PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ

ESCOLA DE CIÊNCIAS DA VIDA PROGRAMA DE PÓS-GRADUAÇÃO EM ODONTOLOGIA ÁREA DE CONCENTRAÇÃO CLÍNICA ODONTOLÓGICA INTEGRADA

BRENDA GISELLE SÁNCHEZ LEYTON

EFFECT OF A FLOWABLE BASE ON THE FRACTURE STRENGTH OF EXTENDED CLASS I RESTORATIONS WITH BULK-FILL AND CONVENTIONAL RESIN COMPOSITES

Curitiba 2020

BRENDA GISELLE SÁNCHEZ LEYTON

EFFECT OF A FLOWABLE BASE ON THE FRACTURE STRENGTH OF EXTENDED CLASS I RESTORATIONS WITH BULK-FILL AND CONVENTIONAL RESIN COMPOSITES

Dissertação apresentada ao Programa de Pós-Graduação em Odontologia da Pontifícia Universidade Católica do Paraná, como parte dos requisitos para obtenção do título de Mestre em Odontologia, Área de Concentração em Clínica Odontológica Integrada - Dentística

Orientador: Prof^a. Dr^a. Evelise Machado de Souza

Curitiba 2020 Dados da Catalogação na Publicação Pontifícia Universidade Católica do Paraná Sistema Integrado de Bibliotecas – SIBI/PUCPR Biblioteca Central Pamela Travassos de Freitas – CRB 9/1960

 Leyton, Brenda Giselle Sánchez
 Effect of a flowable base on the fracture strength of extended class i restorations with bulk-fill and conventional resin composites / Brenda Giselle Sánchez Leyton ; orientador: Evelise Machado Souza. – 2020. 31 f. : il. ; 30 cm
 Dissertação (mestrado) – Pontifícia Universidade Católica do Paraná, Curitiba, 2020
 Bibliografia: f. 15-18
 1. Odontologia. 2. Dentes. 3. Materiais dentários. 4. Restauração (Odontologia). 5. Resistência à Flexão. 6. Resinas compostas. 7.Traumatismos dentários. 1. Souza, Evelise Machado. II. Pontifícia Universidade Católica do Paraná. Pós-Graduação em Odontologia. III. Título.

Pontifícia Universidade Católica do Paraná Escola de Ciências da Vida Programa de Pós-Graduação em Odontologia

TERMO DE APROVAÇÃO

BRENDA GISELLE SÁNCHEZ LEYTON

EFFECT OF A FLOWABLE BASE ON THE FRACTURE STRENGTH OF EXTENDED CLASS I RESTORATIONS WITH BULK-FILL AND CONVENTIONAL RESIN COMPOSITES

Dissertação apresentada ao Programa de Pós-Graduação em Odontologia da Pontifícia Universidade Católica do Paraná, como parte dos requisitos parciais para a obtenção do Título de **Mestre em Odontologia**, Área de Concentração em **Clínica Odontológica Integrada com Ênfase em Dentística**.

Everise R. defoury

Orientador(a):

Prof^a Dr^a Evelise Machado de Souza Programa de Pós-Graduação em Odontologia, PUCPR

m

Profa Dra Rodrigo Nunes Rached Programa de Pós-Graduação em Odontologia, PUCPR

Prof. Dr. Eduardo Christiano Caregnatto De Morais Curso de Odontologia, UPPR

Curitiba, 30 de abril de 2020.

Rua Imaculada Conceição,1155 Prado Velho CEP 80215-901 Curitiba Paraná Brasil Fone: (41) 3271-1637 Site: <u>www.pucpr.br</u> Email: <u>ppgo@pucpr.br</u>

AGRADECIMENTOS

Primeiramente gostaria de agradecer a Deus por me guiar, iluminar e me dar tranquilidade para seguir em frente com os meus objetivos e não desanimar com as dificuldades.

À minha orientadora, Prof^a. Evelise. Sou grata pela confiança depositada em mim, pela paciência e por me conduzir nos meus primeiros passos da vida acadêmica. Obrigada por me manter motivada durante todo o processo.

À minha mãe, Dora Luz, por todos os conselhos e conversas que me motivaram a ser uma pessoa melhor e uma profissional melhor, tenho certeza que desde o céu ela me cuida.

Ao meu pai, Hernán, por ser meu melhor amigo e por sempre me escutar. Não seria a pessoa que sou hoje se não fosse por ele.

À minha família que desde longe me deram forças para continuar com meus estudos, principalmente os meus irmãos, Olenka e Mauricio. Levo vocês no meu coração sempre.

Aos meus colegas do curso, em especial a Gabriela e a Bruna por terem tornado o dia a dia na pós-graduação tão prazeroso! Juntas conseguimos avançar e ultrapassar todos os obstáculos.

Ao meu colega Anderson por doar seu tempo e talento para fazer o registro fotográfico deste projeto.

Ao Cleomar, funcionário da Clínica da PUCPR, pela ajuda dada ao desenvolvimento do meu trabalho laboratorial.

Às minhas amigas Marcela, Jessika e Fernanda, que estiveram comigo desde o começo desta longa jornada. Sempre contei com seu apoio, incentivo e amizade. À minha tia Lena, por ser meu exemplo a seguir.

SUMÁRIO

1
1
2
3
5
9
12
14
15
.19
19
23
24
29
-

ARTIGO EM INGLÊS

Title page

Effect of a flowable base on the fracture strength of extended class I restorations with bulk-fill and conventional resin composites

Brenda GS Leyton, DDS, MSD candidate, Pontifícia Universidade Católica do Paraná, School of Life Sciences, Graduate Program in Dentistry.

Evelise M Souza, DDS, MSD, PhD, Pontifícia Universidade Católica do Paraná, School of Life Sciences, Graduate Program in Dentistry. Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, PR 80215-901, Brazil. (Corresponding author)

Abstract

Objective: The aim of this study was to evaluate the fracture strength of bulk-fill restorations compared to conventional composite resins with and without intermediate bases in teeth with extensive cusp-weakening Class I preparations. Materials and methods: Sixty sound extracted human third molars were prepared with extended Class I cavities and restored with different techniques resulting in the following groups: FS-F, flowable bulk-fill resin composite (Filtek bulk-fill flow, 3M) as a base and a 1mm-thick conventional nanofilled composite layer (Filtek Supreme Ultra, 3M); FB, restored with bulk-fill resin composite (Filtek Bulk-Fill, 3M); FS, restored incrementally with conventional nanofilled composite (Filtek Supreme Ultra, 3M); GR-F, flowable bulk-fill resin composite (X-tra base, VOCO) as a base and a 1mm-thick conventional composite layer (GrandioSO, VOCO); AF, restored with bulk-fill resin composite (Admira Fusion X-tra, VOCO); GR, restored incrementally with conventional resin composite (GrandioSO, VOCO). Sound extracted teeth (n=10) were used as a control group (CTL). All teeth were subjected to thermocycling (20,000 cycles, 5°C and 55°C) and mechanical loading (500,000 cycles, 50N load 2.5 Hz frequency). The specimens were subjected to a compressive axial load in a universal testing machine at 1 mm/min. Data was submitted to statistical analysis at a significance level of 5%. Results: The mean (standard deviation) fracture strength in N were: CTL: 1,871.88 (339.48); FS-F: 1,428.23 (326.10); FB: 1,494.85 (386.81); FS: 1,183.33 (334.99); GR-F: 1,615.70 (188.82); AF: 1,138.38 (286.94) and GR: 1,340.66 (97.50). Groups CTL and GR-F demonstrated significantly higher mean fracture strength when compared to FS, AF and GR (p<0.05). The most common type of failure among the groups was restoration and enamel/dentin fracture (Type IV). Conclusions: Restorations with a nanofilled bulk-fill composite or with a conventional resin composite associated with a flowable bulk-fill base reestablished the fracture strength of weakened teeth to that of sound teeth.

Clinical Relevance: The use of a conventional composite in extended class I preparations should be associated with a flowable bulk-fill composite base or restored with a nanofilled bulk-fill composite.

Keywords: Bulk-Fill, Composite, Class I Restoration, Fracture strength.

Introduction

For many decades, resin-based composites have been widely used in restorative dentistry, this material is considered to be the first choice for esthetic posterior restorations.^{1,2} More than 500 million direct dental restorations are placed each year all over the world, which makes direct restorations the most prevalent medical intervention in the human body. In about 55% of the cases, resin composites or compomers are used.³

Posterior direct composite restorations have their limitations. The annual failure rate varies around 2.2%.⁴ The polymerization of resin composite produces internal tensions that may lead to loss of adhesion between teeth and restoration, cuspal deflection and formation of enamel crack, being all of these, primary factors in potential failure.⁵

In order to reduce polymerization shrinkage stress, it has been prescribed the use of the incremental technique when using direct composite, as it results in lower shrinkage stress due to reduced cavity configuration factor, as well as improved light penetration, allowing a higher degree of conversion of the material.⁶ Nevertheless, this technique takes more time and can elevate the risk of saliva contamination between the increments, which may lead to less strength and premature failures.⁷ In this matter, the chance to fill the dental cavity with one single increment seems to have countless benefits. For instance, the less working time and the reduction of the so-called window of opportunity for technical mistakes, such as incorporations of voids and contamination among increments.⁸

Therefore, it has been developed new restorative material that can be used in one increment of 4 to 5 mm, known as bulk-fill resin composites.⁹ This new type of composite reduces the working time, although it presents some limitations in mechanical properties when compared to conventional composites.¹⁰

Bulk-fill resin composite is available in two kinds of viscosity: flowable and high-viscosity. The latter can be applied in a single increment without the need for coverage as it contains high inorganic filler content and therefore can be used in areas with a higher incidence of masticatory load.² Flowable bulk-fill resin composite is a low viscosity composite and therefore has a lower inorganic filler content and is used as liner or base, capped with a conventional composite resin.¹¹ Studies have shown that flowable bulk-fill composite resins have lower

hardness, modulus of elasticity, cusp deformation, and shrinkage stress.¹²⁻¹⁴ All of these mechanical characteristics make flowable bulk-fill composite resins act as a stress absorbing layer generated by the high modulus of elasticity of conventional composite resin.¹⁵

The restorative material named ORMOCER[®], developed in the '90s, originally derived from the term "organically modified ceramic", is characterized by a hybrid molecular structure that combines organic and inorganic components in the matrix at nanoscopic scale.¹⁶ ORMOCER[®]s consists of an organic portion, an inorganic portion and polysiloxanes in proportions that can affect the mechanical, thermal and optical qualities of the material: the organic polymers influence the polarity and optical behavior, the inorganic constituents are responsible of chemical stability and the polysiloxanes influence the elasticity and interface properties.¹⁷

Traditionally, the choice between direct and indirect composite restorations for posterior teeth is based on the size of the cavity to be restored. Small and medium cavities are usually restored with direct composite resin restorations. Conversely, in large cavities, where the width of the isthmus reaches or exceeds two-thirds of the intercuspal distance, indirect restorations are better indicated.¹⁸⁻²⁰ However, this decision must be based on an individual clinical assessment, taking into consideration patient requests, cost-benefit, and other risk factors such as high caries risk or bruxism.^{21,22} Furthermore, earlier systematic reviews and meta-analysis have concluded that there is no significant difference in terms of clinical longevity between direct and indirect technique for posterior restorations.²³⁻²⁵

Restoration of extensively destroyed tooth aims to reestablish both function and aesthetics. Earlier studies have shown that fracture strength is inversely proportional to the loss of dental tissue due to either caries lesion or cavity preparations.²⁶⁻²⁸ One study showed that class II preparations for direct restorations removed an average of 11.40% of the tooth structure, based on onehalf, one-third, or one-quarter boccolingual widths in both maxillary and mandibular molars. On the other hand, preparations for indirect restorations removed on average of 16.79% of tooth structure.²⁹ Moreover, it has been demonstrated that direct composite preparations have higher resistance to occlusal load fracture than indirect preparations.³⁰ Previous studies investigating fracture strength of restorations with bulk-fill resins use Class II preparations, usually MOD type. However, studies with extensive Class I preparations with cusp-weakening are scarce.³¹

Therefore, the aim of this study is to evaluate the fracture strength of bulkfill restorations compared to conventional composite resins with and without intermediate bases in teeth with extensive cusp-weakening Class I preparations.

The null hypothesis to be tested is that there will be no difference in fracture strength of teeth restored with different composite resins.

Material and Methods

Seventy sound extracted human third molars were randomly assigned to seven groups (n=10) from teeth obtained from the institution's Tooth Bank after approval by the Ethics Committee (No. 2.824.728). Soft tissues and possible calculus were removed using periodontal curettes and the teeth were stored in 0.5% chloramine at 4°C for a maximum of 3 months. The criteria for tooth selection involved the absence of caries or fractures and similar crown size.

3.1. Restorative Procedures:

The teeth were randomly divided into 7 groups with 10 teeth each. Ten teeth were used as a control group (CTL) and the other sixty teeth were prepared with Class I cavities. In the first step a cavity of 4 mm depth perpendicular to the occlusal surface was ground using cylindrical diamond burs (#3146, KG Sorensen, Cotia, SP, Brazil) with water spray, the buccolingual width was ³/₄ of the intercuspal distance. A pear-shaped diamond bur (#3168, KG Sorensen, Cotia, SP, Brazil) was placed with its shaft perpendicular to the cavity floor at the cavity margin and a circular undercut was prepared. The burs were replaced every five preparations and were used under high-speed and constant irrigation.

Group	Adhesive System	Base	Restoration	Manufacturer
CTL	-	-	-	-
FS	Single Dand	-	Filtek Supreme Ultra	
FB	Single Bond	-	Filtek Bulk Fill	3M/ESPE
FS-F	Universal	Filtek Bulk Fill Flow	Filtek Supreme Ultra	(St. Paul, MN, USA)
GR		-	GrandioSO	
AF	Futurabond U	-	Admira Fusion X-tra	VOCO
GR-F	GR-F	X-tra Base	GrandioSO	(Cuxhaven, Alemanha)

Table 1. Distribution of experimental groups (n=10).

The adhesive system chosen for each group was the universal type corresponding to the composites' manufacturers. In all teeth, the adhesive procedure was performed using the selective enamel conditioning technique, in which the enamel was conditioned with 37% phosphoric acid for 30 seconds, followed by rinsing for 15 seconds and drying for 5 seconds and finally active application of adhesive in enamel and dentin for 20 seconds, and light-curing for 10 seconds.

Table 1 shows the codes and distribution of study groups with their materials and Table 2 contains the compositions of the materials that were used in the study.

In the FS-F and GR-F groups, the restorations were made by inserting the bulk-fill flow resin in a single increment of 3 mm, followed by light curing for 20 seconds. A 1mm thick layer of conventional composite resin was placed using the incremental technique and light-cured for 20 seconds by increment with the same light-curing unit.

In the FB and AF groups, the body bulk-fill resins were inserted in a single increment and light-cured for 40 seconds. In the FS and GR groups, restorations were made with conventional composite resins using the incremental technique, with at least 5 polymerized oblique increments for 20 seconds each with the same light-curing unit.

Commercial Brand	Туре	Resin matrix	Filler	% of filler weight volume
Filtek Bulk-Fill Flow (3M ESPE)	Bulk-fill flowable composite	Bis-GMA, UDMA, Bis- EMA, Procrylat	Zirconia/sílica, Ytterbium trifluoride	64.5% / 42.5%
Filtek Bulk-Fill (3M ESPE)	Bulk-fill composite	AUDMA, AFM dimethacrylate, UDMA, Dodecane dimethacrylate	Zirconia/sílica nanofillers, nanocluster Ytterbium trifluoride	76,5% / 58,4%
Filtek Supreme Ultra (3M ESPE)	Nanofilled composite	Bis-GMA, UDMA, TEGDMA, PEGDMA, Bis-EMA	Zirconia/sílica nanofillers, nanocluster Ytterbium trifluoride	72.5% / 55.6%
X-tra Base (VOCO)	Bulk-fill flowable composite	Bis-GMA, Bis-EMA, UDMA	Barium glass, Ytteribium trifluoride, fumed silica	75% / 58%
Admira Fusion X- tra (VOCO)	Bulk-fill composite	ORMOCER®	Glass ceramic and silicone dioxide	84% / n.i.
GrandioSO (VOCO)	Nanohybrid composite	Bis-GMA, Bis-EMA, TEGDMA	Glass ceramic and silicone dioxide	89% / 73%
Single Bond Universal (3M ESPE)	Universal adhesive system		MDP phosphate monomer, dimethacrylate resins, HEMA, polyalkenoic acid copolymer, filler, ethanol, water, initiators, silane	
Futurabond U (VOCO)	Universal adhesive system	HEMA, Bis-GMA, HEDM UDMA, catalyst, silica n	IA, acidic adhesive monomer, anoparticles, ethanol	-

Table 2. Manufacturer-Specific Information of the materials used in the study.

Abbreviations: BisGMA—bisphenol-A-diglycidyl-dimethacrylate; UDMA—urethane dimethacrylate; BisEMA—ethoxylated bisphenol A dimethacrylate; DDDMA—1,12-dodecane dimethycrylate; TEGDMA—triethyleneglycol dimethacrylate; HEMA—2-hydroxyethyl methacrylate; PEGDMA—polyethylene glycol dimethacrylate; AUDMA—aromatic urethane dimethacrylate ; ORMOCER^{*}— inorganic-organic hybrid polymers.

3.2. Periodontal Ligament Simulation

For the simulation of the periodontal ligament, the roots were covered with wax heated to 90°C, by an immersion wax heater (ImerCera, Curitiba, PR, Brazil). Each specimen was embedded in self-curing acrylic resin within polyvinyl chloride tubes (25 mm diameter and 35 mm height).

The teeth were positioned in the center of the base of each tube leaving the root portion inside and the crown outside. The tubes were kept in an inverted

position and a self-curing acrylic resin was poured in to fill the tube. The exothermic reaction of the resin polymerization allowed the teeth to be displaced so that the wax surrounding the root was easily removed with a gauze. After that, each tooth was repositioned in the formed acrylic slot. After cooling and final polymerization of the self-curing acrylic resin, the teeth were removed and a light polyvinyl siloxane (PRESIDENT light body, Coltène/Whaledent AG, Altstätten, Switzerland) was dispensed inside the slot, and the teeth were positioned inside. Excess material was removed with a scalpel blade.

3.3. Aging and mechanical load tests

After a 24-hour storage in distilled water at 37°C, the specimens from all groups were subjected to 20,000 cycles thermal cycles (OMC 300, Odeme, Lucerna, SC, Brazil) of 5°C and 55°C in distilled water with a dwell time of 15 seconds.

The specimens were also subjected to 500,000 cycles of mechanical loading (Biocycle, Biopidi, São Carlos, SP, Brazil) with a 50N load at a 2.5-Hz frequency. The load was applied by a metal ball axially to the center of the occlusal surface and the specimens were immerged in distilled water at 37°C throughout the experiment. The test was considered complete until reaching the maximum number of cycles or until the specimen fracture.

3.4. Fracture strength test

The fracture strength test was performed in a universal testing machine (DL 2000, EMIC, São José dos Pinhais, PR, Brazil). The specimens were subjected to a compression force applied perpendicular to the occlusal surface by a steel cylinder with a 6-mm diameter round tip (axial loading) with a crosshead speed of 1 mm/min. The maximum force to generate fracture was recorded in N (Newtons).

3.5. Failure mode analysis

Fractured specimens were analyzed for failure mode using a stereomicroscope at 40 X magnification (SteREO Discovery V12, Zeiss, Germany). The mode of failure was classified as: (I) Cohesive failure in the restoration; (II) Cohesive failure in the tooth; (III) Failure of the restoration and enamel; (IV) Failure of the restoration and enamel/dentin; (V) Failure of the

restoration and enamel/dentin below the cemento-enamel junction (CEJ); (VI) Axial failure of the restoration and tooth structure.³²

3.6. Scanning Electron Microscopy

Two representative samples from each group were selected for analysis under scanning electron microscopy (SEM), as shown in Figures 2-7. The fractured specimens were cleaned in an ultrasonic bath with distilled water for 15 minutes and kept in a vacuum desiccator with silica for seven days. They were then coated with Au-Pd alloy and examined under SEM. (Vega 3, Tescan Orsay Holding, Brno, Czech Republic).

3.7. Statistical analysis

Normality distribution of the data was analyzed by Shapiro-Wilk and homogeneity of variance with Lèvene test. One-way ANOVA and Games-Howell test were performed to detect significant differences between the groups. A significance level of 5% was used for all the tests. The data were analyzed in SPSS 24.0 (IBM Software, New York, NY, USA).

Results

The mean fracture strength values for each group are shown in Table 1. Groups CTL and GR-F demonstrated significantly higher mean fracture strength when compared to FS, AF and GR (p<0.05). Groups FS-F and FB were not statistically different from all the other groups (p>0.05).

Among the groups restored with conventional composites, FS and FS-F showed no statistically significant differences (p>0.05). Conversely, GR-F showed higher mean fracture strength compared to that of GR (p<0.05).

Teeth restored with a single increment of bulk-fill composite (groups AF and FB) were not statistically different from groups restored with the incremental technique (p>0.05). When bulk-fill composites were compared with conventional composites associated to flowable base, the results were distinct. Group FB did not show significant difference from group FS-F (p>0.05), but contrarily, group AF showed significantly lower fracture strength compared to group GR-F (p<0.05).

Group	Restoration Technique	n	Fracture Strength Mean	Minimum	Maximum	Sig.
CTL	Control	10	1,871.88	1456.49	2568.51	А
FS	Conventional composite on incremental technique	10	1,183.33	1002.97	1935.86	В
FB	Single increment of bulk-fill composite	10	1,494.85	1116.92	2259.36	AB
FS-F	Conventional composite associated with flowable base	10	1,428.23	836.68	1665.58	AB
GR	Conventional composite on incremental technique	10	1,340.66	1356.25	1867.06	В
AF	Single increment of bulk-fill composite	10	1,138.38	732.97	1736.23	В
GR-F	Conventional composite associated with flowable base	10	1,615.70	1198.90	1454.43	A

Table 3. Mean fracture strength (N) and standard deviation of the evaluated groups.

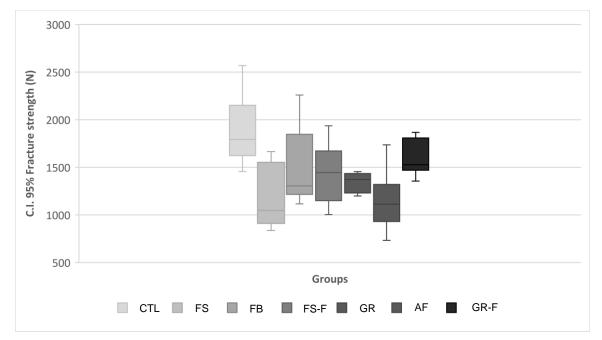


Figure 1. 95% Confidence Interval for Mean

The frequency distribution of the failure modes for each group expressed as the total number of specimens in the group are shown in Figure 1. The most common type of failure among the groups was type IV: failure of the restoration and enamel/dentin. It was noticed that the groups restored with nanohybrid and ORMOCER[®] composites achieved a more heterogeneous type of fracture.

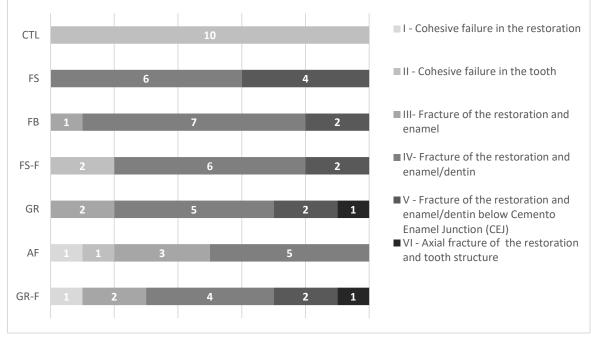


Figure 2. Frequency distribution of the failure modes.

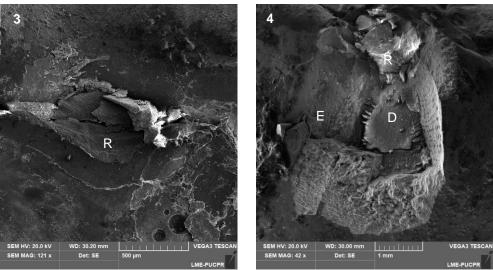


Figure 3. Specimen from group GR-F showing cohesive failure in the restoration (R).

Figure 4. Specimen from group FS-F showing cohesive failure in the tooth with exposure of enamel (E) and dentin (D).

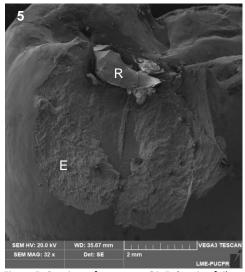


Figure 5. Specimen from group GR-F showing failure of the restoration (R) and enamel (E).

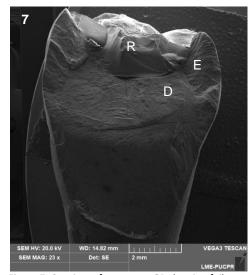


Figure 7. Specimen from group GR showing failure of the restoration (R) and enamel (E) / dentin (D) below the cemento-enamel junction (CEJ).

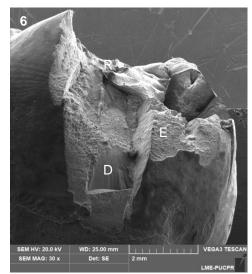


Figure 6. Specimen from group FS-F showing failure of the restoration (R) and enamel (E) / dentin (D).

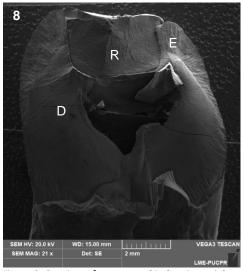


Figure 8. Specimen from group GR showing axial failure of the restoration (R) and tooth structure with exposure of enamel (E) and dentin (D).

Discussion

In this study, bulk-fill composite resins and conventional composite resins with and without intermediate flowable bases were compared to evaluate the fracture strength of restored teeth with extensive cusp-weakening Class I preparations. The null hypothesis was rejected since there were found differences in fracture strength of teeth restored with different restorative protocols.

In the present study, restorations made with both nanofilled composites, bulk-fill and conventional, with or without a flowable base resulted in similar fracture strength. Other studies demonstrated similar fracture strength when the same nanofilled bulk-fill composite was placed in a single increment compared with restorations placed with the layering technique.^{1,33-35} One of these studies also showed that this composite achieved higher fracture strength values, regardless of covering with a conventional composite or using extended light-curing.³⁵

Typically, composites with higher filler loading have been associated with higher mechanical properties.^{36,37} In the present study, despite the different composition and filler content of the bulk-fill composites, the fracture strength of both groups restored with bulk-fill was similar. Thus, other aspects, such as size, shape, and type of filler particles must be responsible for the mechanical behavior of composite resins. In the case of the nanofilled composites, this could be related to the presence of the zirconia/silica filler particles and nanoclusters.³⁸⁻⁴⁰ Spheroidal fillers present in the nanofilled composite resin have been associated with reduced stress concentration compared with the sharp edges of irregular-shaped filler particles.⁴¹ A recent study demonstrated that silica nanoclusters have better stress distribution during a compression test, probably due to their doughnut-shape morphology.⁴²

In our results, the nanohybrid conventional composite associated with the flowable bulk-fill composite as an intermediate base exhibited higher fracture strength in comparison with the ORMOCER[®] and the conventional composite without a base. A recent study showed that flowable bulk-fill composite developed significantly lower linear shrinkage than a conventional composite,⁴³ as well as higher flexural strength and Weibull modulus than bulk-fill composite as a base significantly reduced cuspal deflection in standardized Class II cavities when compared to nanohybrid conventional composite restorations using an oblique incremental filling technique.⁴⁵

In this study, the ORMOCER[®] composite resulted in the lowest fracture strength mean among all the materials tested, although not different from the nanofilled composites and the nanohybrid conventional composite using the incremental technique. In a recent study evaluating cuspal deflection of teeth restored with different resin composites, ORMOCER[®]s obtained the lowest volumetric cuspal deflection compared to other bulk-fill composites.⁴⁶ Additionally, ORMOCER[®]-based bulk-fill composites showed a reduced polymerization shrinkage when compared with other high and low-viscosity bulk-fill composites

and hybrid composites, which was attributed to its resin matrix consisting of inorganic–organic copolymers instead of classic monomers and its reduced amount of organic resin compared with dimethacrylate-based composites.^{43,47}

Fracture analysis in this study indicated that the group restored with nanocomposite, with the incremental technique, obtained a higher frequency of failures with root fractures. Nanohybrid composite with and without flowable base exhibited some catastrophic failures, with axial fracture of teeth. When a fracture occurs, it is always desirable to deal with a reparable fracture rather than an unfavorable condition. Fractures involving the root are usually difficult to restore and surgical procedures may be needed, prolonging the treatment and making it more complex.⁴⁸

Due to the presence of an organic matrix, the mechanical properties and clinical longevity of resin-based composite materials subjected to aging can decrease.⁴⁹ Based on the literature reviewed, there is no clear statement of a standardized aging protocol, with varied a number of cycles, frequency and load being applied to the specimens. Thus, the choice between thermocycling,^{35,50} mechanical load cycling,¹ both, or none,^{31,33,34,51} is rather arbitrary. The present study used both protocols, thermocycling and mechanical load cycling, with 20,000 and 500,000 cycles, respectively. It has been previously reported that 10,000 cycles of thermocycling correspond to a service year,⁵² and that 2 x 10⁶ cycles correspond to approximately 4 years of normal occlusal and masticatory activity.⁵³

Although *in vitro* studies provide information about the general characteristics of the materials, their interpretations should consider aspects regarding the intraoral environment. Hence, further *in vivo* studies are required for bulk-filled composites to replace the gold standard incremental placement technique in case of weakened cusp preparations.

Conclusion

Considering the limitations of this study, it was possible to conclude that:

- Restorations made with a nanofilled bulk-fill composite or with a conventional resin composite associated with a flowable bulk-fill base reestablished the fracture strength of weakened teeth to that of sound teeth;

14

- The nanohybrid composite used in this study improved its behavior by the presence of a flowable base;

- Both bulk-fill composites demonstrated similar fracture resistance to that of conventional composites using the incremental technique.

References

- Rosatto CM, Bicalho AA, Veríssimo C, Bragança GF, Rodrigues MP, Tantbirojn D, Versluis A & Soares CJ (2015) Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. *Journal of Dentistry* 43(12) 1519-1528.
- Veloso SRM, Lemos CAA, de Moraes SLD, do Egito Vasconcelos BC & Pellizzer EP & de Melo Monteiro GQ (2018) Clinical performance of bulk-fill and conventional resin composite restorations in posterior teeth: a systematic review and meta-analysis *Clinical Oral Investigations* 23 221-233.
- Heintze SD & Rousson (2012) Clinical effectiveness of direct class II restorations – A meta-analysis *Journal of Adhesive Dentistry* 14(5) 407-431.
- 4. Manhart J, Chen H, Hamm G, Hickel R (2004). Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition *Operative Dentistry* **29** 481-508.
- 5. Ferracane JL (2008) Buonocore Lecture. Placing dental composites--a stressful experience. *Operative Dentistry* **33(3)** 247-257.
- 6. Palin WM, Leprince JG & Hadis MA (2018) Shining a light on high volume photocurable materials *Dental Materials* **34(5)** 695-710.
- 7. van Dijken JWV & Pallesen U (2017) Bulk-filled posterior resin restorations based on stress-decreasing resin technology: a randomized, controlled 6-year evaluation *European Journal of Oral Science* **125(4)** 303-309.
- van Ende A, Munck JD, Lise DP & Meerbeek BV (2017) Bulk-Fill Composites: A Review of the Current Literature *Journal of Adhesive Dentistry* 19(2) 95–109.
- Nascimento AS, Lima DB, Fook MVL, Albuquerque MS, Lima EA, Sabino MA, Borges SMP, Filgueira PTD, Sousa YC & Braz R (2018) Physicomechanical characterization and biological evaluation of bulk-fill composite resin *Brazilian Oral Research* 32 e107.
- Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J & Leloup G (2014) Physico-mechanical characteristics of commercially available bulkfill composites *Journal of Denistry* 42(8) 993–1000.
- 11. Sampaio CS, Chiu KJ, Farrokhmanesh E, Janal M, Puppin-Rontani RM, Giannini M, Bonfante EA, Coelho PG & Hirata R (2017) Microcomputed Tomography Evaluation of Polymerization Shrinkage of Class I Flowable Resin Composite Restorations *Operative Dentistry* **42(1)** 16-23.
- Chesterman J, Jowett A, Gallacher A & Nixon P (2017) Bulk-fill resin-based composite restorative materials: a review *British Dental Journal* 222(5) 337-344.

- 13. Almuhaiza MS & Magdy NM (2018) Cuspal Deflection and Fracture Resistance in Maxillary Premolar Teeth Restored With Bulk-Fill Flowable Resin-Based Composite Materials *International Journal of Health Science* & *Research* 8(3) 105-112.
- 14. Kumagai RY, Zeidan LC, Rodrigues JA, Reis AF & Roulet JF (2015) Bond Strength of a Flowable Bulk-fill Resin Composite in Class II MOD Cavities *Journal of Adhesive Dentistry* **17(5)** 427-432.
- 15. Xie KX, Wang XY, Gao XJ, Yuan CY, Li JX & Chu CH (2012) Fracture resistance of root filled premolar teeth restored with direct composite resin with or without cusp coverage *International Endodontic Journal* **45(6)** 524-529.
- 16. Wolter H, Storch W & Ott H. (1994) New inorganic/organic copolymers (ORMOCER[®]s) for dental applications *Materials Research Society Symposium Proceedings* **346** 143-149.
- 17. Zimmerli B, Strub M, Jeger F, Stadler O & Lussi A (2010) Composite materials: composition, properties and clinical applications. A literature review *Schweiz Monatsschr Zahnmed* **120(11)** 972-986.
- 18. Manhart J, Neuerer P, Scheibenbogen-Fuchsbrunner A & Hickel R (2000) Three-year clinical evaluation of direct and indirect composite restorations in posterior teeth *Journal of Prosthetic Dentistry* **84(3)** 289–296.
- 19. Ozakar-Ilday N, Zorba YO, Yildiz M, Erdem V, Seven N, Demirbuga S (2013) Three-year clinical performance of two indirect composite inlays compared to direct composite restorations *Medicina Oral, Patologia Oral e Cirurgia Bucal* **18(3)** e521–e528.
- 20. Huth KC, Chen HY, Mehl A, Hickel R, Manhart J (2011) Clinical study of indirect composite resin inlays in posterior stress-bearing cavities placed by dental students: results after 4 years *Journal of Dentistry* **39(7)** 478-488.
- Laegreid T, Gjerdet NR, Johansson A & Johansson AK (2014) Clinical decision making on extensive molar restorations *Operative Dentistry* 39(6) E231-240.
- 22. Opdam N, Frankenberger R & Magne P (2016) From 'Direct Versus Indirect' Toward an Integrated Restorative Concept in the Posterior Dentition *Operative Dentistry* **41(S7)** S27-S34.
- 23. da Veiga AM, Cunha AC, Ferreira DM, da Silva Fidalgo TK, Chianca TK, Reis KR & Maia LC (2016) Longevity of direct and indirect resin composite restorations in permanent posterior teeth: A systematic review and metaanalysis *Journal of Dentistry* **54** 1–12.
- 24. Angeletaki F, Gkogkos A, Papazoglou E, Kloukos D (2016) Direct versus indirect inlay/onlay composite restorations in posterior teeth. A systematic review and meta-analysis *Journal of Dentistry* **53** 12–21.
- 25. Azeem RA & Sureshbabu NM (2018) Clinical performance of direct versus indirect composite restorations in posterior teeth: A systematic review *Journal of Conservative Dentistry* **21(1)** 2–9.
- 26. Larson TD, Douglas WH & Geistfeld RE (1981) Effect of prepared cavities on the strength of teeth *Operative Dentistry* **6** 2-5.
- Millar BJ, Robinson PB & Davies BR (1992) Effects of the removal of composite resin restorations on Class II cavities *British Dental Journal* 173 210-212.
- 28. Mondelli J, Rizzante FAP, Valera FB, Roperto R, Mondelli RFL & Furuse AY (2019) Assessment of a conservative approach for restoration of

extensively destroyed posterior teeth *Journal of Applied Oral Science* **27(2)** e20180631.

- Teixeira ES, Rizzante FA, Ishikiriama SK, Mondelli J, Furuse AY, Mondelli RF & Bombonatti JF (2016). Fracture strength of the remaining dental structure after different cavity preparation designs *General dentistry* 64(2) 33-36.
- 30. Mondelli J, Sene F, Ramos RP & Benetti AR (2007) Tooth structure and fracture strength of cavities *Brazilian Dental Journal* **18(2)** 134-138.
- 31. Rosa de Lacerda L, Bossardi M, Silveira Mitterhofer WJ, Galbiatti de Carvalho F, Carlo HL, Piva E & Münchow EA (2019) New generation bulkfill resin composites: Effects on mechanical strength and fracture reliability. *Journal of Mechanical Behavior of Biomedical Materials* **96** 214-218.
- 32. Gresnigt MM, Özcan M, van den Houten ML, Schipper L & Cune MS (2016) Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces *Dental Materials* **32(5)** 607-614.
- 33. Hegde V & Sali AV (2017) Fracture resistance of posterior teeth restored with high-viscosity bulk-fill resin composites in comparison to the incremental placement technique *Journal of Conservative Dentistry* **20(5)** 360-364.
- 34. Lins RBE, Aristilde S, Osório JH, Cordeiro CMB, Yanikian CRF, Bicalho AA, Stape THS, Soares CJ & Martins LRM (2019) Biomechanical behaviour of bulk-fill resin composites in class II restorations. *Journal of Mechanical Behavior of Biomedical Materials* **98** 255-261.
- 35. Al-Nahedh HN & Alawami Z (2020) Fracture Resistance and Marginal Adaptation of Capped and Uncapped Bulk-fill Resin-based Materials *Operative Dentistry* **45(2)** E43-E56
- 36. Ilie N & Hickel R (2009) Investigations on mechanical behaviour of dental composites *Clinical Oral Investigations* **13(4)** 427-438.
- 37. Rueda MM, Auscher MC, Fulchiron R, Périé, Martin G, Sonntag P & Cassangau P (2017) Rheology and applications of highly filled polymers: A review of current understanding *Progress in Polymer Science* 66 22-53
- Mitra SB, Wu D & Holmes BN (2003) An application of nanotechnology in advanced dental materials *Journal of American Dental Association* 134(10) 1382-1390.
- 39. Curtis AR, Palin WM, Fleming GJ, Shortall AC & Marquis PM (2009) The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength *Dental Materials* **25(2)** 188-197.
- 40. Atai M, Pahlavan A & Moin N (2012) Nano-porous thermally sintered nano silica as novel fillers for dental composites *Dental Materials* **28(2)** 133-145.
- Sabbagh J, Ryelandt L, Bachérius L, Biebuyck JJ, Vreven J, Lambrechts P & Leloup G (2004) Characterization of the inorganic fraction of resin composites *Journal of Oral Rehabilitation* **31(11)** 1090-1101.
- 42. Rodríguez HA, Kriven WM & Casanova H (2019) Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state *Material Science and Engineering C Materials for Biological Applications* **101** 274-282.

- 43. Tauböck TT, Jäger F & Attin T (2019) Polymerization shrinkage and shrinkage force kinetics of high- and low-viscosity dimethacrylate- and ormocer-based bulk-fill resin composites *Odontology* **107(1)** 103-110.
- 44. Ilie N, Bucuta S & Draenert M (2013) Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance *Operative Denistry*.
 38(6) 618-25.
- 45. Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, & Fleming GJ (2012) Cuspal deflection and micro- leakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials *Journal of Dentistry* **40(6)** 500-505.
- 46. Demirel G, Baltacioglu IH, Kolsuz ME, Ocak M, Bilecenoglu B & Orhan K (2019) Volumetric Cuspal Deflection of Premolars Restored With Different Paste-like Bulk-fill Resin Composites Evaluated by Microcomputed Tomography Operative Dentistry 45(2) 143-150.
- 47. Yap AU & Soh MS (2004) Post-gel polymerization contraction of "low shrinkage" composite restoratives *Operative Denistry*. **29(2)** 182-187.
- 48. Stojanac IL, Bajkin BV, Premovic MT, Ramic BD & Petrovic LM (2016) Multidisciplinary Treatment of Complicated Crown-Root Fractures: A Case Study Operative Denistry 41(6) e168-e173.
- 49. Benalcázar Jalkh EB, Machado CM, Gianinni M, Beltramini I, Piza M, Coelho PG, Hirata R & Bonfante EA (2019) Effect of Thermocycling on Biaxial Flexural Strength of CAD/CAM, Bulk Fill, and Conventional Resin Composite Materials Operative Denistry 44(5) e254-e262.
- 50. Hada YS & Panwar S (2019) Comparison of the fracture resistance of three different recent composite systems in large Class II mesio-occlusal distal cavities: An in vitro study *Journal of Conservative Dentistry* **22(3)** 287-291.
- 51. de Assis FS, Lima SN, Tonetto MR, Bhandi SH, Pinto SC, Malaquias P, Loguercio AD & Bandéca MC (2016) Evaluation of Bond Strength, Marginal Integrity, and Fracture Strength of Bulk- vs Incrementally-filled Restorations *Journal of Adhesive Dentistry* **18(4)** 317-323.
- 52. Gale MS & Darvell BW (1999) Thermal cycling procedures for laboratory testing of dental restorations *Journal of Dentistry* **27(2)** 89-99.
- 53. Grandini S, Chieffi N, Cagidiaco MC, Goracci C & Ferrari M (2008) Fatigue resistance and structural integrity of different types of fiber posts *Dental Materials Journal* **27(5)** 687-694.

ANEXOS

Parecer de comitê de ética

PUCPR PUCPR PUCPR PUCPR PUCPR PUCPR PUCPR PUCPR PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ - PUC/ PR
PARECER CONSUBSTANCIADO DO CEP
DADOS DO PROJETO DE PESQUISA
Título da Pesquisa: Resinas bulk-fill vs convencionais com base para restaurações de dentes extensamente destruídos
Pesquisador: Evelise Machado de Souza Área Temática: Versão: 1 CAAE: 94126418.5.0000.0020
Instituição Proponente: Pontifícia Universidade Católica do Paraná Patrocinador Principal: Financiamento Próprio
DADOS DO PARECER
Número do Parecer: 2.824.728
Apresentação do Projeto: Por várias décadas, as resinas compostas têm sido extensamente utilizadas na odontologia restauradora, sendo consideradas o material de primeira escolha para restaurações diretas em dentes posteriores (1,2). Com base em pesquisa de mercado e materiais vendidos, calcula-se que mais de quinhentos milhões de restaurações dentárias diretas são colocadas a cada ano em todo o mundo, o que faz dela uma das intervenções médicas mais prevalentes no corpo humano (3). A contração de polimerização é considerada uma das principais desvantagens das resinas compostas de uso direto, pois pode resultar em problemas como fraturas, além de gerar tensão na interface dente-restauração, o que pode levar à formação de fendas marginais, descoloração marginal, sensibilidade pós-operatória e cárie secundária (4). Para reduzir a tensão de contração de polimerização, tem sido recomendada a técnica de inserção incremental das resinas compostas, o que resulta em menor tensão de contração devido à redução do fator de configuração cavitária, além de melhorar a penetração da luz, permitindo um maior grau de conversão do material (5). No entanto, esta técnica resulta em maior tempo clínico e pode levar à introdução de espaços vazios no corpo da restauração, o que pode levar à
Endereço: Rua Imaculada Conceição 1155 Bairro: Prado Velho CEP: 80.215-901

UF: PR Municipio: CURITIBA Telefone: (41)3271-2103 Fax: (41)3271-2103 E-mail: nep@pucpr.br

Página 01 de 04

Comitê de Ética em Pesquisa da PUCPR C

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ - PUC/ PR

Continuação do Parecer: 2.824.728

redução da resistência e falhas prematuras (6).

Nesse aspecto, a possibilidade de preencher uma cavidade em incremento único tem benefícios interessantes, entre eles, o menor tempo de

trabalho e a redução da chamada "janela de oportunidade" para erros técnicos, como a incorporação de espaços e a contaminação entre camadas

(7).

Buscando esses benefícios, os fabricantes têm desenvolvido novos materiais restauradores que podem ser utilizados em incremento único de 4 a 5

mm de espessura, conhecidos como resinas compostas bulk-fill (1,6). Este novo tipo de material promove redução do tempo de trabalho, porém

ainda apresenta algumas limitações em termos de propriedades mecânicas quando comparadas às resinas convencionais (8). As resinas bulk-fill se

encontram disponíveis em dois tipos de viscosidade, denominadas resinas compostas bulk-fill de base e de corpo. As resinas bulk-fill de corpo

podem ser aplicadas em um incremento único sem a necessidade de cobertura, pois apresentam alto conteúdo de carga inorgânica e, portanto,

podem ser usados em áreas de maior incidência de carga mastigatória (2). As resinas bulk-fill de base são compósitos de baixa viscosidade e,

portanto, com menor conteúdo de carga inorgânica e usados como forramento ou base, sobrepostos por uma resina composta convencional (6).

Estudos têm demonstrado que as resinas compostas bulk-fill flow apresentam menor dureza, módulo de elasticidade, deformação de cúspides e de

estresse de contração (9-11). Todas essas características mecânicas fazem com que as resinas compostas bulk-fill flow atuem como uma camada

que absorve o estresse gerado pelo alto módulo de elasticidade da resina composta convencional (12).

A adaptação marginal de restaurações em resinas compostas tem sido frequentemente avaliada por meio de microtomografia computadorizada (13-

19). Esse método é considerado mais vantajoso por não ser destrutível (14,16,18), ser mais preciso na avaliação de fendas marginais (16) e superar

as limitações de análise subjetiva e qualitativa de testes de microinfiltração com uso de corantes (17). Estudos sobre a adaptação marginal de

resinas bulk-fill tem demonstrado uma grande variedade de resultados conforme as marcas

Endereço: Rua Imaculada Co	nceição 1155		
Bairro: Prado Velho	CEP:	80.215-901	
UF: PR Município	: CURITIBA		
Telefone: (41)3271-2103	Fax: (41)3271-2103	E-mail: nep@pucpr.br	

Página 02 de 04

taforma

Comitê de Ética em Pesquisa da PUCPR

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ - PUC/ PR

Continuação do Parecer: 2.824.728

comerciais avaliadas (20-22).

A resistência à fratura dos dentes restaurados está relacionada a vários fatores, como o desenho da cavidade, a magnitude e o tipo de estresse, a

composição da resina composta (conteúdo de carga e composição da matriz) e a técnica de restauração (23). Geralmente, quanto maior o

envolvimento por cárie ou preparo cavitário, mais comprometido mecanicamente é o elemento dental (24). A resistência de um dente diminui

proporcionalmente à quantidade de tecido dentário removido, particularmente em relação à largura da secção oclusal, ainda mais quando a perda de

tecido dental envolve uma cúspide (25). Estudos prévios investigando a resistência à fratura de restaurações com resinas bulk-fill utilizam preparos

de Classe II, geralmente do tipo MOD (1,26-29). Porém, são escassos os estudos

Objetivo da Pesquisa:

Objetivo Primário:

A hipótese nula a ser testada é que não existirá diferença na adaptação interna e a resistência à fratura de dentes restaurados com os diferentes

sistemas de resinas compostas avaliados.

Avaliação dos Riscos e Benefícios:

Riscos:

Riscos para o operador durante a execução dos ensaios em microtomógrafo.

Beneficios:

A investigação da efetividade de novas técnicas restauradoras pode levar à maior durabilidade clínica das restaurações extensas em dentes

posteriores.

Comentários e Considerações sobre a Pesquisa:

Sem comentários adicionais

Considerações sobre os Termos de apresentação obrigatória:

Todos os termos obrigatórios anexados corretamente

Recomendações:

Sem recomendações

Conclusões ou Pendências e Lista de Inadequações:

Aprovado

Endereço:	Rua Imaculada Cono	ceição 1155			
Bairro: P	ado Velho		CEP:	80.215-901	
UF: PR	Município:	CURITIBA			
Telefone:	(41)3271-2103	Fax: (41)3	3271-2103	E-mail:	nep@pucpr.br

Página 03 de 04

otoforma

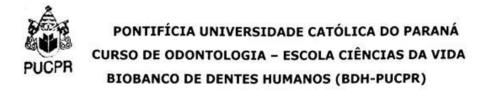
Continuação do Parecer: 2.824.728

Considerações Finais a critério do CEP:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento	Arquivo	Postagem	Autor	Situação
	PB_INFORMAÇÕES_BÁSICAS_DO_P	18/07/2018		Aceito
do Projeto	ROJETO_1048062.pdf	09:30:09		
Projeto Detalhado /	Projeto_Plataforma_Brasil.pdf	18/07/2018	Brenda Sanchez	Aceito
Brochura		09:17:05	Leyton	
Investigador				
Declaração de	Termo_de_transferencia_de_material_bi	16/07/2018	Brenda Sanchez	Aceito
Manuseio Material	ologico.pdf	13:50:40	Levton	
Biológico /				
Biorepositório /				
Biobanco				
Folha de Rosto	FR.pdf	15/07/2018	Daniela Hyczy	Aceito
	<u>a</u>	17:00:56	Floriani	

Situação do Parecer: Aprovado Necessita Apreciação da CONEP: Não


CURITIBA, 16 de Agosto de 2018

Assinado por: NAIM AKEL FILHO (Coordenador)

Endereço:	Rua Imaculada Cono	ceição 1155		
Bairro: P	rado Velho	CEP:	80.215-901	
UF: PR	Município:	CURITIBA		
Telefone:	(41)3271-2103	Fax: (41)3271-2103	E-mail:	nep@pucpr.br

Página 04 de 04

Termo de transferência de material biológico

TERMO DE TRANSFERÊNCIA DE MATERIAL BIOLÓGICO

O Biobanco de Dentes Humanos da Pontifícia Universidade Católica do Paraná (BDH-PUCPR), situado na Rua Imaculada Conceição, 1155 – Prado Velho - Curitiba, Paraná - Brasil, através deste informa estar realizando a cessão dos elementos solicitados em documentos anteriores aos responsáveis abaixo.

Professor responsável: Evelise Machado de Souza.

Pesquisador responsável: Daniela Hyczy Floriani.

Título do projeto de pesquisa: RESINA BULK-FILL VS CONVENCIONAIS COM BASE PARA RESTAURAÇÕES DE DENTES EXTENSAMENTE DESTRUÍDOS.

Detalhes da solicitação:

* Quantidade de dentes:120

* Tipo do dente: terceiros molares

Os elementos solicitados deverão ser utilizados estritamente ao fim que se destinam. Lembrando da importância de que o professor/pesquisador responsável deve, após término de sua pesquisa, devolver os dentes doados novamente ao BDH-PUCPR.

Curitiba, 11 de/julho de/2018. Coordenador geral de BDH-PUCPR

Analise estatística

Testes de Normalidade

Variável	Resina Composta x Adesivo	Shapiro	-Wilk	
vanaver	Resina Composia x Adesivo	Estatistica	df	Valor p
	Sem Resina / Sem Adesivo	0,929	10	0,441
	Filtek Z350 / Single Bond Universal	0,848	10	0,055
	Filtek Bulk Fill / Single Bond Universal	0,855	10	0,066
Resistência à fratura por compressão (N)	Filtek Bulk Fill Flow / Single Bond Universal	0,943	10	0,582
	GrandioSO / Futurabond U	0,889	10	0,167
	Admira Fuxion / Futurabond U	0,958	10	0,764
	X-tra Base / Futurabond U	0,895	10	0,194

Resina	N	Média	Desvio Padrão	Erro Padrão	Intervalo de confiança de 95% para média		Minimo	Máximo
		0000 0000			Limite inferior	Limite superior		
Sem resina	10	1871,88	339,48	107,35	1629,03	2114,73	1456,49	2568,51
Filtek Z350	10	1183,33	334,99	105,93	943,69	1422,97	836,68	1665,58
Filtek Bulk Fill	10	1494,85	386,81	122,32	1218,14	1771,55	1116,92	2259,36
Filtek Bulk Fill Flow	10	1428,23	326,10	103,12	1194,95	1661,50	1002,97	1935,86
GrandioSO	10	1340,66	97,50	30,83	1270,91	1410.40	1198,90	1454,43
Admira Fuxion	10	1138,38	286,94	90,74	933,12	1343,64	732,97	1736,23
X-tra Base	10	1615,70	188,82	59,71	1480,63	1750,77	1356,25	1867.06

Teste de Homogeneidade de Variâncias

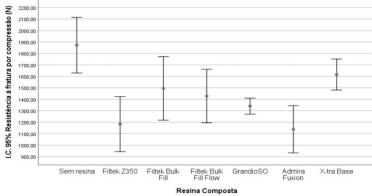
Variável	Estatistica de Levene	df1	df2	Valor p
Resistência à fratura por compressão (N)	2,608	6	63	0,025

Análise Univariada de Variância

Resina Composta	Rótulo de valor	N
1	Sem resina	10
2	Filtek Z350	10
3	Filtek Bulk Fill	10
4	Filtek Bulk Fill Flow	10
5	GrandioSO	10
6	Admira Fuxion	10
7	X-tra Base	10

Variável dependente:	Resistência à fratura por compre	ssão (N)				
Fonte de Variação	Tipo III Soma dos Quadrados	gl	Quadrado Médio	F	Valor p	Poder observado ^b
resina	3872535,181	6	645422,530	7,395	0.00001	0,9995351
Erro	5498263,815	63	87274,029	1		
Total corrigido	9370798,995	69				

b. Calculado usando alfa = ,05


Comparações múltiplas Variável dependente: Games-Howell

Resistência à fratura por compressão (N)

(I) Resina Composta	(J) Resina Composta	Diferença média (I-J)	Erro Padrão	Valor p	Intervalo de Confiança 95%		
(i) Resina Composta	(J) Resina Composia	Enterença media (1-3)	Ello Fadiao	valuep	Limite inferior	Limite superior	
Sem resina	Filtek Z350	688,5490	150,82006	0,0037	190,1686	1186,929	
	Filtek Bulk Fill	377,0350	162,74691	0,2894	-161,7856	915,855	
	Filtek Bulk Fill Flow	443,6530	148,85696	0,0932	-48,3215	935,627	
	GrandioSO	531,2240	111,69218	0,0085	130,3274	932,120	
	Admira Fuxion	733,5010	140,56331	0.0010	267,5435	1199,458	
	X-tra Base	256,1810	122,84116	0,4098	-162,9088	675,270	
Filtek Z350	Sem resina	-688,5490	150,82006	0,0037	-1186,9294	-190,168	
	Filtek Bulk Fill	-311,5140	161,81490	0,4906	-847,4675	224,439	
	Filtek Bulk Fill Flow	-244,8960	147,83741	0,6506	-733,4510	243,659	
	GrandioSO	-157,3250	110,32973	0,7784	-553,0381	238,388	
	Admira Fuxion	44,9520	139,48315	0,9999	-417,2050	507,109	
	X-tra Base	-432,3680	121,60369	0,0383	-846,7543	-17,981	
Filtek Bulk Fill	Sem resina	-377,0350	162,74691	0,2894	-915,8556	161,785	
	Filtek Z350	311,5140	161,81490	0,4906	-224,4395	847,467	
	Filtek Bulk Fill Flow	66,6180	159,98678	0,9995	-463,7784	597,014	
	GrandioSO	154,1890	126,14482	0.8707	-301,5722	609,950	

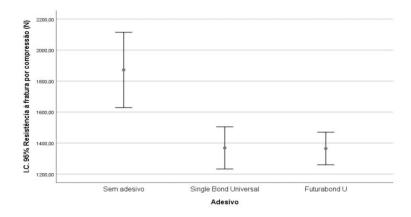
	Admira Fuxion	356,4660	152,30042	0.2822	-151,6753	864,6073
	X-tra Base	-120,8540	136,11511	0,9683	-590,6129	348,9049
Filtek Bulk Fill Flow	Sem resina	-443,6530	148,85696	0,0932	-935,6275	48,321
	Filtek Z350	244,8960	147,83741	0,6506	-243,6590	733,4510
	Filtek Bulk Fill	-66,6180	159,98678	0,9995	-597,0144	463,778
	GrandioSO	87,5710	107,63064	0,9782	-297,8673	473,0093
	Admira Fuxion	289,8480	137,35813	0,3883	-164,8815	744,5775
	X-tra Base	-187,4720	119,16024	0,6999	-592,5857	217,641
GrandioSO	Sem resina	-531,2240	111,69218	0,0085	-932,1206	-130,327
	Filtek Z350	157,3250	110,32973	0,7784	-238,3881	553,038
	Filtek Bulk Fill	-154,1890	126,14482	0,8707	-609,9502	301,572
	Filtek Bulk Fill Flow	-87,5710	107,63064	0,9782	-473,0093	297,8673
	Admira Fuxion	202,2770	95,83320	0,4080	-138,1535	542,707
	X-tra Base	-275,0430	67,20052	0,0155	-505,8167	-44,2693
Admira Fuxion	Sem resina	-733,5010	140,56331	0,0010	-1199,4585	-267,543
	Filtek Z350	-44,9520	139,48315	0,9999	-507,1090	417,205
	Filtek Bulk Fill	-356,4660	152,30042	0,2822	-864,6073	151,6753
	Filtek Bulk Fill Flow	-289,8480	137,35813	0,3883	-744,5775	164,881
	GrandioSO	-202,2770	95,83320	0,4080	-542,7075	138,153
	X-tra Base	-477,3200	108,62233	0,0069	-842,7553	-111,8847
X-tra Base	Sem resina	-256,1810	122,84116	0,4098	-675,2708	162,9088
	Filtek Z350	432,3680	121,60369	0,0383	17,9817	846,7543
	Filtek Bulk Fill	120,8540	136,11511	0,9683	-348,9049	590,6129
	Filtek Bulk Fill Flow	187,4720	119,16024	0,6999	-217,6417	592,5857
	GrandioSO	275,0430	67,20052	0.0155	44,2693	505,8167
	Admira Fuxion	477.3200	108.62233	0.0069	111.8847	842.7553

Descritivos Resistência à fratura por compressão (N)

Adesivo	N	Média	Desvio Padrão	Erro Padrão	Intervalo de confia mé		Minimo	Máximo
					Limite inferior	Limite superior		
Sem adesivo	10	1.871,88	339,48	107,35	1.629,03	2.114,73	1.456,49	2.568,51
Single Bond Universal	30	1.368,80	364,44	66,54	1.232,72	1.504,89	836,68	2.259,36
Futurabond U	30	1.364,91	281,34	51,37	1.259,86	1.469,97	732,97	1.867,06

Teste de Homogeneidade de Variâncias

Variável	Estatistica de Levene	df1	df2	Valor p
Resistência à fratura por compressão (N)	1,404	2	67	0,2527


Análise Univariada de Variância

Adesivo	Rótulo de valor	N
1	Sem adesivo	10
2	Single Bond Universal	30
3	Futurabond U	30

Variável dependente:	Resistência à fratura por compressa	ăo (N)				
Fonte de Variação	Tipo III Soma dos Quadrados	gi	Quadrado Médio	F	Valor p	Poder observado ^b
adesivo	2186361,847	2	1093180,924	10,195	0,00014	0,98295
Erro	7184437,148	67	107230,405			
Total corrigido	9370798,995	69				

b. Calculado usando alfa = .05

Variável dependente: Tukey HSD	Resistência à fratura por com	Comparações múltiplas pressão (N)					
(I) Adesivo	(J) Adesivo	Diferenca média (I-J)	Erro Erro	Valorp	Intervalo de Confiança 95%		
	(J) Adesivo	Cherença media (1-3)	EIIOEIIO	valorp	Limite inferior	Limite superior	
Sem adesivo	Single Bond Universal	503,07900	119,57168	0.000	216,4798	789,6782	
	Futurabond U	506,96867*	119,57168	0,000	220,3695	793,5678	
Single Bond Universal	Sem adesivo	-503,07900	119,57168	0.000	-789,6782	-216,4798	
	Futurabond U	3,88967	84,54995	0,999	-198,7665	206,5459	
Futurabond U	Sem adesivo	-506,96867	119,57168	0,000	-793,5678	-220,3695	
	Single Bond Universal	-3.88967	84,54995	0.999	-206.5459	198,7665	

Descritivos Resistência à fratura por compressão (N)

Resina x Adesivo	N	N Média	Desvio Padrão	Erro Padrão	Intervalo de confiança de 95% para média		Minimo	Máximo
	N Worka		Liferadiad	Limite inferior	Limite superior			
Sem Resina / Sem Adesivo	10	1.871,88	339,48	107,35	1.629,03	2.114,73	1.456,49	2.568,51
Filtek Z350 / Single Bond Universal	10	1.183,33	334,99	105,93	943,69	1.422,97	836,68	1.665,58
Filtek Bulk Fill / Single Bond Universal	10	1.494,85	386,81	122,32	1.218,14	1.771,55	1.116,92	2 259,36
Filtek Bulk Fill Flow / Single Bond Universal	10	1.428,23	326,10	103,12	1.194,95	1.661,50	1.002,97	1.935,86
GrandioSO / Futurabond U	10	1.340,66	97,50	30,83	1.270,91	1.410,40	1.198,90	1.454,43
Admira Fuxion / Futurabond U	10	1.138,38	286,94	90,74	933,12	1.343,64	732,97	1.736,23
X-tra Base / Futurabond U	10	1.615.70	188.82	59,71	1.480.63	1.750.77	1,356,25	1.867.06

Teste de Homogeneidade de Variâncias

Variável	Estatística de Levene	df1	df2	Valor p
Resistência à fratura por compressão (N)	2,608	6	63	0,0254

Análise Univariada de Variância

Resina Composta x Adesivo	Rótulo de valor	Ν
---------------------------	-----------------	---

1	Sem Resina / Sem Adesivo	10
2	Filtek Z350 / Single Bond Universal	10
3	Filtek Bulk Fill / Single Bond Universal	10
4	Filtek Bulk Fill Flow / Single Bond Universal	10
5	GrandioSO / Futurabond U	10
6	Admira Fuxion / Futurabond U	10
7	X-tra Base / Futurabond U	10

Variável dependente: Resistência à fratura por compressão (N)

Fonte de Variação	Tipo III Soma dos Quadrados	gi	Quadrado Médio	F	Valor p	Poder observado ^b
ResinaxAdesivo	3872535,181	6	645422,530	7,395	0.00001	0,99954
Erro	5498263,815	63	87274,029			
Total corrigido	9370798,995	69		0		

b. Calculado usando alfa = ,05

Variável dependente: Games-Howell	Resistência à fratura por compress	ão (N)					
		Diferença média (I-J)			Intervalo de Confiança 95%		
(I) Resina Composta x Adesivo	(J) Resina Composta x Adesivo		Erro Padrão	Valor p	Limite inferior	Limite superio	
	Filtek Z350 / Single Bond Universal	688,5490	150,82006	0,004	190,1686	1186,92	
	Filtek Bulk Fill / Single Bond Universal	377,0350	162,74691	Valor p Limite inferior 0.004 190.168 0.093 -46.321 0.009 130.327 0.001 267.543 0.004 -1185.928 0.004 -1185.928 0.004 -1185.929 0.401 -467.467 0.651 -733.451 0.0778 -553.038 1.000 -447.205 0.038 -846.754 0.289 -915.855 0.491 -224.439 0.599 -463.778 0.671 -301.572 0.282 -151.675 0.968 -590.612 0.999 -835.627 0.651 -243.859 0.999 -597.014 0.978 -297.867	915,85		
Sem Resina / Sem Adesivo	Filtek Bulk Fill Flow / Single Bond Universal	443,6530	148,85696	0,093	-48,3215	935,62	
	GrandioSO / Futurabond U	531,2240	111,69218	0,009	130,3274	932,12	
	Admira Fuxion / Futurabond U	733,5010	140,56331	0,001	267,5435	1199,45	
	X-tra Base / Futurabond U	256,1810	122,84116	0,410	-162,9088	675,27	
iltek Z350 / Single Bond Universal	Sem Resina / Sem Adesivo	-688,5490	150,82006	0.004	-1186,9294	-190,16	
	Filtek Bulk Fill / Single Bond Universal	-311,5140	161,81490	0,491	-847,4675	224,43	
Filtek Z350 / Single Bond Universal	Filtek Bulk Fill Flow / Single Bond Universal	-244,8960	147,83741	0,651	-733,4510	243,65	
	GrandioSO / Futurabond U	-157,3250	110,32973	0,778	-553,0381	238,38	
	Admira Fuxion / Futurabond U	44,9520	139,48315	1,000	-417,2050	507,10	
	X-tra Base / Futurabond U	-432,3680	121,60369	0,038	190,1686 -161,7856 -46,3215 130,3274 267,5435 -162,9088 -1186,9294 -847,4675 -733,4510 -553,0381	-17,98	
	Sem Resina / Sem Adesivo	-377,0350	162,74691	0.289	-915,8556	161,78	
	Adesivo Filtek Z350 / Single Bond Universal 688,5490 150,82006 Filtek Bulk Fill / Single Bond Universal 377,0350 162,74691 Filtek Bulk Fill / Single Bond Universal 443,6530 148,85696 GrandoSO / Futurabond U 531,2240 111,89218 Admira Fuxion / Futurabond U 733,5010 140,56331 X-tra Base / Futurabond U 256,1810 122,84118 Sem Resina / Sem Adesivo -688,5490 150,82006 Filtek Bulk Fill / Single Bond Universal -311,5140 161,81490 Filtek Bulk Fill / Single Bond Universal -244,8960 147,83741 Universal GrandioSO / Futurabond U -157,3250 110,32973 Admira Fuxion / Futurabond U -4432,3680 121,60369 244,8960 X-tra Base / Futurabond U -432,3680 121,60369 244,8960 Sem Resina / Sem Adesivo -377,0350 162,74691 159,39678 Ingle Bond GrandioSO / Futurabond U -432,3680 159,39678 126,14422 Admira Fuxion / Futurabond U 154,1860 159,39678 159,39678 159,39678	0,491	-224,4395	847,46			
Sem Resina / Sem Adesivo Sem Resina / Sem Adesivo Filtek Sem Resina / Sem Adesivo Filtek Sem Resina / Sem Adesivo Filtek Sem I Filtek Z350 / Single Bond Universal Filtek		66,6180	159,98678	0,999	-463,7784	597,01	
	GrandioSO / Futurabond U	154,1890	126,14482	0,871	-301,5722	609,95	
	Admira Fuxion / Futurabond U	356,4660	152,30042	Limte inferior 0.004 190,1686 0.289 -161,7856 0.093 -48,3215 0.009 130,3274 0.001 267,5435 0.410 -162,2908 0.004 -1186,9294 0.401 -847,4675 0.651 -733,4510 0.778 -555,0381 1.000 -417,2050 0.038 -846,7543 0.289 -915,8556 0.491 -224,4355 0.491 -224,4355 0.999 -463,7784 0.871 -301,5722 0.282 -151,6753 0.988 -590,6129 0.999 -453,7044 0.998 -597,0144 0.978 -287,8673	864,60		
iltek Bulk Fill / Single Bond	X-tra Base / Futurabond U	-120,8540	136,11511	0,968	-590,6129	348,90	
	Sem Resina / Sem Adesivo	-443,6530	148,85696	0,093	-935.6275	48,32	
	Filtek Z350 / Single Bond Universal	244,8960	147,83741	0,651	-243,6590	733,45	
	Bern Resina / Sem Adesivo Science Science Filtek Buk Fill / Single Bond Universal -311,5140 161,81490 0.491 -847,467 Band Universal Filtek Buk Fill / Single Bond Universal -244,8860 147,83741 0.651 -733,451 GrandoSO / Futurabond U -157,3250 110,32973 0.778 -555,038 Admira Fuxion / Futurabond U -442,9520 139,48315 1.000 -417,205 Admira Fuxion / Futurabond U -432,3680 121,60369 0.038 -846,754 Sem Resina / Sem Adesivo -377,0350 1162,74691 0.289 -915,855 Filtek Z350 / Single Bond Universal 311,5140 161,81490 0.491 -224,435 Filtek Z350 / Single Bond Universal 311,5140 161,81490 0.491 -224,435 GrandoSD / Futurabond U 154,1860 159,98678 0.999 -465,778 Admira Fuxion / Futurabond U 356,4660 152,30442 0.671 -301,577 Admira Fuxion / Futurabond U -120,8540 136,11511 0.988 -580,612 Yatra Base /	-597,0144	463,77				
Universal	GrandioSO / Futurabond U	87,5710	107,63064	0,978	-297,8673	473,00	
	Admira Fuxion / Futurabond U	289,8480	137,35813	0,388	-164,8815	744,57	
	X-tra Base / Futurabond U	-187,4720	119,16024	0,700	-592,5857	217,64	

	Sem Resina / Sem Adesivo	-531,2240	111,69218	0.009	-932,1206	-130,3274
	Filtek Z350 / Single Bond Universal	157,3250	110,32973	0,778	-238,3881	553,038
Admira Fuxion / Futurabond U	Filtek Bulk Fill / Single Bond Universal	-154,1890	126,14482	0,871	-609,9502	301,5722
	Filtek Bulk Fill Flow / Single Bond Universal	-87,5710	107,63064	0,978	-473,0093	297,8673
	Admira Fuxion / Futurabond U	157,3250 110,32973 0.778 -238,3881 -154,1890 126,14482 0.871 -609,9502	542,7075			
	X-tra Base / Futurabond U	-275,0430	67,20052	0,016	-505,8167	-44,2693
	Sem Resina / Sem Adesivo	-733,5010	140,56331	0,001	-1199,4585	-267,5435
GrandioSO / Futurabond U Admira Fuxion / Futurabond U X-tra Base / Futurabond U	Filtek Z350 / Single Bond Universal	-44,9520	139,48315	1,000	-507,1090	417,2050
	Filtek Bulk Fill / Single Bond Universal	-356,4660	152,30042	0,282	-864,6073	151,6753
	Filtek Bulk Fill Flow / Single Bond Universal	-289,8480	137,35813	0,388	-744,5775	164,8815
	GrandioSO / Futurabond U	-202,2770	95,83320	0,408	-542,7075	138,1535
	X-tra Base / Futurabond U	-477,3200	108,62233	0,007	-842,7553	-111,8847
	Sem Resina / Sem Adesivo	-256,1810	122,84116	0,410	-675,2708	162,9088
	Filtek Z350 / Single Bond Universal	432,3680	121,60369	0,038	17,9817	846,7543
X-tra Base / Futurabond U	Filtek Bulk Fill / Single Bond Universal	120,8540	136,11511	0,968	-348,9049	590,6129
	Filtek Bulk Fill Flow / Single Bond Universal	187,4720	119,16024	0,700	-217.6417	592,5857
	GrandioSO / Futurabond U	275,0430	67,20052	0.016	44,2693	505,8167
	Admira Fuxion / Futurabond U	477,3200	108,62233	0,007	111,8847	842,7553

Adeivo I Sam adesivo I Single Bond Universal I Futurabond U I Single Bond U

Normas para publicação – Operative Dentistry

New Instructions as of 20 September 2008

Operative Dentistry requires electronic submission of all manuscripts. All submissions must be sent to Operative Dentistry using the Allen Track upload site. Your manuscript will only be considered officially submitted after it has been approved through our initial quality control check, and any problems have been fixed. You will have 6 days from when you start the process to submit and approve the manuscript. After the 6 day limit, if you have not finished the submission, your submission will be removed from the server. You are still able to submit the manuscript, but you must start from the beginning. Be prepared to submit the following manuscript files in your upload:

- A Laboratory or Clinical Research Manuscript file must include:
 - o a title
 - o a running (short) title
 - o a clinical relevance statement
 - a concise summary (abstract)
 - o introduction, methods & materials, results, discussion and conclusion
 - o references (see Below)
 - The manuscript **MUST NOT** include any:
 - identifying information such as:
 - Authors
 - Acknowledgements
 - Correspondence information
 - Figures
 - Graphs
 - Tables
- An acknowledgement, disclaimer and/or recognition of support (if applicable) must in a separate file and uploaded as supplemental material.
- All figures, illustrations, graphs and tables must also be provided as individual files. These should be high resolution images, which are used by the editor in the actual typesetting of your manuscript. Please refer to the instructions below for acceptable formats.
- All other manuscript types use this template, with the appropriate changes as listed below.

Complete the online form which includes complete author information and select the files you would like to send to Operative Dentistry. Manuscripts that do not meet our formatting and data requirements listed below will be sent back to the corresponding author for correction.

GENERAL INFORMATION

- All materials submitted for publication must be submitted exclusively to Operative Dentistry.
- The editor reserves the right to make literary corrections.
- Currently, color will be provided at no cost to the author if the editor deems it essential to the manuscript. However, we reserve the right to convert to gray scale if color does not contribute significantly to the quality and/or information content of the paper.
- The author(s) retain(s) the right to formally withdraw the paper from consideration and/or publication if they disagree with editorial decisions.

- International authors whose native language is not English must have their work reviewed by a native English speaker prior to submission.
- Spelling must conform to the American Heritage Dictionary of the English Language, and SI units for scientific measurement are preferred.
- While we do not currently have limitations on the length of manuscripts, we expect papers to be concise; Authors are also encouraged to be selective in their use of figures and tables, using only those that contribute significantly to the understanding of the research.
- Acknowledgement of receipt is sent automatically. If you do not receive such an acknowledgement, please contact us at editor@jopdent.org rather than resending your paper.
- **IMPORTANT:** Please add our e-mail address to your address book on your server to prevent transmission problems from spam and other filters. Also make sure that your server will accept larger file sizes. This is particularly important since we send page-proofs for review and correction as .pdf files.

REQUIREMENTS

• FOR ALL MANUSCRIPTS

- CORRESPONDING AUTHOR must provide a WORKING / VALID e-mail address which will be used for all communication with the journal. NOTE: Corresponding authors MUST update their profile if their e-mail or postal address changes. If we cannot contact authors within seven days, their manuscript will be removed from our publication queue.
- 2. AUTHOR INFORMATION must include:
 - full name of all authors
 - complete mailing address for each author
 - degrees (e.g. DDS, DMD, PhD)
 - affiliation (e.g. Department of Dental Materials, School of Dentistry, University of Michigan)
- 3. MENTION OF COMMERCIAL PRODUCTS/EQUIPMENT must include:
 - full name of product
 - full name of manufacturer
 - city, state and/or country of manufacturer
- 4. **MANUSCRIPTS AND TABLES** must be provided as Word files. Please limit size of tables to no more than one US letter sized page. (8 ½ " x 11")
- 5. **ILLUSTRATIONS, GRAPHS AND FIGURES** must be provided as TIFF or JPEG files with the following parameters
 - line art (and tables that are submitted as a graphic) must be sized at approximately 5" x 7" and have a resolution of 1200 dpi.
 - gray scale/black & white figures must have a minimum size of 3.5" x 5", and a maximum size of 5" x 7" and a minimum resolution of 300 dpi and a maximum of 400 dpi.
 - color figures must have a minimum size of 2.5" x 3.5", and a maximum size of 3.5" x 5" and a minimum resolution of 300 dpi and a maximum of 400 dpi.
 - color photographs must be sized at approximately 3.5" x 5" and have a resolution of 300 dpi.

• FOR REFERENCES

REFERENCES must be numbered (superscripted numbers) consecutively as they appear in the text and, where applicable, they should appear after punctuation.

The reference list should be arranged in numeric sequence at the end of the manuscript and should include:

- 1. Author(s) last name(s) and initial (ALL AUTHORS must be listed) followed by the date of publication in parentheses.
- 2. Full article title.
- 3. Full journal name in italics (no abbreviations), volume and issue numbers and first and last page numbers complete (i.e. 163-168 NOT attenuated 163-68).
- 4. Abstracts should be avoided when possible but, if used, must include the above plus the abstract number and page number.
- 5. Book chapters must include chapter title, book title in italics, editors' names (if appropriate), name of publisher and publishing address.
- 6. Websites may be used as references, but must include the date (day, month and year) accessed for the information.
- 7. Papers in the course of publication should only be entered in the references if they have been accepted for publication by a journal and then given in the standard manner with "In press" following the journal name.
- 8. **DO NOT** include unpublished data or personal communications in the reference list. Cite such references parenthetically in the text and include a date.