣𝑗(𝑏ℎ) 
𝑔 (𝑏 ) + 𝑔 (𝑎) − 𝑝 (𝑏 ) 

 
 

(11) 
𝑗 ℎ 𝑗 𝑗 ℎ 

𝗅𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠 𝑣𝑗(𝑏ℎ) − 𝑝𝑗(𝑏ℎ) 

 
 

[137] present the construction of a credibility index σ (a, bh) [0.1] that validates 

the statement aSbh when its value is greater than or equal to the cutoff level (λ), with 

λ ϵ [0.5,1]. 

 

 

𝜎(𝑎, 𝑏ℎ 
 
) = 𝑐(𝑎, 𝑏ℎ 

 

1−𝑑𝑗(𝑎,𝑏ℎ) 
𝑗 ∈ 𝐹 1−𝑐𝑗(𝑎,𝑏ℎ) 

 
(12) 

Where, �̅� = {𝑗 ∈ 𝐹: 𝑑𝑗(𝑎, 𝑏ℎ) > 𝑐(𝑎, 𝑏ℎ)} 

). ∏ 
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After calculating the indices, a cut-off level is applied λ ϵ [0.5.1], which 

determines the preference relationships by the condition: p (ak, bh) ≥ λ ➔ akSbh. In this 

way, it can be stated that the higher the value of λ, the more stringent the subordination 

conditions of an alternative will be, which contributes to the occurrence of 

incomparability between the alternatives [136]. Thus, according to [136,137] the 

allocation of alternatives in the categories can be carried out in two ways: 

• Pessimistic procedure: it consists in successively comparing the alternative “a” 

with bi, for i = p, p-1, , 0, bh, starting in the first profile, bp (the largest bh), such 

that aSbh, which results in the inclusion of the alternative “a” in the category 

Ch+1(a➔Ch + 1). 

• Optimistic procedure: it consists in successively comparing the alternative “a” 

with bi, for i = 1, 2, p, , bh, starting with the first profile, b1 (the smallest bh), such 

that “bh” be preferable to alternative “a”, with the inclusion of alternative “a” in 

the category Ch (a➔Ch). 

If bh is the first limit value, where akSbh, the alternative ak is assigned to class Ch 

+ 1. Since bh-1 and bh are the limits of class Ch, this procedure allocates ak to the highest 

class Ch, so that ak overclasses bh-1 (akSbh-1). The optimistic procedure successively 

compares the value of ak over bi, i = 1, 2,   , p. If bh is the limit value so that bhPak, ak is 

assigned to the lowest Ch class, where the upper limit value bh is preferred to ak (bhPak). 

[53] observe that the understanding of the ELECTRE TRI algorithm requires an 

additional effort, since the fear in its application is based on concepts of fuzzy logic, 

however, they emphasize that understanding and modeling of the method does not 

require detailed description of the classification algorithm. 

 
3.1.4 PROMETHEE - Preference Ranking Method for Enrichment Evaluation 

 
 

Developed from ELECTRE, the PROMETHEE method was conceived with the 

objective of creating a simpler procedure in relation to its precursor, since the first 

requires many parameters that, many times, do not make sense to the decision maker 

[138]. Even though both techniques are vulnerable to subjectivity, especially for 

technical parameters, PROMETHEE demonstrates greater resistance to variations in 

parameters, thus showing greater solidity in the results. 
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PROMETHEE is a well-established and consolidated decision support system 

that deals with the evaluation and selection of a set of options based on various criteria, 

aiming to obtain a ranking among them. Thus, the great advantage of this method is 

its simplicity and ability to approximate the way the human mind expresses and 

synthesizes preferences when facing multiple contradictory decision perspectives 

[139], being one of the reasons why this technician can handle uncertain information, 

including qualitative and quantitative criteria. 

The PROMETHEE family contains ramifications (versions) - I, II, III, IV, V, VI, 

GDSS, GAIA, TRI and CLUSTER - which have the purpose of solving ordering and 

application problems in systems involving fuzzy preferences [138]. These methods 

also use peer-to-peer comparison in order to order the alternatives in relation to the 

previously specified criteria, presenting ease of use and low complexity [134]. 

The methodology for implementing PROMETHEE is summarized by [54] in five 

stages, namely: 

i. Determine deviations based on peer-to-peer comparisons; 

ii. Choose and apply the preference function - usual, U shape (almost criterion), V 

shape (preference threshold), levels (pseudo criterion), displaced V shape (area 

of indifference) or Gaussian; 

iii. Calculate the global preference index (or total); 

iv. Calculate the ordering flows (partial ranking - PROMETHEE I); 

v. Calculate the net (resulting) ordering flow (full ranking - PROMETHEE II); 

The ordering flow mentioned in the implementation steps refers to the 

mathematical calculations that analyze how far one alternative outperforms (outranks) 

all the others (positive ordering) and how far out of that alternative (outranked) by all 

others (negative ordering) [138]. Visually, this sorting flow (positive and negative) is 

shown in Figure 21. 
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𝑖=1 

 

  

Figure 21. Sorting flow: positive (left) and negative (right). Adapted from [138] 

 

Regarding the advantages and disadvantages, PROMETHEE presents as a 

differential the possibility of involving the decision at the group level, in addition to 

dealing with quali-quanti information, and incorporating uncertainties and fuzzy 

information in its analyzes. As weaknesses, this method does not structure the 

objective properly, it depends on the decision maker to give weight to the criteria and 

has a higher level of complexity than the AHP, requiring, in some cases, the presence 

of a specialist [132]. 

Similar to the AHP, PROMETHEE also compares the alternatives with respect 

to each other indicating the performance of each for a given criterion [53]. To carry out 

the PROMETHEE methodology it is necessary to calculate: 

 
 
 

Where: 

∏(𝑎, 𝑏) = ∑𝑛 𝑤𝑖 ∗ 𝑃𝑖 
 

(𝑎,𝑏) 
(13) 

∏(𝑎, 𝑏) = Degree of preference of the alternative 𝑎 with respect to 𝑏, for all the criteria; 

𝑤𝑖 = Criterion weight 𝑖(𝑖 = 1, 2, … , 𝑛); 

𝑃𝑖(𝑎,𝑏) 
= Preference function. 

 

The preference function assumes values between 0 and 1 and are associated 

with each criterion indicating the preference between alternatives, and are represented 

as a function of the difference of the criterion before the alternatives, being chosen 

according to the problem together with the decision maker. 

Once the degree of preference has been calculated, the value of the positive 

overshoot flow (∅+) should be measured, indicating how much better the alternative is 

a 

... 

a 

... 
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𝑖𝑗 

to the others, while the negative (∅−) indicates how much the same option is exceeded 

by can be calculated with the formulas, considering A as the set of possible alternatives 

for the situation: 

 
∅+ = 

1
 ∗ ∑ ∗ ∏(𝑎, 𝑏) , (14) 

(𝑎) 
 

𝑛−1 𝑏∈𝐴 

∅− = 
1

 ∗ ∑ ∗ ∏(𝑏, 𝑎) . (15) 
(𝑎) 

 

𝑛−1 𝑏∈𝐴 

 
 

The PROMETHEE model provides an advanced modeling technique, but it has 

as prerequisite the need for precise information about the parameters. 

Details with the formal mathematical definitions of the PROMETHEE method 

are further detailed in [53]. 

 
3.1.5 TOPSIS - Technique for Order of Preference by Similarity to Ideal Solution 

 
 

Methods of MCDM developed to solve real-world decision problems, the 

Technique for Order Preference by Similarity with the Ideal Solution (TOPSIS) 

continues to function satisfactorily in several application areas [54]. The basic principle 

is that the chosen alternative should have the smallest distance from the ideal solution 

and the largest distance from the ideal negative solution. 

For the application of TOPSIS, a sequence of calculations must be performed, 

following the traditional order, these are: development of the normalized decision 

matrix, development of the weighted decision matrix, distance to the positive ideal 

solution (PIS) and the negative ideal solution (NIS) and relative proximity. 

The development of the TOPSIS method can be performed with the execution 

of 5 steps [54], as demonstrated below. 

 
Step 1: Construct normalized decision matrix, 

𝑟𝑖𝑖 =
    𝑥𝑖𝑗  

√(𝐸𝑥2 ) 
𝑓𝑜𝑟 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛 (16) 

 

Where 𝑥𝑖𝑗 and 𝑟𝑖𝑗 are original and normalized score of decision matrix, respectively. 

 

Step 2: Construct the weighted normalized decision matrix 

𝑣𝑖𝑗 = 𝑤𝑗 𝑟𝑖𝑗 (17) 
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𝑖 

𝑗 

𝑖 

𝑖  

𝑖 

Where 𝑤𝑗 is the weight for j criterion. 

 

Step 3: Determine the positive and negative ideal solutions 

𝐴∗ = {𝑣∗, … , 𝑣∗}, Positive ideal solution (18) 
1 𝑛 

Where 𝑣∗ = {max(𝑣𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽; min(𝑣𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽′} 

𝐴′ = {𝑣′ , … , 𝑣′ }, Negative ideal solution (19) 
1 𝑛 

Where 𝑣′ = {min(𝑣𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽; max(𝑣𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝐽′} 

 

Step 4: Calculate the separation measures for each alternative. The separation 

measures from positive ideal alternative is: 

∗ = [∑ (𝑣∗ − 𝑣𝑖𝑗) 
1/2 

] 𝑖 = 1, … , 𝑚 (20) 

Similarly, the separation from the negative ideal alternative is: 
′ ∑ ′ 2  1/2 

𝑆𝑖 = [ (𝑣𝑗 − 𝑣𝑖𝑗) ] 𝑖 = 1, … , 𝑚 (21) 

 
 

Step 5: Calculate the relative closeness to the ideal solution 𝐶∗ 

𝐶∗ =    
𝑆𝘍 

, 0 < 𝐶∗ < 1 (22) 
𝑖 𝑆∗+𝑆𝘍 𝑖 

𝑖 𝑖 

Select the alternative with 𝐶∗ closest to 1. 

The TOPSIS method introduces two ‘‘reference’’ points, but it does not consider 

the relative importance of the distances from these points [55]. 

Details with the formal mathematical definitions of the TOPSIS method and 

examples of application are presented in [54.55]. 

 
3.1.6 Discussions 

 
 

Decision making processes in companies are usually complex. Deciding 

something may take into account data from information systems and human 

knowledge (based on experience). In this context, multicriteria decision analysis helps 

the decision maker to solve problems with goals to be achieved simultaneously. 

MCDMs can be employed with qualitative, quantitative or hybrid information (quali- 

quanti). 

There are several factors that can influence the decisions to be taken in the 

RCM deployment. The technologies available and the quantity and quality of the 

𝑆 2 
𝑖 
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information are examples of factors that can make decisions difficult. Another important 

issue is related to critical aspects of industrial plants. In many cases, the systems are 

large and complex, making it difficult to decide the best options for decision-making 

processes. 

In the present research MCDMs support the proposed "Smart RCM" model. The 

word "Smart" suggests, in this context, a methodology adapted with intelligence in 

decision making, reconciling qualitative and quantitative information in advanced 

models of MCDMs, to increase the reliability of the information and the answers in the 

implantation phases. They basically support the following activities: 

• Selection of the best RCM indicators to be used later as evaluation criteria. 

• Ranking of critical systems that can be applied by RCM. 

• Classification of risks in the equipment / components of the system. 

• Prioritization of Maintenance Significant Items (MSIs) for a customized 

intervention. 

• Selection of appropriate maintenance strategies. 

Since the decision models are composed of qualitative and quantitative criteria 

and are dependent on each other, the proposed RCM methodology provides 

information for all at the same time, with the quantitative slice being updated in real 

time, allowing a continuous review of the results. This information, which is a measure 

of company metrics, comes from a variety of data sources, including aspects of 

Industry 4.0, as reported in the next topic. 

 
3.2 DATA, INFORMATION AND KNOWLEDGE 

 
 

MCDMs methods can use qualitative and quantitative data, that have real 

importance in the industrial scenario, being a bridge for the correct decision-making in 

maintenance. Some researches refer to this collaborative approach with a view that 

when coming from reliable sources, data and information are important to the whole 

process. 

To improve the quality of quantitative information, process mining techniques 

have been used to treat the raw information and improve the consistency of the 

available information. Process Mining can be defined as the discovery of knowledge 

by analyzing tasks execution logs [56]. It is used to verify the difference between what 
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was going to happen and what actually happens. Process Mining have been applied 

in many areas, such as business processes, decision-making, software Engineering, 

etc. [56,57]. [58] proposed the use of mining for organizing and maintaining knowledge 

in a generic process. It consists in the creation of a system of knowledge collection and 

maintenance. 

The quality of knowledge being generated is important for collaboration between 

levels of the organization. In this context, mining methods can be applied to review the 

maintenance records, discovering the process and assisting in creating of a model of 

optimal maintenance policies. 

The use of mining techniques in data whose source is maintenance planning is 

proposed by [59]. A methodology using a mining approach to extract accurate fault 

rate data from WOs (Work Orders) and DD (Downtime Data) is presented by [60]. The 

purpose of these initiatives is to explore the available information, evaluating possible 

consistent patterns, such as association rules or temporal sequences, and detecting 

systematic relationships between variables. With this, the knowledge base to be 

generated becomes more robust and reliable, increasing the credibility of the decision- 

making. 

Maintenance managers have access to large amounts of data and have a 

complicated task that is to turn that data into information that supports maintenance 

actions [59]. Important criteria include the need for multidisciplinary team building, 

decision support tools, reliability data, and assistive technologies [14,61]. In this 

context, publications involving CBM - Condition-Based Maintenance [62], risk 

assessment [63], TPM - Total Productive Maintenance [64] are examples of applied 

research to improve decision-making in maintenance. 

 
3.2.1 Digital information for maintenance 

 
 

Basically, digital information represents structured and unstructured data that is 

difficult to process using traditional database techniques and software. This is 

significant data for the scope of RCM to leverage all available information for use in 

analysis and decision making tools. 

All the information available at all levels of companies is important for the 

application of the RCM methodology, which uses metrics from these intelligent 
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systems. In addition, aspects related to reliability and safety are considered among the 

most crucial factors of the intelligent system, which are now challenged by the highly 

complex, automated and flexible industrial system. Industry big data analytics will have 

great benefits, such as improving performance, achieving near zero downtime, 

ensuring predictive maintenance and more [65]. In this context, Industry 4.0 is a current 

trend in the manufacturing domain, based on the concept of "smart factory". Among 

other organizational services, Industry 4.0 requires a quick and efficient maintenance 

service in order to guarantee that companies implement an efficient production system 

[66]. It is important to note that, in the case of large-scale multi-source data, the data 

can be used to predict reliability. 

Modern systems based on Industry 4.0 requirements can operate with the 

support of a greater informational density and tools to support decision-making. The 

data that are collected with the aid of these systems are saved in clouds. Products 

integrated with cloud computing in the field can provide data that enable a predictive 

maintenance and provide information about optimization possibilities in production. 

 
3.2.2 Structuring Data 

 
 

The structuring of data is an important issue to be developed in the present 

research, which deals with the junction of available information. This approach is an 

important requirement for the development of the proposed Smart RCM. Figure 22 

presents the sources of information and the processes for structuring the data. 
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Figure 22. Acquisition and structuring of RCM data. 

 

The upper layer of the Figure 22 shows the company elements from which the 

information is acquired, according to the RCM program. It is important that the data 

collected from the process has the necessary structure for the database. Quantitative 

data is considered structured (with the information or indicator format ready for use in 

analysis and decision making) or semi-structured (digital information, but not 

conforming to the standard format or unreliable). Qualitative data are considered 

unstructured and should be quantified using rating or score tables, according to their 

characteristics in the context of the company. The goal is to convert them into a 

measurable and calculable indicator format for later use in future RCM decision- 

making processes. To extract useful information from multisource data, unstructured 

and semi-structured information should be transformed into structured data in advance 

so that data barriers due to differences in source, format, dimension and other factors 

can be eliminated [65]. The methodology for creating the DMD will be presented and 

detailed in topic 5.2. 

The quantitative data have a defined structure, requiring in some applications 

their correct treatment. Qualitative data needs to be structured based on raw 
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information and expert experiences. Here are some examples of industrial data 

sources to be extracted to the RCM program [65]: 

• Design data, such as data from the product and machine design. 

• Machine operation data, such as data from the control system, equipment 

operation. 

• Staff behavior data, such as manual operation record, staff working process 

videos. 

• Cost information, such as cost of manufacturing process, operations. 

• Fault detection and system status monitoring data. 

• Product quality data, such as the defective rate of each facility. 

• Product usage data, such as availability, repair rate. 

• Customer information, such as customer features, feedback data, suggestions. 

 

To support the preparation of quantitative information, Process Mining 

techniques are presented in the next topic. Its purpose is the treatment of raw 

information, recognizing patterns and relationships between data for structuring the 

RCM data process. 

 
3.2.3 Process Mining 

 
 

In production systems, a lot of data is stored by management systems in logs, 

such as events and failures. The use of process mining as an analytical tool to analyze 

it has been increasing in recent years and the emergence of new manufacturing 

paradigms such as the Industry 4.0 initiative have led many smaller manufacturers to 

look at utilizing these powerful techniques [67]. Although these data are correct, most 

organizations diagnose problems based on imaginary facts rather than actual plant 

behavior [68]. 

In this context, process mining techniques allow an analysis of this data to 

improve the quality of the information, detecting bottlenecks and arises to analyze 

these data and determine where, when and why the anomalies occurred in the system. 

It does not only allow companies to fully benefit from stored information, but also to 

use it to check compliance of process data, detect implementation problems, and 
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Information 
Processing 
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Making 

predict hidden behavior. In addition, out-of-standard data can be filtered by increasing 

the reliability of the information. 

For decision-making in industrial processes, information processing must be 

performed prior to the sending of collected data to the decision makers. The fusion of 

qualitative and quantitative information needs to be considered, using the tools 

available for each application. Figure 23 represents this process, presenting the ideal 

approach to be applied in decision-making [68]. 

 
 

Figure 23. Ideal approach to decision-making [68] 

 

The junction of the information under the presented aspects results in the 

creation of a knowledge base, which can be used in decision-making processes, 

developing data-driven business models and services, e.g. supply new contracts for 

production systems [69]. 

 
3.2.4 Prescriptive Analytics in Maintenance context 

 
 

Optimizing the generation and organization of maintenance knowledge and 

decision-making in times of technological revolution enables improved availability and 

consumption of data and information efficiently. A structured approach and modern 

concepts are needed to improve information extraction and knowledge discovery. In 

this context emerges the Maintenance Analytics (MA) concept, that can be presented 

based on four interconnected phases (Figure 24): (i) Descriptive Analysis, (ii) 

Maintenance Diagnostic Analysis, (iii) Predictive Analysis and (iv) Prescriptive Analysis 
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[70]. The objective of facilitate maintenance actions through improved understanding 

of data and information. 

 
 

Figure 24: The four phases of Maintenance Analytics [70] 

 

Basically, each phase of the Maintenance Analytics seeks to answer a question 

in the following sequence: (i) What has happened? (ii) Why something has happened? 

(iii) What will happen in the future? And (iv) What needs to be done? 

According to [42], Descriptive Analysis aims to summarize what happened as 

simple event counters. The purpose of diagnostic analysis is to find out why it 

happened. Already the Predictive Analytics uses a variety of statistical, modeling, data 

mining, and machine learning techniques to study recent studies and historical data, 

allowing analysts to make predictions about the future. Still, Predictive Analytics cannot 

tell what will happen in the future, it can only predict what will happen in the future. And 

the emerging approach is Prescriptive Analytics (PRx), that can go beyond descriptive 

and predictive models, recommending one or more courses of action and showing the 

likely outcome of each decision. PRx is a component of the Industrial Internet of Things 

(IIoT), that can use machine learning and data revision automation to avoid equipment 

or device failures. Industry experts call this preventive maintenance with built-in 

intelligence [42]. 
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3.2.5 Discussions 

 
 

When looking at maintenance in the context of Industry 4.0, it is observed that 

little attention is being given to this area of study, as it presents the systematic review 

of the literature performed by [71]. The authors of this article infer that the academy is 

investing efforts on mainly related to manufacturing, management (in the PLC), design, 

programming and control - in this order. However, maintenance work focuses on 

technologies to optimize the process of transmitting information from the factory floor 

to time, such as the use of wireless devices for equipment, which would also reduce 

maintenance costs and dangerous [72]. 

The prognosis of production systems can be considered a valuable tool when it 

is desired to predict the useful life of the machines, involving the monitoring of 

conditions, fault diagnosis, operation / service time maintenance, and all these topics 

serve as an informational basis (scientific and technological) for decision making [73]. 

In this way, the data fusion of qualitative and quantitative indicators for decision 

is necessary and essential to guide the decision-maker to a more assertive and 

appropriate to the process analyzed, since, as already mentioned, the qualitative 

indicators will be obtained by tacit knowledge of the operator and the quantities will be 

extracted of event logs by means of process mining techniques. The combination of 

these two forms of analysis makes the analysis and interpretation of the system more 

robust and dynamism, given that the robustness will be achieved through the mutual 

fusion of quali-quanti indicators and dynamicity by the speed of the analysis of the data 

of the factory floor and possibility of these indicators during the decision-making 

process. 

The smart-RCM framework to be presented aims to use current techniques for 

a modern and technological approach. In this sense, this research proposes the term 

"Smart RCM", that is, a maintenance application focused on reliability Industry 4.0. 

One of the premises of the fourth industrial revolution (Industry 4.0 or I4.0) is 

interconnect the machines of the factory floor (horizontal grid) and the organizational 

levels (grid vertical), transforming the company into a single / global system. In this 

context, the reliability of machines and cells is a required and extremely important 

function for optimize production, maximizing productivity and minimizing costs related 

to the operation. 
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Therefore, determining which maintenance strategy and tasks to apply (based 

on process indicators and tacit knowledge of the operator) is shown as a promising 

source of business differentiation. It creates a competitive advantage and confidence 

in the performance and preservation of the functions of the system, increasing its 

reliability. 

In current scenarios, many companies consider maintenance management to 

be a production activity, so good management can sector and boost the company's 

business, obtaining the competitive advantage [74]. In addition, Smart RCM provides 

for adequate and optimal use of resources (operators, tools, machines, etc.) available 

in the process, aiming at the assertiveness of the choices. 

In order to support the decision models used in this Smart RCM approach, a 

systematic review of the literature is carried out, seeking, in contemporary approaches, 

the indicators / metrics used in applications. Details of this analysis are presented in 

the next section. 
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4 MAPPING METRICS FROM RCM APPLICATIONS 

 

 
According to task 2 of the IDEF0 model presented in Figure 3, one of the initial 

stages of the research proposes the creation of a database with indicators to be 

consumed by the RCM decision stages. For this, we analyzed relevant scientific bases 

for the mapping of works developed with models of RCM implantation and their 

indicators. 

The literature review was based on 3 stages (Figure 25): (i) planning: 

identification for the RCM implementation models and indicators and development of 

a review protocol; (ii) execution: review implementation and creation of an organized 

scientific base; and (iii) assessment: phase in which a detailed study is carried out in 

the works selected by the protocol. 

In this last phase, a bibliometric analysis is performed to support the results and 

improve visualization of the researches problem space. Methodological, operational 

and results aspects are verified and presented, generating important discussions for 

use in next sections. 

 
 

Figure 25. Stages of a Systematic Review 

 

A review protocol shows information about the research fields and selected 

criteria for the selection of manuscripts that have relevance in a given topic in the 

scientific community [75]. Thus, in order to analyze the recent research in RCM under 

the inference of models and indicators, a research protocol was developed. For its 
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preparation, the information was used in three dimensions: (i) the RCM methodology; 

(ii) implementation terms and (iii) words that refer to the indicators/metrics. A Boolean 

operation OR was done between the words of each dimension and the operation AND 

between the groups. 

 
 

Table 2. Systematic Literature Review Protocol 

 

 
Keywords 

Group 1 (RCM) – RCM, Reliability Centered 
Maintenance. 
Group 2 (Application) – Framework, Deployment, Case 
Study, Implementation, Development, Application. 
Group 3 (Indicators) – Indicators, Measures, Metrics, 
Assessment, KPI, Measurement. 

Databases Science Direct, Emerald, Scopus, Web of Science. 

Boolean 
Operator 

OR between the words of the Group 1; OR between 
the words of the Group 2; OR between the words of 
the Group 3; AND between Group 1, 2 and 3. 

 

Exclusion 
Criteria 

Duplicate Papers; 
Papers with scope different than Engineering and 
industry; 
Books and e-books; 

Language English 

Publication 
Type 

Papers from journals 

Time Window 2007-2018 

 

Four large scientific databases were explored and only works in article format 

were selected. Still, in order to analyze only contemporary research, were considered 

only surveys published after the year 2007. The execution of research protocol resulted 

on 222 papers founded. After applying the exclusion criteria of the review protocol, 30 

articles were assessed as the most relevant to the research, meeting all requirements 

previously planned. Figure 26 shows the quantitative flowchart of the execution of the 

research protocol. 
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Figure 26. Papers selection flowchart 

 
 

 
4.1.1 Bibliometric Analysis 

 
 

It is important to carry out a bibliometric analysis, in order to verify the studies 

extracted from the research protocol in a general and quantitative way. In this initial 

phase of analysis, the articles were organized by the journals where they were 

published (Figure 27), by the year of publication (Figure 28) and by the industrial 

sectors (Figure 29), since the focus of the research were articles with studies on the 

shop floor. In addition, Figure 30 shows the most commonly found keywords, mapping 

a terminology already expected before the development of proposed research 

protocol. 

Papers retained for review (N=30) 

Papers eliminated (N=20) 3rd selection based on quality assessment 

Papers selected (N=50) 

Papers eliminated (N=49) 2nd selection based on reading the abstracts 

Papers selected (N=99) 

Papers eliminated (N=123) 1st selection based on exclusion criteria of the SLR 

Search papers based on SLR 
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Figure 28. Number of publications by year 
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Figure 29. Distribution of publications by sector 

 

Figure 30. Most cited keywords 

 

A complete reading of the articles allowed to know the methods and tools used 

in each application, and the extraction of the indicators used to develop and evaluate 

the RCM program. Indifferent to the industrial segment, the concern of the authors of 

the research is centered, as the methodology proposes, in increasing the reliability and 

availability of the equipment through the reduction of failures, bringing, in some 

applications, concerns with personal and environmental safety, according to the 

mapping carried out in the topics to follow. 
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4.2 MAPPING SMART RCM METRICS 

 
 

The review was developed for the mapping of the metrics used in RCM 

applications. The main indicators were extracted from the articles and organized. In a 

first survey 50 indicators were extracted and after careful analysis it was verified that 

many of them, although presented with different names, referred to the same indicator. 

Thus, a step of joining the indicators was performed, which resulted in 25 different 

indicators, according to Figure 31. 

 
 

LIST OF INDICATORS ↓ PAPERS ID ↓ 

Ind ID Indicator [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] 

#01 Availability  X  X   X   X X   X   X X    X   X   X   

#02 Detection Rating X     X    X          X X  X    X   X 

#03 Mean Downtime  X X       X X X  X  X  X    X    X   X  

#04 Economic Cost Risk  X                             

#05 Environmental Risk  X X         X      X           X  

#06 Failure rate (λ)  X  X   X X X   X X X X X X X X X   X X  X   X  

#07 Maintainability  X         X X         X X         

#08 Maintenance Cost  X  X   X  X X        X X   X X   X   X  

#09 Mean Time Between Downing Events                         X      

#10 Mean Time Between Maintenance                         X X     

#11 Mean Time To Failure                  X     X  X     X 

#12 Mean Time To Repair  X  X   X X  X X X   X X X X    X  X X X    X 

#13 Mean Uptime                               

#14 Number of Failures    X   X   X   X     X X     X       

#15 Occurrence Rating X     X       X          X    X   X 

#16 Overall Equipment Effectiveness          X            X         

#17 Probability of Failures X X X X   X    X    X   X     X      X X 

#18 Production Cost   X X   X X X         X X X  X        X 

#19 Reliability    X   X    X  X  X  X     X X X   X X   

#20 Safety Risk  X X       X        X             

#21 Security Cost    X   X                        

#22 Sensor measurements                   X         X  X 

#23 Severity Rating X X    X       X          X    X   X 

#24 Time To Failure                           X    

#25 Total Operation Time                        X       

Figure 31. RCM indicators mapped 

 
 

The information extracted from this survey presents a numerical identification of 

each indicator, represented by "Ind ID", to facilitate the presentation and allocation in 

the next sections. Figure 32 presents the characterization of the indicators with regard 

to the type of information was performed, being divided into qualitative and quantitative 

indicators, as well as their respective units of measurement and a brief description. 



71  

 

LIST OF INDICATORS ↓ FEATURE ↓ MEASURE ↓ 

Ind ID Indicator Quali Quanti Unit Description 

#01 Availability 
 

X Percentage 
Percentage of total hours or scheduled time of 

where a machinery or system is available for production. 

#02 Detection Rating X 
 

Level/Weight 
Measurement of the possibility of a failure of a system, machine or 

equipment to be identified. 

#03 Mean Downtime  X Time Average time that a system is not available for operation. 

#04 Economic Cost Risk X  Level/Weight Economic risk related directly to downtime. 

#05 Environmental Risk X 
 

Level/Weight 
Measurement of impacts caused by physical, chemical or biological 

agents that can cause consequences to the environment. 

#06 Failure rate (λ) 
 

X Failure/time 
The average of how often a component, equipment, or system fails in 

a given time period. 

#07 Maintainability X  Level/Weight Level of facility for maintenance of machinery. 

#08 Maintenance Cost  X $ Effective cost of maintenance employed in each system asset. 

#09 Mean Time Between Downing Events 
 

X Mean time 
Expected mean time between two consecutive events for a repairable 

system. 

#10 Mean Time Between Failures  X Mean time Mean time between failures on a system or asset. 

#11 Mean Time To Failure  X Mean time Mean time an asset will operate before it fails (average asset life). 

#12 Mean Time To Repair  X Mean time Mean time for repair of any asset. 

#13 Mean Uptime 
 

X Mean time 
Mean time an equipment, machine or system is fully operational or 

ready to perform its function. 

#14 Number of Failures  X Quantify Quantitative of failures in a asset. 

#15 Occurrence Rating X  Level/Weight Likelihood of occurrence during production. 

#16 Overall Equipment Effectiveness 
 

X Percentage 
Percentage of time the machines are able to produce at full capacity, 

with products within the specified specification. 

#17 Probability of Failures 
 

X Percentage 
Probability expressed as a percentage in which a component or system 

fails. 

#18 Production Cost 
 

X $ Any expenses associated with the business activity of an organization. 

#19 Reliability 
 

X Percentage 
Probability that an equipment or component will perform its function 

without failures over a period of time. 

#20 Safety Risk X 
 

Level/Weight Measurement of risks related to personal and organizational security. 

#21 Security Cost 
 

X $ 
Expenses related to the implementation and maintenance of security 

related resources. 

#22 Sensor measurements  X Percentage Measurements of process variables used in predictions of failures. 

#23 Severity Rating X 
 

Level/Weight 
Classification of the severity of the failure under aspects of safety, 

environment, production and costs. 

#24 Time To Fail 
 

X Time Estimated time for failure to occur based on time-based maintenance. 

#25 Total Operation Time  X Time Measurement of the total operating time. 

Figure 32. Characterization of mapped RCM indicators 

 

Quantitative indicators are those obtained through numbers and exact data that 

are achieved through measurement, tabulation of reports, control and information 

systems among others. The qualitative ones are those that are more subjective, that 

start from the observation of the evaluator or coordinator of the project and there are 

no exact metrics to measure them, but there are methodologies for their treatment. 

The following is the organization and characterization of the base of mapped 

indicators, with the purpose of improving the interpretation and use in the decision 

models used in this research project. 

 
4.3 ORGANIZING AND FEATURING AND INDICATORS 

 
 

Indicators are essential items for the planning, execution and maintenance of 

any project, as they assess the feasibility of decision-making, how these should be 
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Manufacturing Strategy 

 
Corporate Strategy 

carried out and whether they have been efficient and effective [106]. They can be 

indexes, metrics, collection of qualitative and quantitative information that are able to 

indicate the results obtained through the development of the actions and reach the 

established goals and objectives [107]. It is presented on Figure 33 [106], that 

summarize the maintenance objectives under five headings: (i) ensuring the plant 

functionality (availability, reliability, product quality, etc.); (ii) ensuring the plant 

achieves its design life; (iii) ensuring plant and environmental safety; (iv) ensuring cost 

effectiveness in maintenance and (v) effective use of resources (energy and raw 

materials). We assume that the maintenance objectives pursued at a given plant 

influences the kind of performance indicators used. 

 
 

 
 
 
 

Plant Life 
 

Maintenance Objective 
Plant Safety & 
Environment 

 
 
 
 

Other Plant Factors e.g. 
Energy Use, Plant Shine 

 

Plant Functionality 
- Availability 
- Reliability 
- Desired Output/ 
Operating Pattern 
(Operability) 

- Product Quality 

 

Maintenance Cost 
Effectiveness 

 

Figure 33. Maintenance objectives for a maintenance department. 

 

Measurement metrics are not adapted to real needs, which have a strong 

human factor; nor is there a roadmap of the amount of data to be collected, their 

processing or how they are used in decision-making [108]. The qualitative indicators 

are those that are subjective, based on the observation of those involved with the 

project. There are no exact metrics to measure them, but there are methodologies that 

support their correct use. In order to better explain the characteristics of the indicators, 

they were classified as qualitative or quantitative and the measurement units used in 
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each case were also raised. These aspects are important to support the choose the 

appropriated indicators to be used in the implementation of the RCM. 

 
4.3.1 Indicators grouping 

 
 

Analyzing the context of the surveys and the results of the extraction of the 

indicators, and based on study of [107] four groups were created for better organization 

and visualization: (i) Equipment Performance Measures; (ii) Costs Measures; (iii) 

Process Performance Measures and (iv) Risk Assessment Measures. The criteria for 

this organization were extracted from the literature, with the grouping based on the 

characteristics of the indicators. The group resulted are presented in the Figure 34 and 

detailed as follow. 

 
 

GROUP INDICATOR 

 
 
 
 
 

Equipment 

Performance 

Measures 

#06 Failure rate (λ) 
#07 Maintainability 
#09 Mean Time Between Downing Events 
#10 Mean Time Between Maintenance 
#11 Mean Time To Failure 
#12 Mean Time To Repair 
#14 Number of Failures 
#16 Overall Equipment Effectiveness 
#17 Probability of Failures 
#22 Sensor measurements 
#24 Time Before Failures 

 
 

Costs Measures 

#04 Economic Cost Risk 
#08 Maintenance Cost 
#18 Production Cost 
#21 Security Cost 

 
Process 

Performance 

Measures 

#01 Availability 
#03 Mean Downtime 
#13 Mean Uptime 
#19 Reliability 
#25 Total Operation Time 

 
 

Risk Assessment 

Measures 

#02 Detection Rating 

#05 Environmental Risk 

#15 Occurrence Rating 

#20 Safety Risk 

#23 Severity Rating 

Figure 34. Indicators groups distribution 
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Equipment Performance Measures 

Indicators that submit to the performance of the maintenance function, under 

aspects of optimization of the use of available resources, analysis of failure and repair 

times and difficulties in performing maintenance tasks. The metrics in this group have 

characteristics that support tactical and operational levels [105,109]. The RCM 

methodology can absorb such indicators to analyze failures and their effects, as well 

as in program audits, verifying the results after their implementation. 

 
Costs Measures 

Cost analyzes are concentrated at strategic levels of the company. This group 

of indicators supports decision-making made by the managers of the production 

process, involving the production, maintenance and utilities sectors, encompassing 

environmental and safety aspects (risks) [107]. Due to the complexity of the RCM 

program, it is important to prioritize these measurements to indicate which systems are 

most important for the concentration of implementation and maintenance efforts. 

 
Process Performance Measures 

Global Performance Indicators integrate this group, which focuses on reporting 

how the production system behaves under aspects of availability, downtime and 

uptime, reliability and quality [107]. They are indicators that can be used in decision- 

making at all levels of the company. In RCM they can be used both for global 

performance measurements, for critical system selection, and for tactical and 

operational approaches such as risk measurement and prioritization of maintenance 

activities. 

 
Risk Assessment Measures 

The indicators that make up this group have been commonly used in industrial 

systems for decision-making, with the aim of mitigating or eliminating potential sources 

of environmental, operational and safety risks [109]. The risk measurements are 

predominantly inserted in fault analysis and its effects, for MSIs (Maintenance 

Significant Items) classification. As the central phase of RCM development, risk 

analysis defines important outputs for the selection of best maintenance practices. 
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The groups will serve as a basis for the subsequent use of the indicators in the 

implementation phases of the RCM, providing an overview of all aspects considered 

important for the execution of decision-making processes. 

 
4.4 DISCUSSIONS 

 
 

The mapping of the indicators performed by the systematic review presented is 

an important step in the construction of the Smart-RCM model. For the better 

implementation of the methodology this "menu" provides metrics that are often not 

observed by the managers of the company. We have opted for a review of 

contemporary works, given the advances in information systems of companies in the 

last decade. 

The information extracted from the literature points to a diversity of qualitative 

and quantitative indicators used to evaluate performance and criticality, with 

applications in several segments. These data are used for the implementation of the 

RCM methodology and for further evaluation and feedback. Still, with the separation 

of the indicators into groups, the selection becomes easier, generating an organization 

with the mapping in areas of the process. 

This indicator base is verified by a team of experts at the beginning of the RCM 

deployment. After this availability analysis, the construction of the information base to 

be used starts, with the selection of the most important indicators for the decisions to 

be taken in the implementation of RCM, according to the strategies of the company. 

It should be noted that the review was carried out in several scenarios, but some 

companies have specific and customized indicators that must be analyzed and 

inserted in the methodology. 

The next section (5) presents the steps for creating the proposed Smart-RCM 

model, and topic 5.3 demonstrates the methodology for creating this base of metrics 

to be used in the decision steps of the proposed framework. 
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5 SMART RCM DEPLOYMENT MODEL 

 

 
Around the world, RCM is considered an imperative technology in the industry 

maintenance field that can be functional to improve the equipment availability and 

reliability and reduce operational and maintenance costs [72]. To take advantages 

about it, the RCM classical approach seeks to answer seven questions presented 

sequentially on the system or process analysis: (i) What functions should be 

preserved? (ii) What are the functional failures? (iii) What are the Failure Modes? (iv) 

What are the effects of failure? (v) What are the consequences of failure? (vi) What 

are the applicable and effective tasks? (vii) What are the other alternatives? To answer 

these questions systematically, RCM program process in maintaining a device or 

system can be summarized in steps, according with models (norms and publications), 

as examples shown in Figure 35a [49] and 35b [25]. 

 
 

Figure 35. Examples of classical standards for RCM deployment 

 

Each phase of RCM model is composed of inputs, controls, mechanisms and 

outputs, that forms an information flow. The information generated after the RCM 

implementation is made available to the model for continuous improvement. 
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5.1 CONCEPTUAL MODEL FOR SMART-RCM 

 
 

A miscellaneous of information with qualitative and quantitative characteristics 

is available in all phases of RCM analysis. At each stage there is predominance the 

generation of tacit or explicit knowledge, or mixed approaches. Thus, based on the 

RCM implementation models presented in Figure 35 was developed a comparison 

mapping of the knowledge type used in the deployment phases as well as scope of 

analysis (Table 3). 

 
Table 3. RCM: steps, knowledge type and scope of analysis. 

RCM Step 
     Knowledge  

Scope of analysis 
Tacit Explicit 

RCM Plan X X Analysis of individual and collective tacit knowledge and skills, to 

the RCM team establishment and program management, analysis 

and sustainment. Tacit knowledge is applied to choice the level of 

analysis, knowledge-based of RCM team experts. The explicit 

knowledge is used in the selection of the system to be analyzed, 

investigating the MSIs (Maintenance Significant Items), like the 

KPIs (Key Performance Indicators). Quantitative data is important 

in this phase to identify the critical systems based on process 

parameters and maintenance and process indicators. 

Hardware 

partitioning 

X  Logical division of an item into subsystems and progressively 

smaller elements (components) those are decreasingly complex. 

It is a step based on tacit knowledge from team experts. 

FMECA X X Tacit knowledge is used in identification and analysis of functions, 

failures, failures modes and criticality, being a predominant 

approach in this step. Explicit knowledge is employed in FMEA or 

FMECA extensions, with analysis of process parameters, 

criticality and risk assessment. 

Significant 

function 

selection 

X  Consists in the analysis of failure effects on safety, environment, 

operations, or economics requirements. Tacit knowledge is 

applied in qualitative decision tools, like logic diagrams. 

RCM task 

evaluation 

X X Tacit knowledge is an important information source to determine 

which of several options is best suited to prevent a failure mode 

from occurring or, if not preventing it, to reduce the consequence 

of its failure to a level that is acceptable to the program. The 

evaluation of the efficiency of the maintenance tasks commonly 

use explicit knowledge from maintenance indicators and apply in 

decision-making approaches, to choice the best maintenance 
policies and techniques. 

RCM task 

selection 

X X Tacit approaches are applied at this stage using specialist’s 

responses on decision diagrams, proposals for RCM standards, 

and publications. The use of explicit knowledge, extracted from 

maintenance and process indicators, when available, supports 

decision making in choosing the best maintenance strategies. 

Implementation X  The RCM Implementation Manager use tacit knowledge to 

establish a method of review and approval that ensures the RCM 
methodology and to verify continuously if the RCM program is 



78  

PHASE#1 PHASE#2 PHASE#3 

 
Strategies definition 

and analysis 

i 

sele 
col 

Hardware Partitioning MSIs priorization Feedback/Auditin g 

 

ation of 
e program 

 

ent 
nc 

 

Imp lem 
maintena 

 

ntenance 
ies 

 

ma 
ateg 

 

Defining 
str 

 
alysis 

 
an 

 
Risk 

 

modes 
tion 

 

re 
in i 

 

Failu 
def 

 

Failure modes, effects 
and criticality analysis 

 

ction and 
lection 

 

System 
data 

 
anning 

 
l pl 

 
Initia 

 
RCM Planning 

 
 

properly and effectively applied, maintaining audit trail of RCM 
  recommendations and implemented actions.  

 

The steps for the RCM implementation use knowledge extracted from various 

information sources, from questionnaires answered by the implementation team to 

quantitative data (indicators, metrics) stored in information systems. As these steps 

are structured sequentially, the present research proposes a new structure that does 

not exclude the tasks, but concentrates them, composed by activities analogous to the 

classic RCM model presented. 

Thus, a customized RCM model is proposed, with an emphasis on knowledge 

fusion. The objective is to facilitate the implementation process, focusing on the data 

fusion of qualitative and quantitative indicators, improving the available knowledge for 

decision making. This model performs the steps presented earlier in Figure 35, joining 

them into three phases of implementation: (i) RCM Planning (steps 1 and 2); (ii) 

Failures, effects and criticality analysis (steps 3, 4 and 5) and (iii) Strategy definition 

and analysis (steps 6 and 7). Figure 36 presents the proposed model. The three 

phases are detailed on section 6.4. 

 
 

Figure 36: RCM deployment flow 

 

The present RCM model has a decision-making approach. The layers of the 

company, from the factory floor to the management, have different levels of interaction 

with the processes. According to [109], multiple indicators   should   be 

associated with every level. One layer of indicators could be at the corporate level, and 
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Group I: Equipment 
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Phase #1 – RCM 
Planning 
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Group III: Process 
Performance Measures 

Tactical 

Phase #2 – Failure 
Mode, Effects and 
Criticality Analysis 

Group IV: Risk 
Assessmen t Measures 

   Phase #3 – Strategies 
definition and analysis 

Operational 
Indicators groups RCM Deployment 

Business layers 

another at the departmental level. [110] proposes the division of the company into three 

organizational layers: operational, tactical and strategic. Figure 37 shows the indicators 

groups, their allocations in the business layers and their relationships with the 

development of the RCM program. 

 
 

Figure 37. Relationship between indicators, industrial layers and RCM 

 

Strategic level concerns the provision of productive resources to ensure the 

company's competitive capabilities. This involves monitoring technological changes 

and weighing economic factors and investment criteria. Tactical level addresses 

effective resource utilization and involving the availability and reliability of production 

equipment as well as finding optimal maintenance policies. Operational level deals with 

day-to-day operational and scheduling decisions. This involves prioritizing jobs and 

considering the availability of workers, spare parts, tools and the equipment to be 

maintained. 

 
5.2 DECISION-MAKING DATABASE – DATA FUSION APPROACH 

 
 

The SAE JA1011 standard [24] recognizes RCM as a dynamic program, where 

many of the data used in the initial analysis of RCM are inherently inaccurate, and 

more accurate data will be available over time. The way the asset is used, coupled 

with the associated performance expectations, will also change over time. In this 
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context, the Decision-making Database is the initial collect and treatment of qualitative 

and quantitative data. 

Qualitative data consists in information based on experience from experts. The 

sources of this type of data can include relationships, observations, reports, norms, 

values, operating standards and maintenance procedures. It can be collected using 

forms, questionnaires, interviews, etc. Quantitative data can be extracted from 

maintenance indicators, archives, information systems like CMMS (Computer 

Maintenance Management System) and EAM (Enterprise Asset Management), data 

logs, process data (sensors, controllers and actuators), smart devices and data 

sources included related to Industry 4.0. 

There are several tools and methods for explicit data collection, but they are not 

always available in all processes. Process mining is an important approach to analyze 

this data source and validate it, transforming the quantitative information in a reliable 

information source. 

From the design of the RCM methodology to the proposed model, an initial step 

for the creation of a dynamic database should be implemented, according to Figure 

38. Consists in the fusion of qualitative and quantitative information to feed the 

Decision-making Database (DMD), which will store the MCDM inputs in the RCM 

steps. 

 

Figure 38. Decision-making Database to Smart RCM deployment 

 

This module comprises the following steps: (i) Preparation; (ii) Selection; (iii) 

Formalization and (iv) RCM Deployment. The following topics detail each step from 

DMD. 
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5.2.1 Preparation step 

 
 

The indicator groups were mapped based on the literature, serving as the basis 

for the implementation of the RCM. However, it is necessary to perform an analysis 

and selection of the indicators to be used, according to the availability and importance 

of certain metrics for the company. The quality and availability of the metrics depends 

on the level of maturity of the company. 

Thus a verification of the existence of the data should be the first step in the 

creation of the base of indicators that will be used for the RCM analysis. This evaluation 

should be performed by the managers of the implementation, with the support of a 

team of specialists. This is a correlation between the groups of mapped indicators and 

those available for use. 

 
5.2.2 Selection step 

 
 

After this verification, a prioritization of the indicators to be used should be 

performed, based on criteria defined by the team of experts. In order to support the 

selection of indicators, it is proposed to use criteria related to the company's level of 

maturity under two aspects: (i) Classical RCM requirements and (ii) Asset 

Management (related to Industry 4.0). 

 
Classical RCM requirements criteria 

For the use of indicators of the classic application of the RCM was used as 

reference the NASA RCM Implementation Guide [31], that provides considerations 

about the metrics to be used in the development phases of the program. Managers of 

the processes involved in the possible deployment of RCM should be involved in the 

selection of Key Performance Indicators (KPIs) for the continuous collection of data 

that will support maintenance. This is so that the company's goals and concerns are 

identified. Consideration should also be given to the cost of obtaining the data and how 

much they add to the RCM program. Based on these issues, the criteria used in the 

classical RCM approach are based on maintenance and operation considerations, 

described as: (i) Labor Force, (ii) System Experts, (iii) Training, (iv) Equipment and (v) 
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Maintenance History [31]. It is proposed the addition of risk criteria, described as (vi) 

influence on safety and (vii) environmental impacts [14]. 

 
Asset management criteria 

In order to create a new culture of risk-based asset management the present 

Smart RCM program proposes the use of ISO 55000 standard [111]. According to this 

standard, the factors that influence the type of assets that an organization requires to 

achieve its objectives, and how the assets are managed, include the following: (i) the 

nature and purpose of the organization, (ii) its operating context, (iii) its financial 

constraints, (iv) regulatory requirements; (v) the needs and expectations of the 

organization and its stakeholders. The criteria listed for RCM analysis under aspects 

of asset management were based on these definitions. 

The actions to address risks and opportunities associated with managing the 

assets, taking into account how these risks and opportunities can change with time, by 

establishing processes for [111]: 

• identification of risks and opportunities; 

• assessment of risks and opportunities; 

• determining the significance of assets in achieving asset management 

objectives; 

• implementation of the appropriate treatment, and monitoring, of risks and 

opportunities. 

To better present the proposed criteria for the selection of the indicators are 

presented in Table 4. It is important to emphasize that the use of which can be 

customized by the analysis group. 

 
Table 4. Criteria to indicators selection 

Criteria 

Classical RCM ISO 55000 

Labor Force Business context 

System Experts Operating context 

Training Financial constraints 

Equipment Regulatory requirements 

Maintenance History Needs and expectations 

Safety  

Environment  
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Management experts 

Evaluation 
model 

Processes experts 
Maintanance experts 

 

Final SWOT model 

Initial model Initial SWOT model 

Management experts 
Processes experts 

Maintanance experts 

Confirm/modify the factors 

ISO 55000 
Standard 

RCM Classical 
approach 

Identify the weights of each 
factor via AHP method 

 

 
Final indicators ranking 

Next, the indicator selection phase is an organizational approach to the 

decision-making process with a hybrid SWOT-AHP model, according to the flowchart 

shown in figure 39, adapted from [112]. 

 
 

Modifying 
SWOT model 

 
 
 

Figure 39. SWOT-AHP flowchart. Adapted from [112] 

 

First of all, an initial model is built by the process management experts. The 

SWOT matrix is built using factors, which will be the evaluation criteria, based on the 

classic RCM model and the ISO 55000 (asset management) standard. Then the built 

model passes through an evaluation by the same team that modifies or adapts it 

according to the objectives of the company. Then the weights of each criterion are 

defined using the AHP method, performing a ranking of the indicators. 

In the proposed model the SWOT analysis should be performed, analyzing and 

classifying the appropriate indicators for each step where multi-criteria decision- 

making methods are employed. The Figure 40 presents an example of the criteria 

distributed in the four SWOT groups. 

 
 

In
te

rn
a
l 

e
n

v
ir

o
n

m
e
n

t  
S#1 

S#2 

S#3 

S#4 

Strengths 

Equipment 

Operating context 

System Experts 

Maintenance History 

 
W#1 

W#2 

W#3 

Weaknesses 

Training 

Needs and expectations 

Safety 

 

Management experts 
Processes experts 

Maintanance experts 

   



84  

S 

S#1 S#2 S#...n 

 

W#1 W#2 W#...n 

 

O#1 O#2 O#...n 

 

T#1 T#2 T#...n 

 

 

Objectives 

 
Indicators to RCM 

 

SWOT Factors 

 

Indicators 

 

E
x
te

rn
a
l 

e
n

v
ir

o
n

m
e
n

 
t 

 
O#1 

O#2 

Opportunities 

Environment 

Labor Force 

 
T#1 

T#2 

T#3 

Threats 

Regulatory requirements 

Business context 

Financial constraints 

 

Figure 40. Example of SWOT analysis 

To optimize the selection of indicators, an approach is proposed using the 

SWOT analysis and the AHP in a hybrid method. The goal is to improve the company's 

vision and optimize decision making. The use of the proposed SWOT-AHP method is 

important for the analyzes of the samples included in the SWOT analysis and make 

them commensurable. While the SWOT analysis shows the current situation, the AHP 

measures a methodology referring to SWOT factors [17,18]. By joining the SWOT and 

AHP, an evaluation of the alternative options and a mutual weighing of SWOT factors 

can be integrated with common analyzes. Thus, a more evident SWOT weakness can 

be avoided [19]. 

The hierarchy for the present research problem has been structured in four 

levels. The first level is the main goal will be achieved by the decision: to select the 

best indicators to use in RCM phases. The second level consists of decision objectives 

such as to take advantage of the Strengths, to reinforce the Weaknesses, to use the 

advantage of Opportunities and to develop the best defense to the Threats. At the third 

level SWOT factors described in SWOT analysis take part in. Finally, the fourth level 

consists of alternative indicators. A graphical representation of the hierarchical 

structure we used in this study is presented in Figure 41. 

 
 

 

 
 
 

 

Figure 41. Hierarchical structure to SWOT-AHP approach 
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To limit the amount of indicators selected, some tool should be used, according 

to the opinion of the deployment team. Applying the Pareto chart may be a good option 

to determine this cut line. 

The decision-making process should be carried out in three dimensions 

(performed three times), taking into account the indicators that will be priorities for 

MCDM models of the three phases of deployment, according to Figure 33. The team 

that will be part of the analysis should also be defined respecting the layers of the 

company (strategic, tactical and operational). 

The characterization of the indicators should be performed based on their units 

of measurement, being divided between qualitative or quantitative, so that they are 

properly analyzed and formalized, as reported below. 

 
5.2.3 Formalization step 

 
 

For the preparation and organization of the information to be used in the RCM 

implementation the qualitative indicators go through a process of scheduling, through 

the creation of scoring tables. For this, the Saaty scale is used [113], which relates 

intensities with definitions, generating tables that will be answered by the decision 

makers when in multicriteria decision-making. On the other hand, the quantitative data 

are analyzed by process mining, in order to analyze outliers or deviations associated 

with the objectives of the indicators. With this, this information can be treated or 

discarded, increasing the reliability of the data used. 

All information is allocated in the DMD (Decision-Making Database). The 

qualitative information will be entered manually, while the quantitative information will 

be automatically collected from datalogs of the company's Information System (IS). 

Updating the information should be performed at pre-defined intervals, according to 

the capabilities and guidelines of the company. 

 
5.2.4 Towards the Smart-RCM Deployment 

 
 

All the dynamic information of the indicators stored in the DMD will be used in 

RCM deployment, in steps that are the development phases. They will serve as inputs 



86  

Phase#1: Planning Phase#2: Failure mode, effects and criticality analysis Phase#3: Strategies definition and analysis 

Start FMECA 
Analysis 

SWOT CEV 

Decision 
Making 
Database 

 
Preferences 

 
ELECTRE TRI 

Maintenance 
strategy 
definition 

BSC 

MSIs 

Priorization 

 

Hardware 
partitioning 

 

System 
selection 

 
PROMETHEE 

 
ELECTRE TRI 

 
TOPSIS 

Initial 

planning 

Critical 
components 

Risk analysis 

(Classific ation) 

to the MCDMs that will have their decisions changed dynamically, influencing their 

respective outputs (classification, prioritization, etc.). The following topic presents the 

proposed conceptual model, emphasizing the decision steps to be implemented. 

 
5.3 SMART RCM FRAMEWORK 

 
 

As shown in figure 38, the DMD stores and makes available the information 

needed to be consumed by the decision models in the RCM steps. The Smart RCM 

framework proposed in Figure 42 presents these steps and the decision making 

processes. In the lower part of the figure is the DMD, already with the information 

structured to be used in each phase of the deployment, according to the presented 

flow. Thus, the available information is used as inputs to decision processes (MCDMs), 

considering the preferences of decision makers. 

STRATEGIC DECISIONS TACTICAL DECISIONS OPERATIONAL DECISIONS 

 
 
 

 

Auditing 
 Optimal 

Maintenance 
Policy  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 42. Smart RCM framework 

 

The upper part of figure 42 shows an organizational layering (strategic, tactical, 

and operational) that defines the level of analysis for that phase. Phase 1 (Planning) 

performs management-level decisions, requiring top-tier metrics and information. 

Phase 2 (FMECA) conducts risk analysis, using information at a tactical level, with a 

multidisciplinary bias. Finally, layer 3 (MSS) has predominance of execution 

information, present in the operational layer. 
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The central boxes represent the phases and tasks to be performed in Smart 

RCM, according to their execution flow. These tasks are allocated according to the 

necessary actions presented in the RCM conceptual model (Figure 36), and are 

supported by their respective decision methods. 

The lower part of the blocks of the deployment phases presents the filters used 

to form the structural basis of the indicators used in each decision model. In the first 

phase, the BSC methodology provides subsidies for better organization of the 

indicators for selection of the passive application systems of RCM. In phase 2, the 

SWOT methodology assures the selection of the best metrics in the classification and 

prioritization of the system items, improving the overall system vision under internal 

and external aspects of the company, analyzing efficiently its criticality indexes. In 

phase 3 is proposed a new approach called CEV (Criticality, Efficiency and Viability), 

which organizes the indicators to select the maintenance tasks under these three 

perspectives, providing a general and systemic view of the metrics that are in fact 

important for the taking necessary decisions. 

Under aspects of database, the quantitative information should be subject to 

sporadic reviews according to the audit program present in phase 3. The quantitative 

information will be modified automatically as it is the process data with automatic 

updates. The quality of the information stored in the DMD is important to ensure the 

efficiency of the program, which must undergo audits at a frequency determined by the 

managers involved. 

More details on the three phases of deployment are presented below. 

 
 

5.3.1 Phase 1: Planning 

 
 

At this stage the human resources structure and tools necessary for the 

development of the RCM program must be defined. In the sequence the activities must 

be initiated with the appropriate selection of the system to be analyzed, based on 

strategic indicators that are chosen by company direction (according to the process 

characteristics and level of maturity), defined in “Selection Step” of DMD development, 

according to Figure 42. 

This early phase of Smart-RCM is best shown in Figure 43. 
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Figure 43. Planning phase from Smart-RCM framework 

 

To support the selection of the most viable systems for the application of Smart- 

RCM, this research uses the BSC (Balanced Score-Card) tool, which consists of a 

strategic management model that helps to measure the progress of companies in their 

long-term objectives. The BSC was proposed by [114], and is considered a model that 

translates the mission and strategy of a business into a set of quantifiable objectives 

and measures. 

The measures are built on the views of the investor (financial perspective), 

performance attributes of customer value as well as the long and short term objectives 

(perspective of the internal process) and finally, development and learning value 

(learning perspectives and growth) [115]. 

In order to measure each perspective, company managers should define which 

indicators should be used as decision criteria. For example, in the "Internal Business 

Process" perspective, process or equipment performance indicators can be selected. 

These indicators should be extracted from the base generated by the DMD (See topic 

6.3). Figure 44 represents the dimensions around BSC. 

DMD 

Phase#1: Planning 

Hardware 
partitioning 

System 
selection 

Initial 
planning 

BSC- 
TOPSIS 

Especialists 
analysis 

Especialists 
analysis 

 
Phase#2 



89  

System...n 
System 3 
System 2 
System 1 

 

 

Figure 44. BSC model to support the system selection 

 

Thus, in this first phase of Smart-RCM the indicators of the BSC dimensions will 

be criteria used in the multicriteria decision model. In this case, the TOPSIS method 

will be used, which evaluates the performance of the alternatives through its similarity 

with an ideal solution. According to this technique, the best alternative is the one 

closest to the ideal solution and the farthest from the non-ideal solution. Figure 45 

shows the matrix of the TOPSIS model to select the most viable systems for the 

application of Smart-RCM, showing the criteria (indicators) under the BSC perspective 

and the alternatives (systems). 
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Figure 45. TOPSIS generic matrix for system selection 

 

Plants have several systems, and each system has a certain degree of 

importance to the business process. Thus, the present research highlights the 

importance of the correct selection of the systems for the implementation of the RCM, 
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proposing the use of MCDM technique using criteria from DMD to select the most 

critical system to be analyzed. 

After structuring the most critical systems it is possible to apply the RCM in that 

have been defined as priority. The RCM team should define if one or more systems 

should be analyzed, since the RCM program needs resources (people and 

infrastructure), resulting in additional costs that must be evaluated. It is recommended 

the first application in a single system for maturing the methodology by the team 

responsible for the implementation, as well as the managers of the company. 

The fact is that, according to [116], deciding at which level the analysis should 

be conducted is a difficult task. It is often necessary to make adaptations, since the 

workload can be high even for a moderately sized system. However, it is a general rule 

to expand the analysis to a level at which estimates of the failure rate are available or 

obtainable. 

Once the system has been chosen, a hierarchical structure must be 

constructed, partitioning the hardware into equipment and components. The 

information of the equipment must be created up to the level component to be used in 

the next phase. The operational context and boundaries of the system selected for 

analysis should be mapped. Process data, flowcharts, procedures and technical 

content could support this phase. Figure 46, adapted from [116], represents the 

structure of a plant, with hierarchical levels. 

 
 

Figure 46. Plant partitioning 

 

Software and hardware maintenance items are selected from a plant 

decomposition into systems, subsystems, equipment, and components [116]. In the 

present research it is suggested an analysis at equipment level, since from this layer 

the indicators are commonly available and easy to obtain. The lower the level of 



91  

a i r 
e t i r C 

      
 

DMD 

Phase#2: Failure mode, effects and criticality analysis 

 

MSIs 
(Priorization) 

 

Critical 
components 

 

Risk analysis 

(Classific ation) 

Start FMECA 
Analysis 

 
Phase#1 

MCDM 
PROMETHEE 

MCDM 
ELECTRE 

Especialists 
analysis 

 
Phase#3 

analysis, the more difficult is access to information. However, this selection can be 

made at the time of deployment. 

The output of this first phase will be a ranking of the most viable systems for 

Smart-RCM. The second phase carries out the survey of the Maintenance Significant 

Items (MSIs) using FMECA analysis, through its classification and ranking of the 

system items, according to the level of analysis. 

 
5.3.2 Phase 2: Failures modes, effects and criticality analysis 

 
 

Traditional FMECA approaches apply the Criticality Analyses of failure modes 

are based on the three risk parameters of severity (S), occurrence (O) and detection 

(D) whose product returns the risk priority number (RPN). Despite its wide use, the 

classical RPN has been widely criticized for having many shortcomings [117]. As a 

result, numerous enhanced versions of the traditional FMECA have been applied and 

the Smart RCM proposed in present research is one of them. The FMECA model to 

be implemented is based on SAE RCM standards - for more details, see [25,26]. 

This phase is basically the application of FMECA, with qualitative and 

quantitative approach (data from DMD). The collection of information should be 

registered in a spreadsheet that will ensure the documentation of the failure modes 

associated with each functional failure, its causes and effects, assisting in the analysis 

of maintenance actions. The application of MCDM techniques is employed to classify 

and prioritize the failure modes based on criticality analysis. 

This information from DMD is used as inputs to the MCDMs, as shown in Figure 

47. 
 

 

Figure 47. FMECA phase from Smart-RCM framework 
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This phase has two main objectives: (i) to classify system components (MSIs) 

into criticality groups and (ii) prioritize these items for subsequent strategic 

maintenance actions. These steps are explained below. 

 
Risk analysis – classification 

This decisional step consists in using the ELECTRE TRI method to classify the 

equipment / components through risk analysis. The tool used to formalize this stage is 

the FMECA, which develops the analysis of failure modes, the effects of failure on the 

system functions and their criticality. Figure 48 presents the ELECTRE structure. 
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Weights W1 W2 W3 Wn  

A
lt

er
n

at
iv

es
 Component 1 -     

Component 2  -    

 

Component 3   -   

Component...n    -  

Figure 48. ELECTRE structure to risk classification 

 

Groups are formed using levels of criticality A, B and C, being A items of high 

criticality, B of medium criticality and C of low criticality. This classification supports the 

maintenance strategies to be adopted in phase 3 of Smart-RCM. 

 
MSIs priorization 

This step prioritizes the most significant items in relation to their criticality 

indexes to the system. A ranking is performed and serves as the basis for step 3 for 

choosing more critical maintenance strategies for the most critical items. Because it is 

a dynamic model, this list is updated according to the information of the indicators 

requested in the DMD. 

This information feeds the PROMETHEE model, which dynamically outputs the 

list of items and their criticalities, supporting MCDM inputs from phase 3, which selects 

maintenance strategies according to criticality levels. The structure of the method 

(PROMETHEE) is presented in Figure 49. 
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Figure 49. PROMETHEE structure for criticality ranking 

 

With the robustly classified and ranked items, the maintenance strategies can 

be better selected, according to the methodology presented in the following topic 

(phase 3 from Smart-RCM framework). 

 
5.3.3 Phase 3: Strategies definition and analysis 

 
 

This phase addresses many of the issues considered prior to implementing an 

RCM program, in a knowledge and decision context. Applying the adequate 

techniques, the selected tasks are improved and updated to maintenance plan. As the 

level of maintenance maturity increases, tasks selected previously can be changed to 

a most adequate type (for example, a task in a failure mode characterized like RM 

(Reactive Maintenance) can be changed to TbM (Time-based Maintenance). The 

strategies adopted in maintenance plan have to be analyzed continuously. The results 

tracking has to be formalized with a readable format and feedback the RCM program. 

The literature has several approaches to maintenance policies. In the present 

research, it is proposed a selection of the tasks at a higher level, with alternatives of 

using techniques of (i) RM (Reactive Maintenance), (ii) TbM (Time-based 

Maintenance), (iii) CbM (Condition-based Maintenance) and (iv) PRx (Prescriptive 

Maintenance [adapted from 119]. Under each of the four "umbrellas" we have specific 

tasks, according to the structure of each company / maintenance sector. In this case, 

the choice is linked to the maintenance planning team, who must define the specificities 

of each work-order. 

More critical equipment / machines should be considered with the application of 

prescriptive maintenance techniques (including Engineering activities to adapt the 

technologies); intermediate with time-based maintenance and condition-based 

maintenance and the least critical with reactive maintenance (Run-to-failure). 
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Based on the criticality of each item listed in the previous phase of the Smart- 

RCM, they undergo a decision process also through the application of multicriteria 

method. This analysis will define which maintenance policy is feasible for each item. 

Figure 50 presents the steps of phase 3. 

 
 
 

 
Auditin g 

  

Optimal 
Mainten an ce 

Policy 

 
 

 
Figure 50. Strategies definition and analysis phase from Smart-RCM framework 

 

As a criterion for the selection of maintenance policies, a new approach is 

proposed, in which the maintenance strategy is at the ideal point in the intersection 

between Criticality, Efficiency and Viability (CEV). Figure 51 presents this conception 

with the three perspectives and the Sweet Spot called MSS (Maintenance Strategy 

Selection). 

 
 

Figure 51. Perspectives for the MSS Sweet Spot 

 

The CEV perspectives are better explained below. 
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Criticality 

Indicator collected in the previous phase of Smart-RCM, after the classification 

and prioritization of MSIs. This is a quantitative metric, extracted from the final ranking 

of the items in Promethee method. 

 
Efficiency 

It is proposed to extract the OEE (Overall Equipment Effectiveness) indicators 

of the item to be analyzed. It is the product between three indicators (OEE = Availability 

x Performance x Quality). These measures are quantitatively extracted from the 

company's information system. The calculations are presented below. 

 
 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑢𝑠𝑒𝑑 

 
 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 
 
 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 
𝐼𝑑𝑒𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 

 
 

𝑅𝑒𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 
 
 

 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑟𝑒𝑤𝑜𝑟𝑘𝑒𝑑 

 
 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
 
 

The indicators and the efficiency result of the equipment are calculated in 

percentage values. 85% efficiency is the current benchmarking in the WCM (World 

Class Manufacturing) scenario. 

 
Viability 

The application of a certain maintenance strategy should verify its feasibility of 

implementation and execution. In this context, it is proposed to use two metrics: (i) 

Maintainability and (ii) Costs. The standard BS EN15341:2007 [120] establishes 

groups of maintenance performance indicators that support this approach. 

Maintainability addresses technical maintenance issues and Cost refers to financial 

expenses with maintenance activities. The indicator Maintenance Costs is calculated 

by dividing Total Downtime by Number of Service Breaks. The indicator Maintainability 

is qualitative, having to be converted according to the values raised by the 
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Item 1 
Item 2 

Item...n 

maintenance planning, which can assume values on a scale involving attributes of 

ease, accuracy, safety and economy in maintenance tasks. 

The criteria are the CEV perspectives and the sub criteria are the indicators. 

Some indicators are still selected in the construction of the DMD, by the RCM group. 

As the objective of this phase is to classify the items for allocation in different 

maintenance strategies, the use of the Electre Tri method is proposed. The decision 

structure is shown in Figure 52. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 52. MCDM structure to maintenance strategy selection 

 

In the implementation and in the improvements that must happen through the 

audit plan other indicators can be inserted, according to the need of the company. 

Therefore, all RCM processes must undergo a periodic review, both in the information 

used in decision-making and in the decisions themselves [25]. The process used in 

conducting the reviews should ensure that all RCM issues continue to be satisfactorily 

met. The asset management program, derived from RCM, is intended to ensure that 

the asset continues to meet the functional expectations of the moment for its owners 

and users. 

It is important to note that the present work suggests the use of the indicators 

raised in the literature, however some specific information or measure can be inserted 

to optimize the model, such as new intelligent equipment, sensors and data sources 

included related to Industry 4.0. The flexibility of changing the parameters of the 

MCDMs allows the constant updating of the RCM. 

 
5.3.4 Auditing Smart RCM 

 
 

The presented framework consists of a database (DMD) that unites qualitative 

and quantitative information to be used in the Smart-RCM phases. This basis is the 
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focus of the audit effort as it focuses on the indicators used in the RCM analysis, which 

serve as a basis for the implementation and evaluation of the program. 

For the continuous evaluation and continuous improvement of the RCM, an 

audit program is proposed, being constructed with the following elements: (i) survey 

with general evaluation questions of the program and (ii) specific analyzes in the DMD 

indicators. Details are given below. 

 
Survey for the general evaluation of RCM 

The proposed survey consists of a specific questionnaire to be answered by the 

specialists, for an evaluation of the program under general aspects. The answers 

should be analyzed for possible modifications or adaptations in new opportunities for 

the development of the Smart-RCM framework. This questionnaire is based on the 

publications [34,38], being composed by basically two parts: (i) implementation 

checklist and (ii) results evaluation survey. 

 
Specific analyzes in DMD indicators 

Qualitative and quantitative metrics are components of the multicriteria decision 

models, for the choices of the best alternatives in their RCM scope. Qualitative 

measurements are inserted into these models through their conversions to quantitative 

scores (scales). These should be audited sporadically, since the nature of the 

information is more static than dynamic. They should take into account changes in 

company objectives, use of new techniques or technologies, changes in government 

laws, appropriateness of standards, et. Quantitative metrics are originated from 

datalogs of the company's information systems, being dynamic information. This 

information is updated according to the potentiality of the system used and the need 

assessed by the specialists. 

Idle machine time, failure rate, operational stops, etc., are examples of these 

metrics. Changes may occur due to the insertion of new technologies, installations of 

new measuring points, changes in projects, changes in the life cycle of the equipment, 

etc. The indicators used can be altered for better interpretation and RCM analysis, 

through a review of the DMD, whose sporadic nature should also be analyzed by the 

group of specialists. 

The conceptual basis for these approaches is presented in Table 5. 
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Table 5. Audit Plan information sources 

Action Source 

Analysis of the answers to the basic 
questions of the RCM 

RCM II – Moubray [15] 

RCM assessment forms (from the 
literature) 

SAE JA1011 [25], Nasa [31] 

Query indicators (updates) Systematic Literature Review 

Proposals for improvements (sensing, 
standards, policies, etc.) 

Industry 4.0 - Publications 

Analysis of performance indicators EN 15341 [120] 

Procedures Writing and RCM Manual Internal work 

Trainings, updates Internal work 

 

With the results of the application it is possible to locate gaps in its functions, 

organizational and technological. These can be analyzed according to the experts of 

human resources, and directed outwards as action plans for improvements. 

The results obtained after the application of the dynamic decision making 

techniques have the purpose of ordering the machines of the system by means of the 

quali-quanti information, with the indicators and their preference values (weights) 

extracted by means of peer reviews. For the identification and evaluation of possible 

uncertainties in these processes, it is important in the evaluation of the Smart RCM the 

application of sensitivity analyzes, which can determine the robustness of the solutions 

obtained in the decisions. This analysis allows the prediction of the result generated 

by changes in the parameters (indicators) or in the activities (selection of the system, 

risk analysis and selection of maintenance strategies) in the MCDMs models of the 

Smart-RCM phases. 

These analyzes may determine how the course of the solutions obtained with 

machine prioritization can be modified with changes in the variables of the decision- 

making process. When these changes occur, you can use the output information in the 

problem formulation step. 

Through this analysis also known as "what-if" analysis, recommendations for 

decision-makers can be suggested based on the change of variables in the analytical 

model. As a hypothesis test, the goal is to test and quantify performance results 

through different ways to achieve the ultimate goal of the process. 
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The withdrawal or insertion of new indicators as well as changes in their weights 

must be analyzed and tested, generating suggestions for changes in the information 

available for the analyzed system. For example, in the stage of risk classification 

(phase 2 of Smart RCM) a machine considered non-critical (class C) can, after 

insertion of a new criterion (indicator) can have its position changed, being classified 

as critical (class A or B). Consequently, the maintenance policy to be adopted can be 

changed, for example, from corrective to predictive, due to the new classification of the 

machine as critical. It is an important approach and can bring questions about 

investments in new technologies, including better sensing of machines, which are 

commonly discussed around the concepts of Industry 4.0. 

The process of continuous improvement is an already widespread practice in 

the area of industrial maintenance, whose objective is to analyze the tools and 

methodologies used for later re-adaptation. 

 
5.3.5 Operational framework 

 
 

In order to improve the interpretation of Smart RCM, Figure 53 presents the 

proposed model with an operational view. It is possible to observe the interconnection 

of the phases of the RCM methodology with the use of analytics tools. The mapping of 

indicators in literature provides a basis for initial metrics, which are selected by a group 

of experts and managers. With qualitative and quantitative characteristics, these 

indicators are filtered and organized to constitute the DMD, data source for the RCM 

stages. The treatment of this database is performed with process mining tools 

(quantitative indicators) and scales (qualitative). 
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Figure 53. Operational view of Smart-RCM 

 

MCDMs are used at all stages, with support of strategic management tools for 

better organization of information. The items of the installation of the machines and 

equipment are classified and ranked, for the prioritization in the maintenance planning. 

Most critical items are amenable to the use of more advanced maintenance strategies. 

The selection stages of the indicators and the selection of the system to be 

implemented by RCM are offline, passive processes of changes with higher 

frequencies defined by the audit plan. The phases of classification and ranking of risks, 

as well as the selection of maintenance strategies, occur in real time, since the 

quantitative indicators are visited in the maintenance information system. 

With the use of this qualitative basis in the decision-making tasks, the advances 

made are noticeable, and it exalts important and current concepts that permeate 

Industry 4.0. 
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5.4 DISCUSSIONS 

 
 

It is commonly observed that maintenance professionals are combining 

quantitative and qualitative techniques in an effort to identify failure modes, investigate 

motives, and attempt to reduce downtime. However, the emergence of new connected 

technologies may allow the machines to perform these tasks, both maximizing the life 

of the machine components and avoiding machine failure. In this context, the proposed 

Smart-RCM develops techniques and methodologies for the constant flow of physical 

asset data, allowing agility in decision making. Unforeseen situations and changes in 

facilities conditions can be detected in real time, decreasing frequency or eliminating 

possible damage. 

Proper structuring and use of company data can enable end-to-end transparency, 

and proper choice of algorithms and analyzes for the interpretation of such data can 

allow for holistic decision making on asset maintenance approaches. 

The combination of the tools and technologies that make up the Smart-RCM 

allows the selection and treatment of company data, making important information 

available to many decision makers in order to increase the reliability of the systems. In 

this proposal, the creation of DMD based on information of RCM applications in several 

industrial segments allied to the management of assets brings a new approach, with 

characteristics coming from Industry 4.0. The use of analytics tools with support of 

strategic management tools, MCDMs and Process Mining methods highlight the 

potentiality of the proposed system, which aims at the dynamism of decision-making 

in the Smart-RCM environment. 

Nowadays, the concepts of Industry 4.0 have been developing concepts that 

exalt the term "Smart", in order to obtain information, interpret them and make quick 

and accurate decisions, in real time. In this context, the maintenance function seeks to 

identify sources of potential failures by taking action before they occur. 

Thus, the concept of Smart-RCM is linked to industry 4.0 due to the use of its 

technologies, since the latter is a term coined by the high-tech strategic design of 

several renowned institutions to designate the computerization of manufacturing. This 

makes it easier to see and run smart factories, which do not just depend on people to 

make decisions. 
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Currently, few humans are seen on assembly lines, and these supervise the 

work of machines through software integrating technology into automation and 

information technology. The storage of data, hardware, software and networks are 

much more effective in the industry 4.0, being technically and economically possible to 

integrate information technology functionalities into more devices, and consequently to 

achieve more significant results. 

Thus, the Smart-RCM framework integrates the design of intelligent plants, 

which collect, store and analyze data to make decisions in real time. 
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6 SMART RCM APPLICATION IN SIMULATED ENVIRONMENT 

 

 
In an industrial process, it is commonly performed the decomposition of the 

company's production process into various manufacturing steps, which are executed 

in your workflow. Therefore, in order to interpret and optimize a process, which should 

soften and / or solve problems, especially at the level of production, execution and 

coordination of various workflows of manufacturing process, plays an important and 

indispensable role [121]. According to [122] engineering systems fit into a very broad 

area that involves multiple activities, such as engineering requirements, designs and 

specifications, implementations, tests and deployments. The biggest challenge is the 

lack of determinism, depending on the different paths that a process can take. 

[123] elevate the importance of workflow management systems in today's 

competitive market by providing support for important decisions. However, in order for 

the system to be able to conduct some evaluations, it is necessary to use formalism 

requirements in the construction of the models, which significantly reduces the risk of 

erroneous decisions in relation to the project of the analyzed process. Scenarios can 

be performed immediately for discussion and analysis. According to [124], Petri nets 

have been extensively studied and applied successfully in the area of dynamic systems 

of discrete events, which are characterized by parallelism and synchronization. The 

incentives that lead to research in this area are the strong mathematical foundation 

and the availability of analysis tools [124]. 

Thus, for the Smart-RCM analysis a simulated environment is used. It is a 

production system modeled in Petri net proposed by [125]. With the parameterization 

of the model and the extraction of the datalogs tests in the system can be realized. 

Process mining techniques support the treatment of data extracted from the model to 

verify the proposed dynamic model. The process, techniques and tools used and the 

results will be presented below. 

 
6.1 APPLICATION SCENARIO 

 
 

In order to verify the viability of Smart-RCM, an intervention in a generic 

manufacturing process is proposed [125]. It consists of a model with manufacturing 

parameters and indicator measurements. The manufacturing process of a given 
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product receives a configurable production schedule, executes service orders, and 

generates event logs for evaluation. 

Issues related to operational and fault stoppages (inactive machine), scheduled 

and unscheduled, are measured. In addition, the verification of resources and 

transport, withdrawal and inspection of the product is carried out. Figure 54 shows a 

flowchart of the process, with its tasks and sub processes. 

 
 

Figure 54. The process flowchart for the simulated environment 

 

The process was developed in specific software for modeling and simulation of 

Colored Petri Nets - CPN Tools. It consists of a tool to edit, simulate and analyze high- 

level Petri nets with support for basic, timed and colored petri nets. It also performs 

simulations and has a space-state analysis tool. 

 

Scheduled 
Production 
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Machine 1 

Production 
Order Machine 2 Product 

Machine 10 

The process was simulated to meet an initial Smart RCM analysis. Since the log 

does not record the information of the resources (production), the simulations were 

performed individually, simulating a process with machines operations in parallel, for 

the production of an "X" product. According to [25,116], the RCM analysis assesses 

failures under several levels: system level, sub-systems, equipment and components. 

Figure 46, presented on 5.3.1, represents the structure of a plant, with these 

hierarchical levels. However, the simulated environment used for this experimental 

application provides machine data records. This approach does not compromise the 

quality of the results, as the objective is to test the tools and dynamics of the Smart- 

RCM, regardless of the level of analysis used. Thus, ten simulations were performed 

(10 machines), each producing 200 pieces. Figure 55 presents the machines 

arrangement. 

 
 

 
Figure 55. Layout of the simulated production system 

 

The simulation was run sequentially in the CPN Tools software and the 

instances were generated in unique files for each simulation. The purpose of using 

CPN Tools with such a simulated environment is to generate datalogs for application 

in Smart-RCM. Each machine generated 200 log files with the extension "cpnxml". 

Using a conversion software (Prom Import) the 20 files were converted to a single with 

the extension ".mxml". 

Thus, this procedure was repeated for the 10 machines, generating instances 

in single files for each simulation, which were used for the Process Mining in the Prom 
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software. The next topics present the initial analyzes performed. Mining techniques are 

used to extract the quantitative data to analyzes of the decisional processes. 

It should be noted that, at first, the simulation was performed using data and 

random choices, through the researcher's intuition and random data calculated by 

Excel. 

 
6.2 DEPLOYMENT OF SMART RCM 

 
 

In the following topics the three phases of Smart-RCM are presented through 

an application in a simulated environment. 

 
6.2.1 System Selection – BSC-TOPSIS approach 

 
 

As noted in previous sections, the RCM process is honorable and demands time 

and resources of the company. Thus, for the prioritization of the systems to be 

submitted to this process a multicriteria decision analysis is proposed. The method 

used is TOPSIS, with a criteria approach supported by the BSC strategic planning tool. 

Initially the decision matrix is constructed with the structure presented in Figure 

56. The alternatives are the systems available for evaluation and the criteria are the 

elements of the proposed BSC approach. 

 
 

 BSC perspectives 

Financial Costumer Internal Business Process Learning and Growth 

Maintenance 

Cost 

Eonomic 

cost risk 

Production 

cost 
OEE Failure rate Availability Safety Risk 

Severity 

Rating 

Weight 0,125 0,125 0,125 0,125 0,125 0,125 0,125 0,125 

System A 5,000 1,000 5,000 72,000 0,031 84,973 4,000 1,000 

System B 3,000 5,000 2,000 67,000 0,029 85,490 5,000 3,000 

System C 5,000 2,000 3,000 88,000 0,058 75,262 2,000 1,000 

System D 2,000 4,000 4,000 91,000 0,058 75,099 2,000 5,000 

System E 1,000 3,000 3,000 85,000 0,030 85,329 2,000 3,000 

 8,000 7,416 7,937 181,447 0,097 181,973 7,280 6,708 

Figure 56. TOPSIS Decision Matrix 

 

The qualitative indicators use a 5-point scale filled out by random values 

calculated by Excel and the quantitative indicators are extracted from the database of 

the simulated process model. 
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In the sequence, the normalized matrix of the method, shown in Figure 57, is 

constructed. 

 
 

 BSC perspectives 

Financial Costumer Internal Business Process Learning and Growth 

Maintenance 

Cost 

Eonomic 

cost risk 

Production 

cost 
OEE Failure rate Availability Safety Risk 

Severity 

Rating 

Weight 0,125 0,125 0,125 0,125 0,125 0,125 0,125 0,125 

System A 0,625 0,135 0,630 0,397 0,319 0,467 0,549 0,149 

System B 0,375 0,674 0,252 0,369 0,299 0,470 0,687 0,447 

System C 0,625 0,270 0,378 0,485 0,597 0,414 0,275 0,149 

System D 0,250 0,539 0,504 0,502 0,597 0,413 0,275 0,745 

System E 0,125 0,405 0,378 0,468 0,309 0,469 0,275 0,447 

Figure 57. Normalized Decision Matrix 

 

The weights were, at first, filled with the same value, a result of the division 

between the eight criteria. The next step is the calculation and completion of the 

weighted decision matrix and the worst and best values, as shown in Figure 58. 

 
 

 BSC perspectives 

Financial Costumer Internal Business Process Learning and Growth 

Maintenance 

Cost 

Eonomic 

cost risk 

Production 

cost 
OEE Failure rate Availability Safety Risk 

Severity 

Rating 

Weight 0,125 0,125 0,125 0,125 0,125 0,125 0,125 0,125 

System A 0,078 0,017 0,079 0,050 0,040 0,058 0,069 0,019 

System B 0,047 0,084 0,031 0,046 0,037 0,059 0,086 0,056 

System C 0,078 0,034 0,047 0,061 0,075 0,052 0,034 0,019 

System D 0,031 0,067 0,063 0,063 0,075 0,052 0,034 0,093 

System E 0,016 0,051 0,047 0,059 0,039 0,059 0,034 0,056 

 𝑉+      0,016 
𝑗 0,017 0,031 0,063 0,037 0,059 0,034 0,019 
𝑉−      0,078 
𝑗 0,084 0,079 0,046 0,075 0,052 0,086 0,093 

Figure 58. Weighted Normalized Decision Matrix 

 

In the sequence, the Euclidean distance from ideal and worst are calculated, 

which are the basis for the calculation of performance score. Thus, we have the final 

ranking (Figure 59) of the evaluation, with the selection of "System E" as a priority for 

the implementation of RCM. 
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Start analysis 
Training 

methods and 
tools 

Individual AHP 
completion 

Group 
consensus 
simulation 

Inconsistency 
assessment 

Results/analysis 

 

 𝑆+ 
𝑖 𝑆− 

𝑖 
𝑆+ + 𝑆− 
𝑖 𝑖 𝑃𝑖 Rank 

System A 0,087 0,138 0,225 0,615 3 

System B 0,099 0,122 0,221 0,552 4 

System C 0,077 0,134 0,210 0,635 2 

System D 0,104 0,119 0,223 0,535 5 

System E 0,053 0,102 0,155 0,660 1 

Figure 59. Final TOPSIS ranking 

 

It is important to note that more systems can be analyzed as long as the 

company has a material and human resources structure for these simultaneous 

applications. 

With the system selected for RCM implementation, the next action is the 

evaluation and selection of the qualitative and quantitative indicators that will be used 

in the other steps. 

 
6.2.2 Assessment and selection of indicators - SWOT-AHP approach 

 
 

According to [126], in some critical situations, it is not possible for a single expert 

to consider all relevant aspects of a problem. Thus, a multidisciplinary team was 

formed responsible for the analysis of the indicators. This team is composed of 

specialists laboring in a Latin American pulp and paper industry. More specifically, 

decision makers labor directly in the following sectors: (i) maintenance; (ii) production; 

(iii) occupational safety and health and (iv) quality control. The expert group consists 

of 4 maintenance analysts, 2 senior machine operators, 1 safety and environmental 

analyst and 1 process and quality manager. 

Due to the intrinsic characteristics of the group decision making process, when 

involving more than one individual with their different views and values, it is important 

that the decision making process is well structured for effective decision making. For 

the criteria and alternatives to be well presented, a training was conducted with the 

presentation of the methodology and the AHP software. The general operational 

context of the plant was discussed and the present approach was presented. Figure 

60 presents the flow of activities developed in this practical experiment. 
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GOAL 

CRITERIA 

SUBCRITERIA 
(GROUPS) 

ALTERNATIVES 

Risk Assessment Process Performance Costs 
Equipment 

Performance 

Weaknessess Threats Strengths Opportunities 

Indicators Selection 

Maintainability Number of Failures 

Failure Rate Time Before Failures 

Probability of Failures 
Sensor 

Measurements 

MTTF MTBM 

MTTR MTBF 

OEE 
 

 

Economic Cost Risk 

Security Cost 

Production Cost 

Maintenance Cost 

 

Mean Uptime 

Reliability 

Availability 

Mean Downtime 

Total Operation Time 

 

Severity Rating 

Safety Risk 

Ocurrence Rating 

Environment Risk 

Detection Rating 

 

Figure 60: Application flow of SWOT-AHP method 

To assess and select the indicators to be used in risk analysis, a AHP structure 

was constructed with the criteria based on the classic RCM approach and ISO 55000 

(Asset Management), according to Table 3, under the perspective of the SWOT 

analysis. The structure is shown in Figure 61. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 61. AHP structure for SWOT-AHP to priorization of indicators 

 

The group consensus was simulated according to the geometric mean of the 

individual judgments. The priority vector of the elements in the AHP analysis can be 

calculated using the average of normalized values, according to [127]. The responses 

were processed by a specific AHP software. Figure 62 presents the results, with the 

ranking of the indicators and their respective idealized and normalized values. 
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Rank Indicator Idealized Normalized 

1 OEE 0,8066 0,1831 

2 Safety Risk 0,7992 0,2780 

3 Severity Rating 0,7889 0,2744 

4 MTBF 0,7400 0,1680 

5 Production Cost 0,7328 0,3427 

6 Availability 0,6404 0,2624 

7 Failure Rate 0,6023 0,1367 

8 Security Cost 0,4944 0,2312 

9 Economic Cost Risk 0,4896 0,2290 

10 Reliability 0,4836 0,1981 

11 Total Operation Time 0,4117 0,1687 

12 Ocurrence Rating 0,3969 0,1381 

13 Probability of Failures 0,3839 0,0871 

14 Detection Rating 0,3558 0,1238 

15 Number of Failures 0,3345 0,0759 

16 Mean Downtime 0,3104 0,1271 

17 MTTR 0,3096 0,0703 

18 MTTF 0,2960 0,0672 

19 Environment Risk 0,2868 0,0998 

20 Maintenance Cost 0,2344 0,1096 

21 Mean Uptime 0,2301 0,0943 

22 Sensor Measurements 0,2154 0,0489 

23 Maintainability 0,1556 0,0353 

24 Time Before Failures 0,1385 0,0314 

25 MTBM 0,1308 0,0297 

Figure 62. Results of priorization of indicators from SWOT-AHP approach 

 

In case the consistency index proves to be unsatisfactory, comparisons 

regarding this matrix should be reviewed again. The inconsistencies of the analyzes 

performed were calculated and are presented organized in four perspectives 

(indicators grouping of Figure 33). The relationship between the inconsistency values 

for the indicator groups and the decision makers is presented in Table 6. 

Table 6: Inconsistency values for indicator groups and each decision maker 
 

Decision 
maker 

Equipment 
Performance 

Process 
Performance 

Risk 
Assessment 

Costs 

#1 0,0797 0,0911 0,0533 0,0806 

#2 0,0932 0,0885 0,0735 0,0909 

#3 0,0751 0,0323 0,0374 0,0742 

#4 0,0927 0,0479 0,0780 0,0813 

#5 0,0807 0,0427 0,0320 0,0598 

#6 0,0317 0,0779 0,0516 0,0442 

#7 0,0970 0,0653 0,0847 0,0454 

#8 0,0802 0,0597 0,0416 0,0536 
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When considering the intrinsic difficulties of the human being to make decisions 

in the face of many information and multiple criteria problems, a tolerance of 10% can 

be admitted [128]. As shown in Table 5, no decision maker exceeded this limit, which 

satisfies the application of the method. 

For prioritization of indicators, those involved with the analysis may suggest 

some criteria for selecting a specific quantity for later use in the RCM program, or even 

choosing to use all together. In this application, the group decided to use the classic 

rule 80-20 (Pareto chart), and a cut line was drawn in the list of indicators. Thus, eight 

indicators were extracted for the analysis of risks: (i) OEE, (ii) Safety Risk, (iii) Severity 

Rating, (iv) MTBF, (v) Production Cost, (vi) Availability, (vii) Failure Rate and (viii) 

Security Cost. The results are shown in Figure 63. 

 

 

 
Figure 63. Cutting line for selection of indicators 

 

This phase brings results that should match the reality of the company. In this 

specific case, it is clear that most of the selected indicators are classic, common in 

RCM applications, but others are specific. Compared to the results obtained from the 

mapping results of the indicators in the literature (Figure 31), Figure 64 is presented. 

In it we have a relationship between the indicators selected by the experts and the 

amount of citations extracted in the study presented in Topic 4. 
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Figure 64. Number of researches using the selected indicators 

 

Classic indicators in RCM applications such as Availability and Failure Rate are 

widely used and cited. Others, such as OEE and Security Cost are used in a few 

applications. Analyzing the indicators selected by the evaluation team, some 

considerations are raised, presented on Table 7. 

Table 7. Considerations about indicators selected 

Indicator Considerations 

 
OEE 

Indicator not commonly found in RCM, but important in modern approaches such 

as this research, as it encompasses important data and in line with ISO55000, 

which deals with asset management. 

Safety Risk 
Indicator little found in the literature researches, but classic in RCM, including in 

RAMS (Reliability, Availability, Maintainability and Safety) approach. 

Severity 

Rating 

Used for RPN calculation, product among the indicators of occurrence, severity and 

detection - classic RCM approach. 

 
MTBF 

Although little mentioned directly in the research, this indicator supports the 

calculation of other indicators, such as Failure Rate, for example. It is an important 

parameter for the reliability of the system. 

Production 

Cost 

Indicator not used in classic RCM approaches, but important for the company. 

Found in contemporary approaches, it was selected by the team of decision makers 

because of the high cost of production of the company where they operate. 

 

Availability 

Widely found in RCM approaches, it measures whether the resource is 

committable, operable, or usable upon demand to perform its designated or 

required function. It directly impacts other indicators such as reliability, 

maintainability and security. 

Failure Rate 
Widely used in RCM, it is an easy indicator to extract from processes. It brings data 

related to the number of failures in a given time. 

 

Security Cost 

Little found in the literature and with little research that used this indicator. The 

experts understand how important for the company, because these costs are 

currently high, due to adjustments that have been implemented to comply with a 

Brazilian standard of safety in machinery and equipment. 
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Such considerations demonstrate the importance of this phase, as it prioritizes 

the most important indicators for the company's reality, taking into consideration 

specific aspects related to technology, structure, resources, goals, business 

objectives, among others. 

With the indicators selected and ranked, the selected production system was 

simulated for the generation of event logs. The sequence for creating this database is 

shown in Figure 65. 

 
 

Figure 65. Process Mining flowchart 

 

The extracted data (quantitative indicators) underwent a statistical analysis 

through the application of basic plug-ins of the mining software used. With this, the 

ranks were measured and analyzed, under aspects of quantity of measurements and 

calculations of times. Figure 66 presents the structure of the log summaries and Figure 

67 presents the log statistics. 
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Model element Event type 
Occurrences 

(absolute) 

Occurrences 

(relative) 

Idle Machine Complete 205 11,69% 

Working Start 205 11,69% 

Working Complete 205 11,69% 

Waiting machine Complete 201 11,47% 

Remove product Start 201 11,47% 

Remove product Complete 201 11,47% 

Waiting machine Start 200 11,41% 

Part produced Good part 200 11,41% 

Operational stop Start 62 3,54% 

Operational stop Complete 62 3,54% 

Failure while working Start 4 0,23% 

Failure while working Complete 4 0,23% 

Setup Start 1 0,06% 

Setup Complete 1 0,06% 

Part produced Rework 1 0,06% 
    

 

Model element 
 

Event type 
Occurrences 

(absolute) 

Occurrences 

(relative) 

Idle Machine Complete 207 11,66% 

Working Start 207 11,66% 

Working Complete 207 11,66% 

Waiting machine Complete 201 11,32% 

Remove product Start 201 11,32% 

Remove product Complete 201 11,32% 

Waiting machine Start 200 11,27% 

Part produced Good part 198 11,16% 

Operational stop Start 68 3,83% 

Operational stop Complete 68 3,83% 

Failure while working Start 6 0,34% 

Failure while working Complete 6 0,34% 

Part produced Scrap 2 0,11% 

Setup Start 1 0,06% 

Setup Complete 1 0,06% 

Part produced Rework 1 0,06% 

Figure 66. Data log summary 
 
 

 

Activity 
Arithmetic Mean 

(in Minutes) 

Geometric 

Mean 

Sum (in 

Minutes) 

Nº of 

Measurements 

Waiting machine 102,8828 4931,8055 20679,4500 201,0000 

Failure while working 3,5375 184,4661 14,1500 4,0000 

Operational stop 0,7965 36,5090 49,3833 62,0000 

Remove product 0,3299 18,1763 66,3000 201,0000 

Setup 10,4333 626,0000 10,4333 1,0000 

Working 0,1654 9,7960 33,9000 205,0000 
 

 

Activity 
Arithmetic Mean 

(in Minutes) 

Geometric 

Mean 

Sum (in 

Minutes) 

Nº of 

Measurements 

Waiting machine 104,4544 5055,4374 20995,3333 201,0000 

Failure while working 3,9472 219,4843 23,6833 6,0000 

Operational stop 0,8824 40,6183 60,0000 68,0000 

Remove product 0,3235 17,9171 65,0167 201,0000 

Setup 10,4333 626,0000 10,4333 1,0000 

Working 0,0787 0,0000 16,3000 207,0000 
. 

. 

. 
 

Figure 67. Data log statistics 
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The next step is criticality analysis. For the presented process model, the 

analysis occurs at the machine level. This phase consists of two stages: (i) 

classification of machines with criticality and (ii) criticality priorization. 

The classification is categorized by the ABC method using the Electre Tri 

multicriteria decision-making method. After priorization is performed using the 

Promethee method. For the structuring of the data (metrics) used in the decisions, 

Figure 68 is presented. Six quantitative and two qualitative indicators were selected, 

structured and calculated based on the literature. 

 
 

Indicator Reference Calculation 
 

OEE 
 

[82] Fore and Mudavanhu (2011) 
 

𝑂𝐸𝐸 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 × 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 

 

MTBF 
 

[118] EN-15341 (2007) 
𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 

 𝑀𝑇𝐵𝐹 = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 

 

Availability 
 

[118] EN-15341 (2007) 
𝑈𝑝𝑡𝑖𝑚𝑒 

𝐴 = × 100 
𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 

 

Failure Rate 
 

[118] EN-15341 (2007) 
1 

𝜆 = 
𝑀𝑇𝐵𝐹 

 

Production Cost 
 

[124] Adapted from Nahmias and Olsen (2015) 
(Downtime × Units produced) × Average profit per unit 

 𝑃𝐶 = 
Downtime 

 

Security Cost 
 

[79] Adapted from Pourahmadi et al. (2017) 
Expected security cost 

𝑆𝐶 = 
𝑂𝐸𝐸 

 

Safety Risk 
 

[73] Tang et al. (2017) 
 

Table Scores (Table 7) 

 

Severity Rating 
 

[72] Gupta and Mishra (2011) 
 

Table Scores (Table 8) 

Figure 68. Structuring data of indicators for criticality analysis 

 

Quantitative indicators are presented using their formulas and qualitative using 

scoring tables (Saaty scale), presented in Tables 8 [102] and 9 [75]. 

Table 8. Score for indicator “Safety risk” 

Rating Value Safety risk 

No risk 1 No/Slight injury 

Minor 3 Minor injury 

Moderate 5 Major Injury 

Significant 5 Single fatality 

High 7 Multiple fatalities 

Intermediate Preferences 2,4,6,8 Compromise condition between two conditions 

Q
u

an
titative (fro

m
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g) 

Q
u

alitative
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Table 9. Score for indicator “Severity Rating” 

Ranking Effect Comment 

1 None Insignificant effect, corrected immediately by the maintenance. 

 

3 
 

Low 
Minor effect, the component suffers to a gradual degradation case if not 

repaired. 

 

5 
 

Moderate 
Moderate effect, the component does not execute its function, but 

the maintenance of failure demands the stop of machine. 

7 High Critical effect, maintenance demands stop of machine. 

9 Hazard Very critical effect, failure brusquely interrupts the system functions. 

 

2,4,6,8 
Intermediate 

Preferences 

 

Compromise condition between two conditions. 

 
 

After the structuring of the information, the statistics of the process event logs 

were analyzed. The indicators were calculated using Excel, and the results presented 

in Figure 69. 

 
 

 Machine #1 Machine #2 Machine #3 Machine #4 Machine #5 Machine #6 Machine #7 Machine #8 Machine #9 Machine #10 

Statistics ↓ Sum (in Minutes) 

Waiting machine 20679,4500 20995,3333 25255,7667 30141,7500 20941,4667 23488,4167 30141,7500 23015,9167 23488,4167 21829,1833 

Failure while working 14,1500 23,6833 12,7833 62,4000 28,5000 12,5333 62,4000 46,4000 12,5333 25,5000 

Operational stop 49,3833 60,0000 57,9000 58,8167 60,0833 67,9000 58,8167 61,1667 67,9000 53,4333 

Remove product 66,3000 65,0167 68,4167 63,8833 63,4333 68,1833 63,8833 65,8500 68,1833 68,0333 

Setup 10,4333 10,4333 10,4333 10,4333 10,4333 10,4333 10,4333 10,4333 10,4333 10,4333 

Working 33,9000 16,3000 51,6500 34,2667 16,8500 50,6333 34,2667 17,4667 50,6333 34,4667 
 

Events ↓ N.º of Measurements 

Waiting machine 201,0000 201,0000 203,0000 200,0000 201,0000 201,0000 200,0000 201,0000 201,0000 203,0000 

Failure while working 4,0000 6,0000 3,0000 8,0000 5,0000 2,0000 8,0000 10,0000 2,0000 4,0000 

Operational stop 62,0000 68,0000 75,0000 67,0000 75,0000 75,0000 67,0000 73,0000 75,0000 69,0000 

Remove product 201,0000 201,0000 203,0000 200,0000 201,0000 201,0000 200,0000 201,0000 201,0000 203,0000 

Setup 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Working 205,0000 207,0000 206,0000 208,0000 206,0000 203,0000 208,0000 211,0000 203,0000 207,0000 

 
Indicators ↓ Quantitative Indicators Calculation 

OEE 89,635 82,739 90,464 70,044 81,247 92,633 70,044 72,940 92,633 83,358 

MTBF 40,004 25,292 62,800 20,925 30,160 98,575 20,925 15,492 98,575 41,592 

Availability 91,876 86,500 93,646 72,846 84,105 94,023 72,846 76,952 94,023 86,710 

Failure Rate 0,025 0,040 0,016 0,048 0,033 0,010 0,048 0,065 0,010 0,024 

Production Cost 40,000 39,600 39,800 40,000 39,800 40,000 40,000 40,000 40,000 39,800 

Security Cost 0,558 0,604 0,553 0,714 0,615 0,540 0,714 0,685 0,540 0,600 

Safety Risk 8 1 9 3 1 3 4 6 7 8 

Severity Rating 8 6 4 2 5 5 4 8 1 9 

Figure 69. Calculations of quantitative indicators in Excel 

 

6.2.3 Criticality Analysis - ABC Classification 

 
 

With the indicators ready for the analysis of criticality, the decision model was 

created using the multicriteria tool Electre Tri, through Iris software. The "Action" 

column presents the alternatives (Machines 1 to 10). Each alternative has a lower and 

a higher category to which it can be assigned (ELow and EHigh columns, respectively). 



117  

Typically, the ELow column contains the lowest category (which is always 1) and the 

EHigh column contains the highest category (which defaults to 3). If you change these 

values, the assignment of the alternative is restricted: it becomes an example of 

assignment. Thus, all machines were assigned the same ELow and EHigh values. The 

following columns present the indicators (criteria) and their values for each alternative 

(machines). 

The figure 70 presents the construction of the evaluation matrix. 
 

 

Action Elow Ehigh OEE MTBF Availability 
Failure 

Rate 

Production 

Cost 

Security 

Cost 

Safety 

Risk 

Severity 

Risk 

Machine 1 1 3 89,635 40,000 91,870 0,025 40,000 0,558 8 8 

Machine 2 1 3 82,739 25,290 86,500 0,040 39,600 0,604 1 6 

Machine 3 1 3 90,464 62,800 93,650 0,016 39,800 0,553 9 4 

Machine 4 1 3 70,044 20,920 72,850 0,048 40,000 0,714 3 2 

Machine 5 1 3 81,247 30,160 84,100 0,033 39,800 0,615 1 5 

Machine 6 1 3 92,633 98,570 94,020 0,010 40,000 0,540 3 5 

Machine 7 1 3 70,044 20,920 72,850 0,048 40,000 0,714 4 4 

Machine 8 1 3 72,940 15,490 76,950 0,065 40,000 0,685 6 8 

Machine 9 1 3 92,633 98,570 94,020 0,010 40,000 0,540 7 1 

Machine 10 1 3 83,358 41,590 86,710 0,024 39,800 0,600 8 9 

Figure 70. Evaluation matrix - Electre Tri 

 

Figure 71 shows the calculated thresholds, that were defined with reference to 

the value of 1/3 of the range positive and negative. The weights were imported from 

the SWOT-AHP evaluation of the indicators evaluation stage. Figure 72 presents the 

upper and lower bounds of the cutting level (lambda) and the weights (ki refers to the 

weight of the i-th criterion). 

 
 

 
OEE MTBF Availability 

Failure 

Rate 

Productio 

n Cost 

Security 

Cost 

Safety 

Risk 

Severity 

Risk 

g(b1) 77,574 43,186 79,905 0,046 39,867 0,656 6,333 6,333 

g(b2) 85,104 70,881 86,964 0,028 39,733 0,598 3,667 3,667 

MAX/min 1 1 1 -1 -1 -1 -1 -1 

Figure 71. Positive and negative thresholds for evaluation 
 
 

 Lambda k1 k2 k3 k4 k5 k6 k7 k8 

LB-Lower 0,25 0 0 0 0 0 0 0 0 

UB-Upper 1 0,144 0,132 0,114 0,107 0,131 0,088 0,143 0,141 

Figure 72. Imports from the evaluation of indicators 
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With the parameterized software, the evaluation was performed, allocating the 

machines in critical classes (A, B and C). The results are shown in Figure 73. 
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Figure 73. ABC classification of machines 

 

In order to verify the behavior of the evaluation under changes in the indicators, 

two more indicators were incorporated, respecting the sequence evaluated previously. 

Thus, the "Reliability" and "Economic Cost Risk" indicators, both qualitative expressed 

in 5-point scale (Saaty) were randomly filled. Figure 74 shows the new evaluation 

matrix. 

 
 

Action Elow Ehigh OEE MTBF Availability 
Failure 

Rate 

Production 

Cost 

Security 

Cost 

Safety 

Risk 

Severity 

Risk 
Reliability 

Economic 

Cost Risk 

Machine 1 1 3 89,635 40,000 91,870 0,025 40,000 0,558 8 8 77,88 7 

Machine 2 1 3 82,739 25,290 86,500 0,040 39,600 0,604 1 6 67,34 5 

Machine 3 1 3 90,464 62,800 93,650 0,016 39,800 0,553 9 4 85,28 4 

Machine 4 1 3 70,044 20,920 72,850 0,048 40,000 0,714 3 2 62,01 7 

Machine 5 1 3 81,247 30,160 84,100 0,033 39,800 0,615 1 5 71,78 5 

Machine 6 1 3 92,633 98,570 94,020 0,010 40,000 0,540 3 5 90,35 6 

Machine 7 1 3 70,044 20,920 72,850 0,048 40,000 0,714 4 4 62,01 4 

Machine 8 1 3 72,940 15,490 76,950 0,065 40,000 0,685 6 8 52,44 8 

Machine 9 1 3 92,633 98,570 94,020 0,010 40,000 0,540 7 1 90,35 6 

Machine 10 1 3 83,358 41,590 86,710 0,024 39,800 0,600 8 9 78,63 1 

Figure 74. New matrix of evaluation with the insertion of new indicators 

 

After the calculation of the thresholds and the import of the weights a new 

ranking of the machines is obtained, according to Figure 75. 
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Figure 75. New ABC rating with new indicators 

 

7.2.4 Assignment of machines under aspects of criticality 

 
 

After sorting the items (in this case, machines) the respective ranking is 

performed. For this, the Promethee technique is used through Visual Promethee 

software. The evaluation matrix and the parameters are shown in Figure 76. 

 
 

Figure 76. Criticality Matrix - Promethee 
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The units of the quantitative and qualitative indicators and the criteria allocated 

in a single cluster were parameterized. In the “Preferences” tab was defined whether 

the criterion has to be minimized or maximized. The weights were imported from the 

evaluation of the indicators (Figure 60). The preference function “Usual” was selected, 

to suit the standard values of the indicators. In fact, it corresponds to optimization: the 

higher the value, the better. Does not include any limits. It is understood as the right 

choice for the criteria, as in some very different assessments. The thresholds were 

selected as "absolute" as they were expressed in the measurement scale criterion. 

The values of the indicators for each machine were imported manually from 

Excel, the quantitative data extracted from the statistics of the logs and the qualitative 

ones converted to a specific scale with randomly generated data also from Excel. 

Statistical calculations are performed automatically by Visual Promethee, elucidating 

data of the maximum and minimum values of each indicator, the means and standard 

deviations. The decision matrix is then analyzed for the prioritization of the machines 

in relation to the adopted criteria. 

Among the analyzes performed by the software used is the "Promethee 

Diamond", which consists of presenting the ranking of the Promethee through a 

representation in two dimensions, plotting the positive (Phi+) and negative (Phi-) 

preference flows in a screen with angle of 45°. The results of the evaluation are 

presented in Figure 77. 
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Figure 77. Assignment of machines using the Promethee method 

 

A 45° cone is formed for each machine. The tip of the cone corresponds to the 

values of the flows of preference of each machine. When one cone is on top of another, 

this machine is preferred over the other in the ranking. Due to the mathematical 

properties of the preference flows, the cones are located on the left side of the vertical 

axis. 

Thus it is possible to observe Machine 8 being the most critical of the evaluation 

and Machine 9 the least critical. As the objective of this stage is the ranking of the 

machines with respect to the levels of criticality, we present the results in Figure 78, 

from the least critical machine to the most critical one. 

 
 

Rank Action Phi Phi+ Phi- 

1 Machine 8 -0,5993 0,1561 0,7554 

2 Machine 7 -0,4466 0,2 0,6466 

3 Machine 4 -0,3519 0,2472 0,5991 

4 Machine 1 -0,047 0,4243 0,4713 

5 Machine 10 0,0247 0,4984 0,4738 

6 Machine 5 0,0434 0,4987 0,4552 

7 Machine 2 0,0639 0,524 0,4601 

8 Machine 3 0,2714 0,6147 0,3432 

9 Machine 6 0,5058 0,6682 0,1624 

10 Machine 9 0,5356 0,6989 0,1633 
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Figure 78. General ranking from Visual Promethee 

In the same way as the analysis based on the ABC classification, in the ranking 

were inserted the two new indicators for a new evaluation (Reliability and Economic 

Cost Risk). The new evaluation matrix is presented in Figure 79. 

 
 

Figure 79. Promethee matrix with two new indicators 

 

Using the same parameters from the previous analysis and adding two new 

indicators, we have the representation of the Diamond Promethee (Figure 80). Figure 

81 presents the new ranking extracted from Visual Promethee software. 
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Figure 80. Promethee ranking perspective with two new indicators 
 
 

Rank action Phi Phi+ Phi- 

1 Machine 8 -0,6592 0,1329 0,7921 

2 Machine 4 -0,4 0,2264 0,6264 

3 Machine 7 -0,3817 0,2357 0,6173 

4 Machine 1 -0,0798 0,4118 0,4916 

5 Machine 5 0,0438 0,4982 0,4544 

6 Machine 2 0,0448 0,5116 0,4668 

7 Machine 10 0,1201 0,5482 0,4281 

8 Machine 3 0,323 0,6394 0,3164 

9 Machine 6 0,4816 0,6606 0,179 

10 Machine 9 0,5074 0,6869 0,1794 

Figure 81. New general ranking from Visual Promethee 

 

In this new scenario, Machine 8 is presented as the most critical and Machine 9 

as the least critical. The information collected in criticality analyzes, under aspects of 

classification and ranking, will support the analysis of the implementation of 

appropriated maintenance strategies, according with the next section. 
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6.2.4 Maintenance Strategies Selection – CEV-ELECTRE approach 

 
 

With the prioritization of the most critical items of the system, an approach is 

proposed to select the appropriate maintenance strategies. It is understood that 

predictive maintenance techniques are honorable and require more specialized 

technical and human resources, generating a higher cost. A corrective maintenance 

policy, however, requires fewer resources, making it cheaper for cases where assets 

are not critical to the process. 

Thus, a model for decision-making with regard to maintenance strategies is 

presented in topic 6.4.3. The Electre Tri method is proposed for this application, to 

classify the machines in certain maintenance strategies: Reactive Maintenance, Time- 

based Maintenance, Condition-based Maintenance or Prescriptive Maintenance. The 

alternatives are the machines and the criteria are raised by the analysis team through 

the named approach of CEV (Criticality, Efficiency and Viability). 

For the present simulation it is defined that criticity is extracted from the ranking 

of the critical items performed from the previous stage. Efficiency is represented by the 

calculation of OEE and Viability brings two indicators related to maintenance: (i) 

maintainability and (ii) maintenance costs. The RCM program team can define other 

indicators, and insert in the presented decision model. Figure 82 shows the decision 

matrix of the Electre. 

 
 

Action Elow Ehigh Criticality OEE Maintainability 
Maintenance 

Cost 

Machine 1 1 3 0,4916 89,635 0,884 5 

Machine 2 1 3 0,4668 82,739 0,658 8 

Machine 3 1 3 0,3164 90,464 1,420 1 

Machine 4 1 3 0,6264 70,044 0,975 3 

Machine 5 1 3 0,4544 81,247 1,140 5 

Machine 6 1 3 0,179 92,633 3,133 2 

Machine 7 1 3 0,6173 70,044 0,975 7 

Machine 8 1 3 0,7921 72,940 0,464 6 

Machine 9 1 3 0,1794 92,633 3,133 6 

Machine 10 1 3 0,4281 83,358 1,594 5 

Figure 82. Decision matrix for selection of maintenance strategies – Electre Tri 

 

The thresholds were then defined, with reference to the value of 1/4 of the range 

positive and negative. Since the criticality analysis is the main point of the RCM 
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analysis, the weight of 50% is attributed, the other 50% being divided among the other 

criteria. Figure 83 shows the assigned thresholds and weights (k1 to k4). 

 
 

 
Criticality OEE Maintainability 

Maintenance 

Cost 

g(b1) 0,639 75,691 1,131 6,25 

g(b2) 0,485 81,338 1,798 4,5 

g(b3) 0,332 86,985 2,466 2,75 

MAX/min -1 1 1 -1 
 
 

 Lambda k1 k2 k3 k4 

LB-Lower 0,5 0 0 0 0 

UB-Upper 1 1 0,333 0,333 0,333 

Figure 83. Thresholds and weights defined for the Electre method 

 

After the analysis is completed, we have the robust assignments of the 

alternatives in their classes. One machine is prone to the prescriptive maintenance 

application, three to condition-based maintenance, three to time-based maintenance 

and three to reactive maintenance. Figure 84 shows the results. 
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Prescriptive        X   

Condition-based X   X   X    

Time-based  X   X     X 

Reactive   X   X   X  

Figure 84. Final results of selection of maintenance strategies 

 

Following the dynamics of the criticality classification of the machines, in this 

stage of selection of maintenance strategies was also performed a new simulation with 

the extracted data with the insertion of two new indicators. Thus, Figure 85 presents 

the results, with a reclassification of the machines for the selection of maintenance 

policies. 
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Figure 85. Reclassification of maintenance strategies selected 

 

The results of the application performed in the simulated process presented are 

discussed in the following topic. 

 
6.3 RESULTS AND DISCUSSIONS 

 
 

The application of Smart-RCM in a simulated environment results in interesting 

data to discuss the importance of using the available data in the company for the 

application of methodologies with analytics tools to improve the quality of decision 

making and increase the reliability of industrial processes. 

The model of reconciling qualitative and quantitative information demonstrates 

effectiveness when well developed. When handled correctly, this information becomes 

a powerful tool in methodologies such as the proposed Smart-RCM. 

Smart terminology refers to the ability to process information and make the right 

decisions. This new methodology based on system selection, risk analysis and 

selection of strategies for maintenance is a process that companies can use to 

maintain and optimize all their assets (dynamic and static). 

The selection of the system is an "off-line" step, since it is carried out at a 

strategic level and it is possible to choose which systems are the priority to be adopted 

from the RCM methodology. This step should be revisited according to changes in 

company strategies. This issue should be well formulated in the Smart-RCM audit 

process. 

The classification and ranking of the most critical items (in this case, the 

machines) is a step executed "online", since in its decisions quantitative indicators are 

used updated in real time (according to the specifications of the information system 

used). The qualitative indicators can be verified in a pre-defined time by the audit team. 
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This dynamism of the system, here called "Smart", allows the visualization of changes 

in the behavior of system assets, a concept directly linked to the advances of Industry 

4.0. 

In the simulation presented we have the classification and ranking of the 

criticality of the machines presented with seven indicators. After the presentation of the 

results, it is suggested to insert two more indicators, totaling nine. The intention was to 

verify the importance of analyzing what and how many indicators to use, and to 

observe the behavior of decision models. 

Thus, Figure 86 shows the results of the ABC classification using the Electre 

method, and Figure 87 shows the changes in the machine rankings. Evaluation 1 was 

carried out with seven indicators and evaluation 2 with nine indicators. 

 
 

 Machine → #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Evaluation → 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
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A        X       X X     

B    X     X X   X X     X X 

C X X X  X X X    X X     X X   

Figure 86. ABC classification with changes in number of criteria - Electre method 
 
 

Promethee 

8 indicators 10 indicators 

1 Machine 8 1 Machine 8 

2 Machine 7 2 Machine 4 

3 Machine 4 3 Machine 7 

4 Machine 1 4 Machine 1 

5 Machine 10 5 Machine 5 

6 Machine 5 6 Machine 2 

7 Machine 2 7 Machine 10 

8 Machine 3 8 Machine 3 

9 Machine 6 9 Machine 6 

10 Machine 9 10 Machine 9 

Figure 87. Machine ranking with changes in the number of criteria - Promethee 

 

As the indicator with the highest weight (50%) in choosing maintenance 

strategies comes from the classification presented in Figure 83, online monitoring 

extends to this decision stage. For example, with changes in this ranking, a non-critical 

treated machine (C) may be viewed as more critical (B or A) due to the growing 

importance of this machine in the new monitored indicators. 
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Also, to choose the maintenance strategies adopted for each machine, the 

insertion of new indicators directly impacts the decisions. Figure 88 shows the policies 

selected for the evaluation with 8 indicators (Evaluation 1) and 10 indicators 

(Evaluation 2). 

 
 

 Machine → #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Evaluation → 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
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 Prescriptive              X X X     

Condition-based X X X    X X     X       X 

Time-based    X  X   X X         X  

Run-to-Failure     X      X X     X X   

Figure 88. Results of Selection of Maintenance Strategies 

 

The reclassification is an important approach to the use of the correct 

maintenance policy for a given machine, being dynamized by the indicators used in 

the analysis. It is noteworthy that the availability and quality of information (indicators) 

depends on the level of maturity of the company. 



129  

7 CONCLUSIONS AND FUTURE WORK 

 

 
The maintenance function continues to evolve and is currently in its fourth 

generation. In this scenario, several initiatives are presented, focusing on technological 

advances through industrial Internet of Things (IIoT), predictive analysis, 

interconnectivity, defect elimination, etc. Smart RCM brings the mainstream of 

maintenance together with the organization's physical asset management and risk 

management strategies, addressing 4th generation requirements. 

The application of Smart RCM changes the way organizations think about their 

operations and maintenance. Not only does it challenge the traditional approach to 

equipment maintenance, moving the company from a perception of breakdown and 

repair, it also creates a new risk-based asset management culture. 

Smart RCM is based on the very robust classic RCM methodology with a new 

approach to managing the risks associated with preserving asset functions. Risk- 

based decision logic optimizes the maintenance program (selects the appropriate 

maintenance policy) while managing physical and economic risks based on its 

qualitative and quantitative indicators. In addition, it develops methods for the reduction 

of human error, an important factor for decision making processes. 

The adaptation and customization of tools or methodologies applied in the 

maintenance function has proven to be an important initiative. Structures with 

contemporary approaches to more flexible and robust models have gained ground in 

related research. The presented framework brings important insights in the 

development of the RCM, with a customized and dynamic model, allowing applications 

of tools widely disseminated by researchers around the world. 

The extraction of indicators from current literature brings an innovative approach 

within the scope of RCM, presenting a well-structured and systemic method that can 

be revisited and updated to suit new research in RCM applications. 

The research reinforces an important relationship between tacit and explicit 

data, proposing an integration and generation of a single knowledge base for later use 

in the stages of the RCM development. The structuring of qualitative and quantitative 

data using appropriate tools constitutes a consistent database. The DMD approach 

serves as an example of data fusion and can be used in methodologies other than 

RCM. 
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A customized model for RCM deployment is presented, focusing on decision 

making processes. Compared to traditional models, it is simplified by reducing the 

deployment stages, improving the knowledge and possible techniques applicable to 

data processing (mining) in quantitative data and applying MCDMs in decision 

processes. 

Using classic RCM publications coupled with contemporary standards and 

publications makes Smart RCM a modern approach focused on managing company 

assets. Management tools support strategic decision levels, generating a systemic and 

global view of the system. 

The level of maintenance maturity should be observed and mapped in the 

planning phase of the RCM, since it may compromise the use of the proposed 

framework, given the information poverty and the lack of structure for deployment 

success. Models of multicriteria decision-making and analytics depend on these 

requirements to be applied. Thus, the availability and access to process and 

maintenance information are important for Smart RCM, and a careful evaluation of 

these databases is necessary for a better exploration of the methodology. It is worth 

mentioning that the proposed model is passive of adaptations to the context of the 

company. 

Concepts of MA (Maintenance Analytics) are highlighted as it brings innovations 

in data collection and processing, decision analysis with multicriteria decision making 

tools, typical approaches of Industry 4.0 context. 

With the application of Smart-RCM in a simulated environment, it was possible 

to observe the dynamics model through the obtained results. The classification and 

reclassification of the criticality presents these dynamics through the changes made in 

the simulations. 

The Smart-RCM proposal is passive of future efforts in the application of 

Artificial Intelligence subfields, bringing the possibility of genuine interaction between 

humans and machines. Machine learning concepts can support the automation of the 

analytical models used, through neural networks, statistics, operational and physical 

research to find information hidden in the data. In addition, the model can be subjected 

to other future improvements, such as: 

(i) an analysis of the decision model sensitivities can be conducted to enable a 

better understanding of the value dynamics of alternatives to changes in 
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parts of Smart-RCM. This analysis is important as it contributes to the 

decision maker's understanding of the scope and limitations of the problem; 

(ii) mapping and application of scientific methods to analyze decision-making 

processes, from the perspective of quality criteria, information and decision. 

(iii) conceptual development and implementation of a dynamic "module" to 

define the periodicity of maintenance actions; 

(iv) Smart RCM implementation in a real scenario, to check the deployment 

steps, watching activities related to the professionals involved, to explore 

possible process adjustments. The practical experiment was carried out at 

the machine level, depending on the characteristics of the model (simulated 

environment) used. With a real application it would be possible to lower the 

level of this analysis for equipment or components, which would bring a 

better assessment regarding the maintainability of these elements. 

(v) design and development of an RCM module in maintenance management 

software. With an intuitive and easy-to-use environment, it should integrate 

all the tools used for best use in Smart RCM deployment. 

Smart-RCM emerges as a new approach in the Maintenance 4.0 scenario, 

bringing important concepts of system criticality, fault analysis and their effects, 

exploring operational, environmental and safety aspects. This makes it possible to 

optimize the criticality assessment processes of industrial systems, significantly 

supporting the choice of the best maintenance strategies, resulting in better results in 

meeting business goals, increasing plant reliability and reducing costs. 
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