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Abstract
In the world, there are nearly three million people living with upper limb loss. There is a
need for novel approaches that go beyond the existing technologies to improve the life of
amputees. This project applies new machine learning techniques in order to improve the
current results for classification of hand movements for prosthetic devices presented in the
literature. We performed experiments applying convolutional neural networks (CNN) and
a hyper-parameter optimization technique, called Neural Architecture Search (NAS), as
well as creating synthetic data using SMOTE in order to improve the CNN’s classification
performance on hand movement data from the NinaPro DB5, an open-sourced hand
movement for prosthesis control dataset. The use of synthetic oversampling techniques,
NAS and CNN considerably increased the classification performance of hand movements
for prosthetic devices compared to the results presented in the literature. Additionally,
we wanted to verify whether additional sensors to the EMG signals help to improve the
classifier’s performance. Due to the high cost of existing data capture devices, we built
a new multi-sensor device for capturing hand movements. With this device we created
the Sensor Glove data base (SGDB) with 21 hand movements performed by five di�erent
subjects. Subsequently, using the SGDB, we verified that the use of additional sensors
along with the EMG signal significantly improve the classification performance.

Keywords: Data Glove, Prosthesis, Electromyography, Sensors, Hand, Pattern Recogni-
tion, Machine Learning, Data Mining, Deep Learning, Over-sampling.
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1 Introduction

In the world, there are nearly three million people living with upper limb loss
(LEBLANC, 2011). War and ground mines are the main reasons for amputation, but
other injuries, such as a motor vehicle crash, a disease (e.g. diabetes, peripheral vascular
disease, or cancer of a bone or joint), can contribute to the number of people who had
their limbs amputated (WHO, 2004). In the United States, it was estimated in 2005 that
about 1.6 million people were living with the loss of a limb. Among those living with
limb loss, the main causes are traumatic incident (47.7 percent), non-diabetes-related
infection (12.8 percent) and cancer (12.5 percent) (ZIEGLER-GRAHAM et al., 2008;
AMPUTEE COALITION; O&P EDGE, 2011). According to the IBGE (2010) in Brazil,
around 470,000 people were victims of amputations. In a study conducted in the city of
Rio de Janeiro between 1992 and 1994, the estimated number of amputations were 3,954
cases, making an average annual rate of 13.9 per 100,000 inhabitants (SPICHLER et al.,
2001). In Brazil, the main causes of amputation are diabetes-related vascular diseases (52
percent), traumatic incident (19 percent) and non-diabetes-related vascular diseases (19
percent), claimed ABBR (2016).

Prostheses were created to help amputees to live a normal life. It is believed the
Indians were the pioneers of this idea. A poem from India, the Rigveda, dated between
3500 and 1500 BC, tells the story of a warrior queen who had her leg amputated during
a battle and after recovering, an iron leg was placed, and she could return to the bat-
tlefield (VANDERWERKER, 1976). For a long time, the main concern in the prosthesis
development was the aesthetic resemblance of the missing limb. Because of the shame
felt by the amputee, the prosthesis functionality was usually set aside. However, after the
development of mechanical prosthesis, the prosthesis control has become more functional
and allowed the patient to perform some complex activities.

There are two di�erent types of prosthesis: passive prosthesis and active prosthesis.
Passive prostheses are devices for cosmetic purposes only, i.e. they do not have any func-
tionality. The active prostheses, however, are devices that allow an amputee to perform
some tasks and that can also be used with cosmetic purposes when needed (AMPUTEE
COALITION, 2014).

Active prosthesis are either body-powered or electric-powered. Body-powered de-
vices are usually operated by cables that requires the patient to use the movements of
their body to control the open and close movements of the prosthesis. On the other
hand, electric-powered prosthesis, commonly refereed as myoelectric prosthesis, uses elec-
tric signals from the body’s muscles to actuate motors and perform opening and closing
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movements.

Electrical signals, sent from the brain to the arm muscles, are used to control how
the prosthesis should move. These are called Electromyography (EMG) signals. Those
signals are captured using electrodes sit on the skin over specific muscles. The EMG
signal is acquired from the muscle’s contractions and sent to a microcontroller which
processes the signals actuating the motors that controls the prosthesis (LICHTER et al.,
2010).

The idea of using EMG for prostheses control is not new. In the 60s and 70s
Finley and Wirta (1967), Lawrence, Herberts and Kadefors (1973) and Lyman, Freedy and
Prior (1976) developed prostheses control schemes using EMG. However, the computing
capacity and the EMG of the day were not enough powerful.

Currently, myoelectric hand prosthesis leading industrial developers are Ottobock,
RSL-Steeper, LTI, Motion Control, and Touch Bionics. Despite all the technology embed-
ded in them, they do not have a very good precision and prevent the user to make complex
maneuvers, also limiting the number of movements the user can perform, resulting in un-
natural movements (FARLEY, 2014). In academia, although recent researches like Atzori,
Cognolato and Müller (2016) and Phinyomark, Khushaba and Scheme (2018) have made
significant advances in the area, there is still a need for new approaches that go beyond
the existing technologies to improve the life of amputees.

Experiments made by Kyranou et al. (2016) shows that the use of inertial infor-
mation along with the EMG improves the classification accuracy. We believe that adding
more information other than the EMG can improve even more the classification perfor-
mance.

In this work, we apply new machine learning techniques in order to improve the
current results for classification of hand movements for prosthetic devices presented in
the literature. In addition, due to the high cost of data capture devices and low variety
of sensors, we build a new multi-sensor device for capturing hand movements. With this
device we created the Sensor Glove data base (SGDB) with 21 hand movements performed
by 5 di�erent subjects. Subsequently, using the SGDB, we verify the functionalities of the
device we proposed and whether the use of additional sensors along with the EMG signal
improves the classification performance.

1.1 Objectives
The main objective of this dissertation is to improve classification performance of

algorithms used for prosthetic devices.

Specific Objectives:
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• Create and/or adapt a device that captures movements of a person’s hand;

• Create an annotated database of hand movements using the data capture device;

• Perform experiments to verify if the sensors of the proposed device are complemen-
tary to the EMG signal, thus improving the classification performance of machine
learning algorithms;

1.2 Hypothesis
The hypothesis of this research is:

The incorporation of multiple sensors along with electromyography has the potential
of improving the performance and robustness of a prosthetic device by increasing
the classification performance of the machine learning algorithm.

1.3 Structure of the document
The remainder of this document presents the following organization:

• In this chapter we present the opening remarks, the motivation for the development
of this project, as well as the objectives for the development and this section about
the organization of the document;

• Chapter 2 presents the theoretical foundations for the understanding of this project;

• Chapter 3 presents an introduction to concepts and applications of machine learning;

• Chapter 4 presents an analysis of the related work in hand movement classification
for prosthetic control;

• Chapter 5 presents a review of existing human motion sensing techniques;

• Chapter 6 focuses on the experiments applying new machine learning techniques to
improve the performance of classifiers for hand movements;

• Chapter 7 discusses important aspects of the proposed device such as our implemen-
tation from hardware to software, as well as data collection and product validation;

• Finally, in Chapter 8, we summarize the entire dissertation;
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2 Conceptual and Empirical Foundations

This chapter is organized in three parts: Part 1 presents concepts related to the
foundations of amputation and prosthesis; Part 2 addresses the concepts of microcon-
trollers, electromyography, inertial measurement unit and a description about how the
sensors work; part Part 3 presents a review of the most common EMG feature extraction
algorithms. All these topics are important to understand this project.

2.1 Amputation
According to NHS Choices (2014) amputation is the removal of a limb or part of

one caused by trauma, medical illness, or surgery. In medicine, it is used to control pain
or disease in the a�ected limb, such as the cancer and gangrene (COSTA, 2006).

Amputation may be classified as lower limb amputation and upper limbs ampu-
tation. As part of this project involves hand movements data collection, the lower limb
amputations types will not be covered. Table 1 presents the di�erent types of upper limb
amputation.

Table 1 – Upper Limb Amputation Types

Typical Forms Description Figure

Partial hand amputation
Complete or partial removal of the metacarpal
or partial removal of the carpal bones,
may or may not keep phalanges.

Wrist disarticulation Complete removal of the hand,
preserving the integrity of the distal forearm bones

Below elbow amputation
(Transradial)

It is the bone section between the elbow joint and wrist
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Table 1 – Upper Limb Amputation Types

Typical Forms Description Figure

Elbow disarticulation Complete removal of the forearm bones (radius and ulna),
preserving the distal humerus integrity (upper arm bone)

Above elbow amputation
(Transhumeral)

It is the bone section between the shoulder joint and the elbow

Shoulder disarticulation
and

forequarter amputation

Complete removal of the humerus (upper arm bone),
preserving the integrity of the clavicle and scapula.
It is complete withdrawal of the member

Source – Adapted from Limbless Association (2012)

2.2 Prosthesis
The dictionary definition of Prosthesis is an artificial replacement of part of the

body, accidentally lost or intentionally removed (DICTIONARY.COM, 2015). In the ar-
ticle “Prosthetics in developing countries”, Strait (2006) explains that an upper-limb
prosthesis incorporates five main components: a socket, that allows the prosthesis to con-
nect to the patient’s residual limb, an extension section or forearm section, a suspension
system, to secure the prosthesis, a wrist unit, that allows the user the ability to rotate
terminal device, and a terminal device such as a hook or hand.

Functional Prosthesis can be separate in two di�erent groups: Body-powered and
Electric-powered prosthesis.

2.2.1 Body-powered

The body-powered prosthesis are fed by the energy of the body. They can be
either voluntary closing or voluntary opening, for example on Figure 1, a voluntary closing
prosthesis remain open (1) until the user pulls a cable, with the residual limb and/or the
shoulder girdle (2), causing it to close with a grip force proportional to the amount of
force the person puts on the cable (3) (MARKS, 1905).
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Figure 1 – Body Powered Prosthetic Arm

Source – Chorost (2012)

2.2.2 Electric-powered

The electric-powered prosthesis is supplied by an external power source, having
components that are controlled by motors and powered by batteries. The system is usually
controlled by a microcontroller using body signals to control the prosthesis. These body
signals come from muscle contractions which generate electrical signals on the skin and
are captured and used to control the electric prosthesis (STRAIT, 2006).

Figure 2 – Electric Powered Prosthetic Arm

Source – Bonivento et al. (1998)
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2.3 Electromyography

“Electromyography is an experimental technique concerned with the develop-
ment, recording and analysis of myoelectric signals. Myoelectric signals are
formed by physiological variations in the state of muscle fiber membranes.”
(BASMAJIAN; LUCA, 1985).

The EMG signal has physiological origin in motor neurons that innervate skele-
tal muscle fibers. Such neurons transmit nerve impulses, to arrive at the neuromuscular
junction, release the neurotransmitter acetylcholine, which will cause the initiation of an
action potential of the muscle on individual muscle fibers. This action potential propagates
throughout the muscle membrane, causing muscle contraction (HALL, 2010).

The principle used to study the function of the muscles was established by an
electrical engineer named Luigi Galvani. According to Galvani, a muscle contracts when
it is electrically stimulated, and consequently, when contracted voluntarily, it generates
electric current (KAMEN; GABRIEL, 2010). The sum of the electrical activity of the
muscle fibers of the motor unit form the Motor Unit Action Potential (MUAP). Figure 3
illustrates how the MUAP can be captured by surface electrodes placed on muscles.

Figure 3 – A schematic of the di�erential amplifier configuration. The electrodes are posi-
tioned in a bipolar configuration, in which there is one positive electrode, one
negative electrode and a ground electrode. In this configuration, the EMG sig-
nal is the di�erential measure of the two electrodes. The use of this di�erential
measure is favorable to eliminate interference from other biological activities
of the patient or even the power grid.



Chapter 2. Conceptual and Empirical Foundations 21

2.4 Microcontrollers
Microcontrollers are microprocessors that can be programmed for specific func-

tions. In general, they are used to control circuits and are commonly found within other
devices, being known as “embedded controllers”. The internal structure of a microcon-
troller has a processor and memory units and input and output peripherals. Figure 4
presents the basic functions of the microcontroller’s components according to Gerrish and
Roberts (2004).

Figure 4 – General Microcontroller Architecture. The Central Processing Unit (CPU) is
responsible for the microcontroller data processing. It is this which interprets
the commands, reads data and activates the input and output (I/O) ports or
the peripherals if necessary; The Memory Unit is part of the microcontroller
used for data storage; The I/O interfaces of a microcontroller are responsible
for input and output information.

Source – Verle (2016)

2.5 Inertial Navigation
The inertial sensors are grouped and controlled by an on-board electronic, thus

creating an Inertial Measurement Unit (IMU). Figure 5 presents a typical IMU, which
contains orthogonal triads of gyroscopes and accelerometers which provide measurements
of angular velocities and linear accelerations, respectively. By processing these signals,
it is possible to track the position and orientation of an object (STEWART; FERSHT,
1991; PANAHANDEH; SKOG; JANSSON, 2010; WOODMAN, 2007). IMUs are widely
used in the control of hand-held devices, air-crafts, robots, autonomous vehicles, among
others (ANG; Khosla ; RIVIERE, 2003; GRIGORIE; BOTEZ, 2014).
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Figure 5 – Illustration of an IMU System

Source – Adapted from Verplaetse (1995)

2.6 Force Sensitivity Resistor (FSR)
In a force sensitivity resistor, its resistance will vary depending on the force applied

to its sensitive area. The force is inversely proportional to the resistance. When no force
is applied to it, its resistance increases causing an open circuit (ADAFRUIT LEARN,
2012). The FSR basically consists of two layers: a semiconductor element and an active
element separated by a spacer. Stronger the FSR is pressed, more parts of the active area
touch the semiconductor causing the resistance to drop (Figure 6).

Figure 6 – FSR Construction

Source – Electronics (2015)
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2.7 Flex Sensors
Flex sensors works similarly as FSRs. Its resistance will vary depending on the

bending angle. The sensor has a conductive polymer ink with a certain resistance when
the sensor is straight. Figure 7 shows that when the sensor is bent away from the ink, its
resistance increases. When the sensor straightens out again, the resistance returns to its
original value.

Figure 7 – How a flex sensor works. It is possible to determine the relative angle that the
sensor is being bent by measuring its resistance.

Source – Grusin (2011)

2.8 Proximity Sensor
The proximity sensor is a sensor that can detect the distance from an object

without physical contact. They are usually found in smartphones, soap dispensers and
even robots (BENET et al., 2002; WININGS; SAMSON, 1997; HSIAO et al., 2009). The
sensor consists of a transmitter and a receiver. Figure 8 illustrates the proximity sensor
works. The transmitter emits infrared (IR) light at a given pulse. When an object enters
the sensor’s range, it will reflect the light back to the receiver, which measures the particles
of light which were deflected by the object. From this measure it is possible to calculate
the distance between the sensor and the object (ENGINEERSHANDBOOK.COM, 2006;
CAMPBELL, 1984).

Figure 8 – Basic principle of an IR proximity sensor

Source – Mehta (2009)
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2.9 EMG Feature Extraction
A wide variety of features are shown in Nazmi et al. (2016). The features can

represent the amplitude of an EMG signal and its spectral content. Such features can be
grouped into two categories:

1. time domain (TD);

2. frequency or spectral domain (FD);

2.9.1 Time Domain

Time domain features are often easily and quickly implemented because these
features do not require any transformation. They are calculated by dividing the signal x

into windows of length N . The k
th element of the i

th window corresponds to xi(k). Ten
time domain features are shown in this study through an extensive and careful review of
the literature.

2.9.1.1 Mean Absolute Value (MAV)

MAV is one of the most popular used in EMG signal analysis (HUDGINS; PARKER;
SCOTT, 1993; PARK; LEE, 1998). The MAV feature is an average of absolute value of
the EMG signal amplitude in a segment, which is defined in Equation 2.1.

MAVi = 1
N

Nÿ

k=1
|xi(k)| (2.1)

2.9.1.2 Variance (VAR)

VAR used by Park and Lee (1998), Tenore et al. (2009). It is defined as an average
of square values of the deviation of that variable, which is defined in Equation 2.2.

V ARi = 1
N

Nÿ

k=1
(xi(k) ≠ x̄i)2 (2.2)

2.9.1.3 Mean Absolute Value Slope (MAVS)

MAVS is a modified version of the MAV feature (HUDGINS; PARKER; SCOTT,
1993; CHAN et al., 2000). It estimates the di�erence between mean absolute values of the
adjacent segments i + 1 and i, which is defined in Equation 2.3.

MAV Si = MAVi+1 ≠ MAVi (2.3)
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2.9.1.4 Root Mean Square (RMS)

RMS is a popular feature in EMG signal analysis (HUANG et al., 2005; SHENOY
et al., 2008; PRAHM et al., 2017). It is modeled as amplitude modulated Gaussian random
process which relates to constant force and non-fatiguing contraction.

RMS =
ı̂ıÙ 1

N

Nÿ

i=1
x2

i (2.4)

2.9.1.5 Willison amplitude (WAMP)

Willison or Wilson amplitude counts the number of times that the absolute value
of the di�erence between the EMG signal amplitudes of two consecutive samples (xi(k)
and xi(k + 1)) exceeds a predetermined threshold xth (TENORE et al., 2009).

WAMPi = 1
N

Nÿ

k=1
f(|xi(k) ≠ xi(k + 1)|), with f(x) =

Y
_]

_[

1, if x > xth

0, otherwise
(2.5)

2.9.1.6 Zero Crossing (ZC)

ZC is the number of times that the signal passes the zero amplitude axis (HUD-
GINS; PARKER; SCOTT, 1993). A threshold xth must be included in the zero crossing
calculation to reduce the noise.

ZCi =
Nÿ

k=1
f(k), with f(k) =

Y
____]

____[

1, if xi(k) ◊ xi(k + 1) < 0 and

|xi(k) ≠ xi(k + 1)| > xth

0, otherwise

(2.6)

2.9.1.7 Slope Sign Changes (SSC)

Slope sign change (SSC) is another method to represent frequency information
of the EMG signal. It is a number of times that slope of the EMG signal changes sign.
The number of changes between the positive and negative slopes among three sequential
segments is performed with the threshold function for avoiding background noise in the
EMG signal.

SSCi =
N≠1ÿ

k=2
f((xi(k) ≠ xi(k ≠ 1)) ◊ (xi(k) ≠ xi(k + 1))), with f(x) =

Y
_]

_[

1, if x > xth

0, otherwise
(2.7)
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2.9.1.8 Waveform Length (WL)

WL is the cumulative length of the waveform over time segment. It is related to the
waveform amplitude, frequency and time (HUDGINS; PARKER; SCOTT, 1993; FARRY;
WALKER; BARANIUK, 1996).

WLi =
N≠1ÿ

k=1
f(|xi(k) ≠ xi(k + 1)|) (2.8)

2.9.1.9 EMG histogram (HIST)

According to Zardoshti-Kermani et al. (1995), HIST is a combination of the ZC
and WAMP features. It divides the elements of the EMG signal into b equally spaced
voltage bins and returns the number of elements in each bin.

2.9.1.10 Auto-regressive Coe�cients

AR describes each sample of EMG signal as a linear combination of previous
samples plus a white noise error term (ZARDOSHTI-KERMANI et al., 1995; PARK;
LEE, 1998; HUANG et al., 2005; LIU; HUANG; WENG, 2007).

xi(k) =
Nÿ

j=1
ajxi(k ≠ j), n

th order AR model (2.9)

2.9.2 Frequency Domain

The frequency domain features are based on the signal’s estimated power spectral
density (PSD) and are computed by parametric methods (OSKOEI; HU, 2006). However,
these features compared to the TD features require more computational power to be
calculated. Nine FD features are shown in this study through extensively and carefully
review of the literature.

2.9.2.1 Power Spectrum (PS)

Power spectrum (PS) can be seen as an extension version of PKF and FR features
(Qingju & Zhizeng, 2006). The PSR is defined as ratio between the energy P0 which is
nearby the maximum value of the EMG power spectrum and the energy P which is the
whole energy of the EMG power spectrum. Its calculation can be written by

2.9.2.2 Mean Frequency (FMN)

FMN is the average frequency (OSKOEI; HU, 2008). It is calculated as the sum
of the product of the power spectrum and the frequency, divided by the total sum of
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spectrogram intensity.

FMNi =
q

M

j=1(fjPj)
q

M

j=1(Pj)
(2.10)

2.9.2.3 Median Frequency (FMD)

FMD is the frequency at which the spectrum is divided into two regions with equal
parts (OSKOEI; HU, 2006).

FMDi = 1
2

Mÿ

j=1
(Pj) (2.11)

2.9.2.4 Frequency Ratio (FR)

FR was proposed by (HAN et al., 2000) in order to distinguish between contraction
and relaxation of a muscle.

FRi = min(FFT (xi))
max(FFT (xi))

(2.12)

2.9.2.5 Short-time Fourier Transform (STFT)

STFT is used to determine the sinusoidal frequency and phase content of local
sections of a signal as it changes over time. It is done by dividing the input signal into
segments. By doing this the signal in each window can be assumed to be stationary
(ZECCA et al., 2002).

STFT [k, m] =
N≠1ÿ

r=1
x[r]g[r ≠ k]e

≠j2fimi
N (2.13)

where g, k, and m are the window function, the time sample, and the frequency
bins, respectively.

2.9.2.6 Continuous Wavelet Transform (CWT)

CWT is a transform where a signal is integrated with a shifted and scaled mother
wavelet function (ENGLEHART et al., 1999; ENGLEHART; HUDGIN; PARKER, 2001).

CWTx(·, a) = 1
Ò

|a|

⁄
x(t)Â

3
t ≠ ·

a

4
dt (2.14)
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where x(t) is the function representing the input signal, Â is the complex conjugate
of the mother wavelet function, and Â( t≠·

a
) is the shifted and scaled version of the wavelet

at time · and scale a.

2.9.2.7 Discrete Wavelet Transform (DWT)

In a DWT is transform a signal is passed through a series of low-pass and high-
pass filters, which are defined by the type of wavelet used, obtaining the approximation
coe�cients (cA), from the low-pass filter and the detail coe�cients (cD), from the high-
pass filter. This process can be repeated in further levels of decomposition, increasing the
frequency resolution and the approximation coe�cients (CHOWDHURY et al., 2013).

2.9.2.8 Wavelet Packet Transform (WPT)

WPT is a generalized version of the continuous wavelet transform and the discrete
wavelet transform. The basis for the WPT is chosen using an entropy-based cost function.
The main di�erence between STFT, WT and WPT is the way each one divides the time-
frequency plane (ENGLEHART et al., 1999; ENGLEHART; HUDGIN; PARKER, 2001;
WANG et al., 2006).

2.9.2.9 Marginal Discrete Wavelet Transform (mDWT)

Lucas et al. (2008) presented that for EMG classification it is acceptable to pre-
serve only the marginals at each level of the DWT decomposition, removing the time-
information from discrete wavelet transform, making it insensitive to wavelet time in-
stants. The mDWT is defined as:

mxk
(s) =

N/2S≠1ÿ

u=0
|dxk

(s, u)| , s = 1, . . . , S (2.15)

Where: xk is the signal composed of k channels, S is the deepest level of the
decomposition, N is the number of coe�cients, and dxk

is the set of coe�cients (N =
length(dxk

)).
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3 Machine Learning

In the literature, there is an overlapping of the terms Machine Learning (ML),
Pattern Recognition (PR), and Data Mining (DM). These terms are often used to refer to
the area of artificial intelligence. According to Witten et al. (2016), ML uses computers to
simulate human learning and study self-improvement methods, in order to discover new
knowledge, identify existing knowledge, and continuously improve performance.

The majority of the recent advancements in AI have been due to the use of super-
vised algorithms, such as support vector machines and artificial neural networks, applied
to several types of datasets. In these algorithms, given a set of inputs and outputs/labels,
if given enough examples, they can learn the mapping that relates them. We can then use
this mapping to predict new labels, given a set of inputs.

Although, often labels are not available. One solution is to manually label the data
in order to produce a set of training data. Another solution is to train the algorithms on
unlabeled data, since the vast majority of data in the world has no labels, so if we want
to train unsupervised algorithms, i.e. without labels, we can use techniques like clustering
and anomaly detection.

Unsupervised algorithms are improving rapidly but there is also room for another
class of learning techniques based on trial and error in a dynamic environment. This is
called reinforcement learning (RL).

Basically, the idea of reinforcement learning is to learn an optimal strategy through
sampling actions, and then looking at which strategy leads to the desired outcome. Unlike
the supervised approach, this ideal action is learned not from a label, but from a reward.
The goal of RL is to take actions that maximize this reward. While supervised learning
tells us how to reach the goal, RL tells you how well we achieved the goal.

3.1 Supervised Learning
Supervised learning is the ML task of inferring a function from labeled training

data which is:

Given a training set of i instances (Xi, Yi), where Xi = [x1, x2, . . . , xn] is the input
feature vector with length n and Yi is the output class which is an element of a list with
size j of classes y = {y1, y2, . . . , yj}. The main goal is to learn a function which estimates
Y given X:

Ŷ = f(X̨), where Ŷ œ y
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The training set exemplified in Table 2 is part of a dataset called Iris (DHEERU;
TANISKIDOU, 2017). Its features vectors are the sepal length, sepal width, petal length,
petal width and the type of the iris flower (Iris-setosa, Iris-versicolor, Iris-virginica).

Table 2 – Example of a training set

Sepal Length Sepal Width Petal Length Petal Width Class
5.1 3.8 1.6 0.2 Iris-setosa
4.6 3.2 1.4 0.2 Iris-setosa
5.3 3.7 1.5 0.2 Iris-setosa
5.0 3.3 1.4 0.2 Iris-setosa
7.0 3.2 4.7 1.4 Iris-versicolor
6.4 3.2 4.5 1.5 Iris-versicolor
6.9 3.1 4.9 1.5 Iris-versicolor
5.5 2.3 4.0 1.3 Iris-versicolor

Source – Adapted from Dheeru and Taniskidou (2017)

When the output y is one of a finite set of values such as “Yes” or “No”, the learning
problem is called classification. When y is a number such as the grade of a student, the
learning problem is called regression.

3.1.1 Support Vector Machines

Proposed by Cortes and Vapnik (1995), Support Vector Machine (SVM) is a su-
pervised machine learning algorithm which is usually used for classification. Given two
or more labeled classes of data, the SVM tries to find an optimal hyperplane in order to
maximize the margin between the support vectors. Support vectors are the data points
that lie closest to the hyperplane. So, when new examples are mapped into the same space,
they can be categorized based on which side of the hyperplane they are (CRISTIANINI;
SHAWE-TAYLOR et al., 2000).

Given a set of training data points D = (X̨i, Yi), where each member is a pair of
a point X̨i and a class label Yi = {≠1, +1} corresponding to it. Considering that D is
linear separable, we can find the hyperplane that separates the classes “≠1” and “+1”
(SCHÖLKOPF; SMOLA et al., 2002). The linear classifier (hyperplane) can be described
by Equation 3.1:

f(X̨) = w̨
T
X̨ + b (3.1)

where w̨ is a weight vector perpendicular to the hyperplane, and b is a term to
choose among all the hyperplanes that are perpendicular to the normal vector.

Since the data in our example is linear separable, we can select two parallel hy-
perplanes that separate the two classes of data, so that the distance between them is as
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large as possible. The region bounded by these two hyperplanes is called “margin”. The
maximum-margin hyperplane is the hyperplane that lies halfway between them. These
hyperplanes can be described by Equations 3.2 and 3.3:

w̨
T
X̨ + b = +1 (3.2)

w̨
T
X̨ + b = ≠1 (3.3)

3.1.2 Decision Trees

Decision tree is a type of supervised learning algorithm that is most commonly
used in classification problems. It works for both categorical and continuous variables. In
this technique, we divide the samples into two or more sets based on the most significant
divisors on the input variables.

Decision trees models are represented as binary trees. Each root node represents
a single input variable (X̨i) and a split point on that variable. The leaf nodes contain the
output variable (Yi) which is used for prediction.

For instance, considering the example from Table 2, Figure 9, a fictitious decision
tree can be represented as a set of rules:

 ≤ 2.45 > 2.45 

Petal Length

Iris-Setosa

 ≤ 1.75 > 1.75

Petal Width

Iris-Versicolor Iris-Virginica

Figure 9 – Fictitious decision tree for Iris dataset

• IF Petal Length Æ 2.45 THEN Iris ≠ setosa

• IF Petal Length > 2.45 AND Petal Width Æ 1.75 THEN Iris ≠ versicolor
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• IF Petal Length > 2.45 AND Petal Width > 1.75 THEN Iris ≠ viginica

With the binary tree representation of the decision tree model, it is relatively
straightforward to make predictions. For example, given a new input:

XkP etal Length = 3.00

XkP etal W idth = 1.00

XkSepal Length = 6.53

XkSepal W idth = 1.24

the tree is traversed starting from the root node to the leaves evaluating the input:

• Petal Length Æ 2.45 (FALSE)

• Petal Length > 2.45 (TRUE) AND Petal Width Æ 1.75 (TRUE)

THEN: Iris ≠ versicolor

Creating a binary decision tree is a numeric procedure where values are aligned,
and di�erent split points are tested using a cost function. The division with the best cost
is selected. All input variables and all split points are evaluated and selected in a greedy
approach.

For classification, a Gini index function, or Gini impurity, is used, which provides
an indication of "purity" of the leaf nodes. The Gini index can be computed by Equation
3.4:

G =
ÿ

(pk ú (1 ≠ pk)) (3.4)

where, pk is the probability of an item with label k being chosen. In a multi-label
classification with J classes, the Gini index can be calculated as Equation 3.5:

IG(p) =
Jÿ

i=1
pi

ÿ

k ”=i

pk =
Jÿ

i=1
pi(1 ≠ pi) =

Jÿ

i=1
(pi ≠ pi

2) =
Jÿ

i=1
pi ≠

Jÿ

i=1
pi

2 = 1 ≠
Jÿ

i=1
pi

2 (3.5)

In order to stop splitting, a common procedure is to use a minimum count on the
number of training instances assigned to each node. If the count is less than the minimum,
the division will not be accepted, and the node will be considered as a final leaf node.



Chapter 3. Machine Learning 33

Figure 10 – Steps for Bagging

Source – Raschka, Julian and Hearty (2016)

3.1.2.1 Bagging

Bagging is a technique used to reduce the variance of our predictions by combining
the results of several classifiers modeled on di�erent sub-samples of the same dataset. The
steps for bagging are (Figure 10):

1. Create multiple datasets: sampling is performed with replacement and new data
sets are created; The new data sets may have part of the columns as well as the lines,
which are generally hyper parameters in a bagging model;

2. Creation of multiple classifiers: a classifiers is built for each dataset; Generally,
the same type of classifier is modeled for each set of data.

3. Aggregate Classifiers: the predictions of all classifiers are aggregated using the
average or median from the classifiers or by voting; The combined values are generally
more robust than a single model.

There are several implementations that use Bagging. The random forests are one
of them and we’ll discuss it next.

3.1.2.2 Random Forests

Random Forest is a versatile machine learning method capable of performing re-
gression and classification tasks. It is a kind of ensemble learning method, where a group
of weak models combine to form a powerful model.

In the random forest, we created several decision trees. To classify a new object,



Chapter 3. Machine Learning 34

each tree predicts a class and then the algorithm counts the “votes” from all the trees for
a class. The class with the highest votes is the one chosen as the predicted class. In case
of regression, the random forest usually outputs the average output of all trees.

The random forest algorithm works as follows:

Assume that the number of cases in the training set is N. Then, the algorithm takes
a sample of these N cases randomly with replacements. This sample will be the training
set for a decision tree. A subset of M features is selected randomly and any feature that
provides the best division is used to iteratively divide the node. The steps are repeated,
and the prediction is based on the number of votes of the N trees.

3.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN), were proposed by (LECUN et al., 1989).
They are a type of artificial neural networks, most commonly applied to computer vi-
sion. Haykin et al. (2009) divides the structure of convolutional networks into three main
objectives:

Feature extraction: each neuron receives input signals from the previous layer,
allowing the extraction of local characteristics. This extraction of local features makes the
exact position of each feature irrelevant as long as its position in relation to neighboring
features is maintained.

Feature mapping: each layer of the network is composed of several feature maps,
which are regions where neurons share the same synaptic weights. These weights are
called filters or kernels, and give the model robustness, making it capable of dealing with
distortion, rotation and translation in the image. Sharing the weights also enables a drastic
reduction in the number of parameters to be optimized.

Subsampling: after each convolution layer a subsampling layer is applied, which is
nothing more than a sample collection of each characteristic map. These samplings can
be performed by obtaining the sum, taking the mean, selecting the largest (max pooling)
or smallest (min pooling) value of the region under analysis. This produces a summary of
the features map.

Figure 11 presents an overview of a convolutional neural network applied in an
image of 28 ◊ 28 pixels, using four filters of size 24 ◊ 24 in the first layer, and then
performing a sub-sampling. The process is followed by the application of new filters and
sub-samples.
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Figure 11 – Overview of a CNN applied in an image of 28 ◊ 28 pixels

Source – Haykin et al. (2009)

3.1.4 Neural Architecture Search

Neural networks recently gained popularity in broad applications. However, in
order to obtain good results, it is necessary to choose a good architecture, which is a
di�cult manual and empirical task.

Zoph and Le (2016) proposes a Neural Architecture Search (NAS) algorithm, a
gradient-based method for finding excellent neural network architectures.

Figure 12 presents an overview of the NAS. At first, the parent network proposes
a child model architecture randomly. The child model is then trained and evaluated for
a given dataset. Its classification accuracy is used as feedback to inform the parent how
to improve its next generation of child architecture, i.e. compute the policy gradient to
update the controller. This process is repeated over time, every time generating new
architectures, testing them and giving the feedback to the controller to learn from it.
Eventually, the controller will give higher probabilities to architectures that achieve best
accuracies for a given dataset.

Figure 12 – NAS parent-child network architecture

Source – Zoph and Le (2016)
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3.2 Imbalance Classification
Imbalance applies to a large di�erence in the number of examples between classes.

For example, in detection of fraud in telephone calls (FAWCETT; PROVOST, 1997) or
in credit card fraudulent transactions (STOLFO et al., 1997), the number of legitimate
transactions is much higher than that of fraudulent transactions.

Sampling methods aim to change the distribution of training data in order to
increase the accuracy of their models. This is achieved by eliminating cases of the majority
class (undersampling) or creating new cases for the minority class (oversampling).

Weiss (2004) divides the sampling methods into: basic sampling methods and
advanced sampling methods.

The basic sampling methods are methods that do not use heuristic in the elim-
ination and the replication of cases, that is, they are methods that aim to balance the
distribution of classes in a random manner. Basic sampling methods are the random
undersampling and the random oversampling.

On the other hand, the advanced sampling methods use heuristics in elimination of
cases of the majority class and in the replication of cases of the minority class. Examples of
advanced sampling methods are: One-sided Selection, Synthetic Minority Over-Sampling
Technique, Cluster-based Oversampling.

3.2.1 Synthetic Minority Oversampling Technique

The simple oversampling techniques are widely criticized by the scientific commu-
nity, as many of them only replicate existing positive cases. Merely replicating existing
cases of the minority class actually increases the classifier’s bias for this class, leading the
model to overfit, i.e. models are very specific for these replicated cases, therefore, hurting
the model’s ability to generalize for the class of interest.

Faced with this problem, Chawla et al. (2002) developed a di�erent method to
oversample the minority class, which consists in the generation of synthetic cases for
the class of interest from the existing cases. These new cases will be generated in the
neighborhood of each case of the minority class, in order to grow the decision region
and thus increase the model’s generalization ability of the classifiers generated for this
data. These authors call this new method Synthetic Minority Oversampling Technique
(SMOTE)

Figure 13 presents in the R
2 space, the new synthetic cases, that are randomly

interpolated along a “line” linking each case of the minority class to one of its nearest
randomly selected k neighbors.

Another variation of SMOTE is called SMOTE-SVM, where instead of creating
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Figure 13 – Example of SMOTE applied to the Iris dataset

the synthetic instances along a “line”, an SVM classifier is used to find the hyperplane
that best separates the classes and new minority class instances are created near the
hyperplanes. It helps to establish boundary between classes.
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4 Pattern Recognition-based Myoelectric
Control

In the United States, there are nearly 2 million people living with limb loss. Trauma
and vascular diseases are the most common causes of amputations (ZIEGLER-GRAHAM
et al., 2008). The use of prostheses represents a technological aid for upper limb ampu-
tation and deficiency. There are two dominant prosthetic choices for persons with upper
limb amputation: Body Powered (BP) and Myoelectric (MYO) systems. The BP prosthe-
ses are fed by the energy of the amputee’s body. The movements are actuated through
cable and/or harness systems to a terminal device such as hand or hook. Although BP
prostheses have been shown to have advantages in durability, training time, maintenance,
and feedback, they su�er from the need for energy expenditure with the risk of early
fatigue, and less cosmetic aspect than a MYO prosthesis.

Surveys like (CAREY; LURA; HIGHSMITH, 2015; BIDDISS; CHAU, 2007; ATKINS;
HEARD; DONOVAN, 1996) shows that 26%–50% of the amputees reject the prosthesis
due to its low functionality, poor cosmetic appearance, and low controllability. This sit-
uation demands the development of versatile prostheses with intuitive control that will
allow amputees to perform tasks for activities of daily living (ADLs). Such control can
be developed by extracting information from neuromuscular activities of the amputee in
a non-invasive way. Electromyography (EMG) has been used for the prostheses control
since 1951 (BERGER; HUPPERT, 1952). It has proven to be an easy and non-invasive
method for recording the physiological processes that cause muscle contractions.

At present, pattern recognition in EMG signals plays a key role in the advanced
control of motorized prostheses for individuals with upper limbs amputations. It is the
most common approach used for controlling active prosthetic hands. Pattern recognition-
based myoelectric control usually consists of 5-steps: data collection, data segmentation,
feature extraction, classification, and controlling system. Since the beginning until to-
day many researchers use Artificial Neural Network (ANN) to control MYO prostheses
(KELLY; PARKER; SCOTT, 1990; HUDGINS; PARKER; SCOTT, 1993; BOCA; PARK,
1994; ENGLEHART et al., 1999; ROSLAN et al., 2016; FAN et al., 2017). However var-
ious classifiers such as Linear Discriminant Analysis (LDA) (ENGLEHART; HUDGIN;
PARKER, 2001; GUO et al., 2017; ENGLEHART; HUDGINS, 2003; KYRANOU et al.,
2016; ENGLEHART et al., 1999), Fuzzy (AJIBOYE; WEIR, 2005; CHAN et al., 2000;
PARK; LEE, 1998), Gaussian Mixture Models (GMMs) (HUANG et al., 2005; CHU; LEE,
2009), Hidden Markov Models (HMMs) (CHAN; ENGLEHART, 2005; KHEZRI; JAHED;
SADATI, 2007), Support Vector Machines (SVM) (LUCAS et al., 2008; GEETHANJALI;
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RAY, 2015; AMSUESS et al., 2016) and many others are used for this task (CHU; LEE,
2009; GEETHANJALI; RAY, 2015; GEETHANJALI, 2015; LEE et al., 1996; PARK;
LEE, 1998; AL-TIMEMY et al., 2016).

Saridis and Gootee (1982) were one of the pioneers of applying statistical analysis
and pattern recognition in EMG signals. The authors analyzed six di�erent arm move-
ments (Elbow Extension (EE), Elbow Flexion (EF), Humerus Medial Rotation (HMR),
Humerus Lateral Rotation (HLR), Wrist Pronation (WP), Wrist Supination (WS)) recorded
from EMG electrodes placed on the biceps and triceps of a transhumeral amputee. Their
analysis showed good class separability for the six movements. Kelly, Parker and Scott
(1990) implemented a multi-function control scheme based on the classification of EMG
signals using an ANN. A discrete Hopfield network was used to extract features from
four di�erent arm movements (EE, EF, WP, WS) from the biceps and triceps of a tran-
shumeral amputee. The author created a classification model using a two-layer perceptron
network which was capable of classifying all the sets of features correctly. Creating new
ways of EMG signal analysis. Hudgins, Parker and Scott (1993) recognized four di�er-
ent movements (EE, EF, HMR, HLR) using a 2-channel EMG for data acquisition and
a multilayer perceptron (MLP) for classification achieving an accuracy of 88.35%. Boca
and Park (1994) proposed a real-time application with an ANN that can recognize three
intensities of biceps contraction. EMG features were first extracted through Fourier anal-
ysis and clustered using fuzzy c-means algorithm. The features were fed into the ANN
having an accuracy of 86.20%. Kwon et al. (1996) built an EMG signal hybrid classifier
using a MLP and hidden Markov models (HMM) to classify six arm movements (WP,
WS, Wrist Flexion (WF), Wrist Extension (WE), Hand Open (HO), Hand Close (HC))
using four electrodes placed on the bices and triceps. Achieving an accuracy of 91.16%,
the author proved that their method was more accurate than using only a MLP (75%).
Lee et al. (1996) proposed a pattern recognition method to identify motion command for
the control of a prosthetic arm by using evidence accumulation (EA) with multiple pa-
rameters. The author used four electrodes on the biceps and triceps to classify six di�erent
movements (EE, EF, HMR, HLR, WP, WS), achieving an accuracy of 46.77%. Kwon et
al. (1998) created a several EMG signal hybrid classifiers using MLP, genetic algorithm
(GA), counter propagation network (CPN) and HMMs. Six arm movements (WP, WS,
WF, WE, HO, HC) were recorded using four electrodes placed on the biceps and triceps.
Four hybrid algorithms such as HMM-MLP, HMM-GA-MLP, HMM-CPN, and HMM-GA-
CPN were created, having accuracies of 76.9%, 87.7%, 55.6%, 85.6%, respectively. Park
and Lee (1998) proposes a method similar to (LEE et al., 1996). Using two electrodes
on the biceps and triceps to classify six di�erent movements (EE, EF, HMR, HLR, WP,
WS), the proposed method classified 65% of the movements correctly.

Englehart et al. (1999) compared the performance of two classifiers (MLP and
LDA) trying to improve the accuracy of transient EMG signal pattern classification.
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The approach using MLP and LDA with wavelet packet transform (WPT) and principal
components analysis (PCA) outperformed many authors from the literature, achieving an
accuracy of 92.75% and 93.75%, respectively. Chan et al. (2000) was one of the first authors
that proposed a fuzzy approach for classification of EMG patterns using four electrodes on
the biceps and triceps to capture four arm movements (EE, EF, WP, WS). The accuracy
of the fuzzy approach was compared with an ANN, being 89.7% and 87.55%, respectively.
The authors conclude that the fuzzy has slightly higher recognition rate, it is not sensitive
to overtraining, and it has consistent outputs demonstrating higher reliability. Micera,
Sabatini and Dario (2000) evaluated comparatively neural and fuzzy networks with a
limited amount of data available for learning. The authors used two electrodes on the
anterior deltoid (shoulder) to capture three di�erent planar arm pointing movements to
reach and grasp (Key Grasp (KG)) an object lying on a table. Four classifiers were used
such as self-organizing maps (SOM), fuzzy c-means (FCM), MLP, and The Abe–Lan fuzzy
network (Abe-Lan). It is shown that the Abe–Lan classifier had a higher classification
accuracy of 93.33%, followed by the MLP (85.75%), FCM (53.30%), and SOM (49.97%).
Tsuji et al. (2000) proposed a new ANN approach for the task of EMG classification. The
proposed network is combined to form two di�erent neural networks: one is a common
back-propagation neural network, and the other a recurrent neural filter. They used four
electrodes on the subject’s forearm to classify six movements (WP, WS, WF, WE, HO,
Tool Grip (TG)). The network could classify the six movements with an accuracy of about
90%.

Englehart, Hudgin and Parker (2001) used a wavelet-based feature set, PCA to
reduce the feature vector dimension and a LDA classifier. The author tested the proposed
method in with two sets of data, one performing four movements (WF, WE, HO, HC) and
another one six (Wrist Ulnar Deviation (WUD), Wrist Radial Deviation (WRD), WF,
WE, HO, HC), recorded from four electrodes placed on the forearm. The proposed system
had a high accuracy for both datasets, being 99.5% for the four-class dataset and 98%
for the six-class dataset. Zhang et al. (2002) implemented a hybrid classifier using a ANN
and Fuzzy called neuro-fuzzy classifier (NFC). The author compared the NFC with an
ANN to classify six di�erent movements (EE, EF, WP, WS, HO, HC). The NFC outper-
formed the ANN, achieving an accuracy of 95% against 90.66% for the ANN. Englehart
and Hudgins (2003) presents a continuous classification approach not requiring segmen-
tation of the EMG signal, allowing a continuous stream of class decisions to be delivered
to the prosthetic device. The author placed four electrodes on the subject’s forearm to
classify four di�erent wrist movements (WUD, WRD, WF, WE), achieving an accuracy
of 95%. Ajiboye and Weir (2005) presents a heuristic fuzzy logic approach for EMG signal
classification. Using four electrodes placed on the forearm they try to classify four move-
ments (WUD, WF, WE, Finger Flexion (FF)). The authors state that other algorithms
in the literature have a long delay, while the presented system has a faster classification
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time and good accuracy (97%), making it suitable for real-time applications. Chan and
Englehart (2005) used HMM to process four EMG signals from the forearm with task of
classifying six movements (WP, WS, WF, WE, HO, HC). A comparison between the pro-
posed HMM method and a MLP was made. The HMM with an accuracy of 94.63% had a
statistical significant di�erence compared to the MLP’s accuracy 93.27%. The proposed
method is fast because it delivers a continuous stream of classes to the prosthesis and its
computational complexity is low, making it suitable for real-time applications. Huang et
al. (2005) proposes the use of Gaussian mixture models (GMMs) for EMG signal classifi-
cation. They used four electrodes on the subject’s forearm to classify six movements (WP,
WS, WF, WE, HO, HC). The performance of the GMM is compared to three commonly
used classifiers: a LDA, a linear perceptron network (LP), and a MLP. The proposed
method demonstrates an exceptional classification accuracy of 96.28% against 95.58% of
LDA, 95.27% of LP, and 95.38% of MLP. It is a robust method of motion classification
with low computational load.

Chu, Moon and Mun (2006) used PCA for dimensionality reduction and self-
organizing feature map (SOFM) to make a nonlinear mapping of the features. They fed
those new features in a MLP for the classification of eight di�erent movements (WP,
WS, WUD, WRD, WF, WE, HO, HC). The proposed method improves class separability
and recognition accuracy (97.02%) if compared with the PCA (95.76%). Even though the
SOFM had a higher accuracy (97.78%) compared to the PCA+SOFM, it’s processing
time is 36 times higher than the PCA+SOFM approach, making the SOFM not suitable
for real time applications. Nagata et al. (2006) proposed the recognition of EMG signals
using canonical discriminant analysis (CDA). The author used 96 electrodes placed on the
forearm to classify 12 movements of the hand including four finger movements (WP, WS,
WUD, WRD, WF, WE, 1234-FF, HO, HC). The proposed system achieved a recognition
rate of 85.3%. Tsenov et al. (2006) presents a comparison of three ANNs such as MLP,
Radial Basis Function (RBF), and Learning Vector Quantization (LVQ). Tsenov placed
two electrodes on the subject’s forearm to capture four movements (123-FF, HC). The
MLP had an accuracy of 92%, the RBF 84% and the LVQ 89%. Wang et al. (2006)
proposed a combination of an auto-regressive (AR) model and ANN to classify EMG
signals. The AR model processed the EMG signal and this signal was fed to the ANN.
Four pairs of electrodes were attached on the subject’s forearm to acquire the signals
during six types of finger motions (1st, 2nd and 3rd-Finger Extension (123-FE), 123-FF).
They achieved an accuracy of 77%.

Chu et al. (2007) proposed a combination of WPT, LDA and MLP to classify
EMG signals. A wavelet packet transform (WPT) is performed to extract a feature vec-
tor from four electrodes placed on the forearm. A LDA is used to reduce the feature
vector’s dimensionality. The reduced feature vector is then fed into an MLP. Eight move-
ments (WP, WS, WUD, WRD, WF, WE) were performed by the subjects. The author
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compared the LDA with the PCA approach proposed in the literature. The LDA had
an accuracy of 97.4% against the PCA 95.9%. Hargrove, Englehart and Hudgins (2007)
compares the three di�erent pre-processing algorithms (AR, Time Domain (TD), TD and
sixth-order AR (TDAR)) with two classification algorithms (LDA and MLP). The author
used 16 electrodes placed on the forearm to record nine movements (WP, WS, WUD,
WRD, WF, WE, HO, KG, Chuck Grip (ChG)). The accuracies achieved for the AR+LDA,
AR+MLP, TD+LDA, TD+MLP, TDAR+LDA, and TD+MLP are 97%, 96%, 98%, 97%,
98.5%, 96.5%, respectively. Jung et al. (2007) proposed a method for pattern recognition
of EMG signals of hand gesture using spectral estimation and LVQ. Four electrodes were
placed on the forearm to record six Korean language hand gestures. Jung achieved 78%
accuracy. Khezri, Jahed and Sadati (2007) proposed an adaptive neuro-fuzzy inference
system (ANFIS) for EMG signal classification. They used a hybrid method for training
a fuzzy system, consisting of back-propagation (BP) and least mean square (LMS). Four
electrodes were used to read six movements (WF, WE, FE, FF, HO, HC, Fine Pinch
(FP)). The proposed system achieved an accuracy of 96%. Liu, Huang and Weng (2007)
proposed a novel EMG classifier called cascaded kernel learning machine (CKLM). It
consists of a generalized discriminant analysis (GDA) algorithm, that reduces the dimen-
sionality of the feature vectors, and a SVM algorithm used for the classification. This
method achieved an average accuracy of 94.1% on the task of classifying eight movements
(WF, HO, ChG, Power Grip (PG), Hook Grip (HG), Lateral Pinch (LaP), Centralized
Grasp (CeG), Cylindrical Grasp (CyG)) captured by three electrodes placed on the fore-
arm. Tenore et al. (2007) used time-domain feature extraction methods as inputs to a
neural network classifier. The EMG data was collected from 32 electrodes placed on an
individual’s forearm performing 10 individual finger (12345-FF and 12345-FE) movements
and 2 movements of grouped fingers ((345)-FF and (345)-FE). An accuracy of 98% was
achieved.

Lucas et al. (2008) proposed a method using Discrete Wavelet Transform (DWT)
and SVM to classify EMG signals. Eight electrodes were placed on the forearm to record
six movements (WP, WS, WF, WE, HO, HC). The classification method had a classifica-
tion accuracy of 95.3%. Oskoei and Hu (2008) compares a SVM approach with LDA and
MLP for the task of EMG classification. Oskoei placed four electrodes on the forearm to
acquire five movements (Finger Abduction (Fab), Finger Adduction (Fad), FE, FF, HO).
The SVM accuracy (95.75%) outperformed the LDA (95.5%) and MLP (95%) classifiers.
Shenoy et al. (2008) proposed a SVM classification system for EMG signal classification.
The author used seven electrodes placed on the forearm to record eight movements (WP,
WS, WUD, WRD, WF, WE, HO, PG). The classifier had a 95% accuracy. Sueaseenak et
al. (2008) compared an ANN with an independent component analysis (ICA) for the task
of EMG classification. Sixteen electrodes were placed on the forearm and captured eight
movements (WP, WS, WUD, WRD, WF, WE, HO, HC). The ANN (95.8%) outperformed
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the ICA in 2.5% and had a faster training time.

Chu and Lee (2009) presents a new learning method using Conjugate-Prior-Penalized
Learning for GMM in order to improve their generalization ability. Chu used four elec-
trodes on the forearm to record nine movements (WP, WS, WUD, WRD, WF, WE, HO,
CyG, LG). The author compared the proposed approach, having an accuracy of 95.7%,
with Bayesian methods to GMMs, having an accuracy of 93.57%. Tenore et al. (2009)
proposed a ANN system that classify individual flexion and extension movements of each
finger (12345-FF, 12345-FE) using only EMG signals. The authors compared the system’s
accuracy with the number of electrodes placed on the individual’s forearm. For 19 elec-
trodes, the systems had an accuracy of 91.27%. Using 32 electrodes, the system classified
94.28% of the movements of each finger correctly. Li, Schultz and Kuiken (2010) used a
LDA classifier to discriminate 10 movements (WP, WS, WF, WE, HO, KG, ChG, PG,
FP, TG) recorded from 12 electrodes placed on the forearm. Li compared the classification
accuracy between amputees and healthy subjects. Amputated arms produced significantly
lower classification accuracies (79%) than testing on intact arms (94%).

Geethanjali and Ray (2015) developed of a low-cost research platform for EMG
prosthetic hand control to evaluate pattern recognition techniques. The author compared
seven di�erent algorithms such as simple logistic regression (SLR), C4.5 algorithm (C4.5),
logistic model tree (LMT), ANN, LDA, and SVM for the task of EMG classification. Four
electrodes were place on the subject’s forearm to record six movements (WS, WUD, WRD,
WF, WE, HO, HC) which resulted in an accuracy of 87.5% (LDA), 84.5% (ANN), 84.33%
(LMT), 84.16% (SLR), 84% (SVM), and 79.5% (C4.5). Geethanjali (2015) Compared five
algorithms (SLR, C4.5, LMT, k-Nearest Neighbor classifier (kNN), and ANN) using PCA
to classify six hand movements (WUD, WRD, WF, WE, HO, HC) using four EMG
electrodes. The author achieved an accuracy of 91% (SLR), 91% (LMT), 90.5% (ANN),
89% (kNN), and 82% (C4.5).

AbdelMaseeh, Chen and Stashuk (2016) proposed an EMG Classification model
based on multidimensional dynamic time warping (MD-DTW). The author used the sec-
ond version of the publicly available database from the Non-Invasive Adaptive Prosthetics
(NINAPro) project (ATZORI et al., 2014). The NINAPro database consists of surface
EMG signals, kinematic, and force measurement signals acquired from 40 di�erent sub-
jects performing 40 movements. The proposed system was able to classify 89% of the
40 di�erent movements. Adewuyi, Hargrove and Kuiken (2016) demonstrated that using
intrinsic and extrinsic hand muscles EMG data it is possible to classify up to 19 di�erent
hand grasps and finger motions (1-Fab, 1-Fad, 12345-FE, 12345-FF, HO, KG, ChG, PG,
FP, TG). The author placed nine electrodes on the forearm of all subjects, twelve elec-
trodes on health subjects hand, and four electrodes on amputee’s hand. An accuracy of
96% for non-amputees and 85% for partial-hand amputees was achieved using a LDA clas-
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sifier. Al-Timemy et al. (2016) proposed a novel set of features that reduces the impact of
force level variations on prosthesis controlled by amputees. Sixteen electrodes were placed
on the subject’s forearm to record six movements (12-FF, ChG, PG, FP, HG). In order to
evaluate their work, four di�erent classifiers were utilized in the experiments: LDA, Naive
Bayes (NB), Random Forest (RF), and kNN with k=3. Accuracies of 92.5% for kNN, 92%
for LDA, 91.5% for NB and 91% for RF were achieved. Duan et al. (2016) proposed a novel
algorithm to recognize six kinds of hand motion commands (WP, WS, WF, WE, HO, HC)
using only three EMG electrodes placed on the forearm. The author employed discrete
wavelet transform (DWT) and wavelet neural network (WNN) algorithms to improve the
recognition rates. The proposed algorithm had an accuracy of 94.67% outperforming the
ANN with an accuracy of 93.22%. Kyranou et al. (2016) proposed the use of additional
sensors such as accelerometer, gyroscopes and magnetometers to improve the classification
accuracy. The author used LDA to classify five di�erent motions (2-FE, HO, ChG, LaP,
CyG) using twelve electrodes placed on the forearm having an accuracy of 94.5%. Naik,
Al-Timemy and Nguyen (2016) proposed a novel EMG control technique for identification
of movements using the minimum number of electrodes based on Independent Component
Analysis (ICA) and Icasso clustering. The data was recorded using eleven electrodes on
the subject’s forearm. The subjects performed eleven finger movements (1-Fab, 12345-FE,
12345-FF). The proposed technique achieved an accuracy of 96.6% using only four out the
eleven sensors. Vidovic et al. (2016) proposed a robust EMG classification algorithm that
prevents misclassification due to covariate shift, which is the changes on the EMG signal
caused by electrode shifts after sweating or varying arm positions. Eight electrodes were
placed on the forearm to record seven movements (WP, WS, WF, WE, HO, KG, FP).
Vidovic adapted a trained LDA classifier using a calibration set, achieving an accuracy
of 92%.

Fan et al. (2017) used pattern recognition algorithms using WNN combined with
discrete wavelet transform (DWT) to discriminate six hand motions (WP, WS, WF, WE,
HO, HC) using three electrodes on the forearm. The author achieved an average accuracy
rate of 91.44%. Guo et al. (2017) used the combination of EMG and mechanomyography
(MMG) signals. Four hybrid electrodes were placed on the individual’s forearm to record
twelve movements (WP, WS, WUD, WRD, WF, WE, 2-FE, HO, HC, ChG, FP, CeG).
An accuracy of 95.6% was achieved using a LDA classifier to recognize the 12 classes.
Table 3 presents relevant works in MYO classification for prosthesis control. It is sorted
historically and contains the works reference, the number of EMG channels, the number
of subjects, the algorithm used, the movements performed, the number of classes, the
number of repetitions for each movement, and the accuracies.



C
h
a
p
te

r
4
.

P
a
tte

r
n

R
e
c
o
g
n

itio
n

-
b
a
s
e
d

M
y
o
e
le

c
tr

ic
C

o
n

tr
o
l

45

Table 3 – Pattern Recognition-based Control of Upper Limb Prosthesis

Author EMG Ch. #Subjects Movements #Repetitions Algorithm Accuracy
Saridis and Gootee (1982) 4 - EE, EF, HMR, HLR, WP, WS 20 - -
Kelly, Parker and Scott (1990) 2 1 Health EE, EF, WP, WS 20 ANN -
Hudgins, Parker and Scott (1993) 2 9H 6A EE, EF, HMR, HLR 30 ANN 88.35%
Boca and Park (1994) 4 - EF (intensities) - ANN 86.20%

Kwon et al. (1996) 4 1 Amputee WP, WS, WF, WE, HO, HC 30
HMM-MLP 91.16%

MLP 75.00%
Lee et al. (1996) 4 2 Health EE, EF, HMR, HLR, WP, WS 50 EA 46.77%

Kwon et al. (1998) 4 1 Amputee WP, WS, WF, WE, HO, HC 30

HMM-CPN 55.60%
HMM-GA-CPN 85.60%
HMM-GA-MLP 87.70%

HMM-MLP 76.90%
Park and Lee (1998) 2 6 Health EE, EF, HMR, HLR, WP, WS 50 EA 65.00%

Englehart et al. (1999) 2 16 Health EE, EF, WP, WS 100
ANN 92.75%
LDA 93.75%

Chan et al. (2000) 2 4 Health EE, EF, WP, WS - Fuzzy 91.20%

Micera, Sabatini and Dario (2000) 2 4 Health KG (3 planar arm-pointing movements) 10

Abe-Lan 93.33%
ANN 85.75%
FCM 53.30%
SOM 49.97%

Tsuji et al. (2000) 4 3H 1A WP, WS, WF, WE, HO, TG - ANN 90.00%

Englehart, Hudgin and Parker (2001) 4 11 Health
WUD, WRD, WF, WE, HO, HC

80
LDA 98.00%

WF, WE, HO, HC LDA 99.50%

Zhang et al. (2002) - - EE, EF, WP, WS, HO, HC -
ANN 90.66%
NFC 95.00%

A: Amputee subjects, H: Health subjects
EE: Elbow Extension, EF: Elbow Flexion, HMR: Humerus Medial Rotation, HLR: Humerus Lateral Rotation, WP: Wrist Prontation, WS: Wrist Supination, WUD: Wrist Ulnar
Deviation, WRD: Wrist Radial Deviation, WF: Wrist Flexion, WE: Wrist Extension, xyz-Fab: xth yth zth-Digit Finger Abduction, xyz-Fad: xth yth zth-Digit Finger Adduction,
xyz-FE: xth yth zth-Digit Finger Extension, xyz-FF: xth yth zth-Digit Finger Flexion, (xyz)-Fab: Group of xth yth zth-Digit Finger Abduction, (xyz)-Fad: Group of xth yth zth-Digit
Finger Adduction, (xyz)-FE: Group of xth yth zth-Digit Finger Extension, (xyz)-FF: Group of xth yth zth-Digit Finger Flexion, HO: Hand Open, HC: Hand Close, KG: Key Grip,
ChG: Chuck Grip, PG: Power Grip, FP: Fine Pinch, TG: Tool Grip, HG: Hook Grip, LaP: Lateral Pinch, CeG: Centralized Grasp, CyG: Cylindrical Grasp
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Table 3 – Pattern Recognition-based Control of Upper Limb Prosthesis

Author EMG Ch. #Subjects Movements #Repetitions Algorithm Accuracy
Englehart and Hudgins (2003) 4 12 Health WUD, WRD, WF, WE 20 LDA 95.00%
Ajiboye and Weir (2005) 4 3H 1A WUD, WF, WE, FF - Fuzzy 97.00%

Chan and Englehart (2005) 4 11 Health WP, WS, WF, WE, HO, HC 8
ANN 93.27%
HMM 94.63%

Huang et al. (2005) 4 12 Health WP, WS, WF, WE, HO, HC 4

GMM 96.28%
LDA 95.58%
LP 95.27%

MLP 95.38%

Chu, Moon and Mun (2006) 4 10 Health
WP, WS, WUD, WRD,

WF, WE, HO, HC
20 ANN 97.02%

Nagata et al. (2006) 96 3 Health
WP, WS, WUD, WRD, WF,

WE, 1234-FF, HO, HC
10 CDA 85.30%

Tsenov et al. (2006) 2 1 Health 123-FF, HC 34
MLP 92.00%
RBF 84.00%
LVQ 89.00%

Wang et al. (2006) 8 4 Health 123-FE, 123-FF - ANN 77.00%
Chu et al. (2007) 4 10 Health WP, WS, WUD, WRD, WF, WE 20 LDA+MLP 97.40%

Hargrove, Englehart and Hudgins (2007) 16 6 Health
WP, WS, WUD, WRD,

WF, WE, HO, KG, ChG
36

ANN 96.00%
LDA 97.50%

Jung et al. (2007) 4 1 Health Korean Characters 50 ANN 78.00%
Khezri, Jahed and Sadati (2007) 4 4 Health WF, WE, FE, FF, HO, HC, FP 100 HMM-GA-MLP 96.00%
Liu, Huang and Weng (2007) 3 1H 2A WF, HO, ChG, PG, HG, LaP, CeG, CyG 10 GDA+SVM 94.10%
Tenore et al. (2007) 32 1 Health 12345(345)FE, 12345(345)FF 30 ANN 98.00%
Lucas et al. (2008) 8 6 Health WP, WS, WF, WE, HO, HC 40 SVM 95.30%

A: Amputee subjects, H: Health subjects
EE: Elbow Extension, EF: Elbow Flexion, HMR: Humerus Medial Rotation, HLR: Humerus Lateral Rotation, WP: Wrist Prontation, WS: Wrist Supination, WUD: Wrist Ulnar
Deviation, WRD: Wrist Radial Deviation, WF: Wrist Flexion, WE: Wrist Extension, xyz-Fab: xth yth zth-Digit Finger Abduction, xyz-Fad: xth yth zth-Digit Finger Adduction,
xyz-FE: xth yth zth-Digit Finger Extension, xyz-FF: xth yth zth-Digit Finger Flexion, (xyz)-Fab: Group of xth yth zth-Digit Finger Abduction, (xyz)-Fad: Group of xth yth zth-Digit
Finger Adduction, (xyz)-FE: Group of xth yth zth-Digit Finger Extension, (xyz)-FF: Group of xth yth zth-Digit Finger Flexion, HO: Hand Open, HC: Hand Close, KG: Key Grip,
ChG: Chuck Grip, PG: Power Grip, FP: Fine Pinch, TG: Tool Grip, HG: Hook Grip, LaP: Lateral Pinch, CeG: Centralized Grasp, CyG: Cylindrical Grasp
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Table 3 – Pattern Recognition-based Control of Upper Limb Prosthesis

Author EMG Ch. #Subjects Movements #Repetitions Algorithm Accuracy

Oskoei and Hu (2008) 4 11 Health Fab, Fad, FE, FF, HO 2
ANN 95.00%
LDA 95.50%
SVM 95.75%

Shenoy et al. (2008) 7 3 Health
WP, WS, WUD, WRD,

WF, WE, HO, PG
5 SVM 95.00%

Sueaseenak et al. (2008) 16 1 Health
WP, WS, WUD, WRD,

WF, WE, HO, HC
15

ANN 95.80%
ICA 93.30%

Chu and Lee (2009) 4 10 Health
WP, WS, WUD, WRD,

WF, WE, HO, CyG
20

Bayes 93.57%
GMM 95.70%

Tenore et al. (2009)
19 5H 1A

12345-FF, 12345-FE 25-30
ANN 91.27%

32 5 Health ANN 94.28%

Li, Schultz and Kuiken (2010) 12
5 Amputee WP, WS, WF, WE, HO,

KG, ChG, PG, FP, TG
2

LDA 79.00%
1 Health LDA 94.00%

Geethanjali and Ray (2015) 4 10H 2A WS, WUD, WRD, WF, WE, HO, HC 8

ANN 84.50%
C4.5 79.50%
LDA 87.50%
LMT 84.33%
SLR 84.16%
SVM 84.00%

Geethanjali (2015) 4 10 Health WUD, WRD, WF, WE, HO, HC 8

ANN 90.50%
C4.5 82.00%
kNN 89.00%
LMT 91.00%
SLR 91.00%

A: Amputee subjects, H: Health subjects
EE: Elbow Extension, EF: Elbow Flexion, HMR: Humerus Medial Rotation, HLR: Humerus Lateral Rotation, WP: Wrist Prontation, WS: Wrist Supination, WUD: Wrist Ulnar
Deviation, WRD: Wrist Radial Deviation, WF: Wrist Flexion, WE: Wrist Extension, xyz-Fab: xth yth zth-Digit Finger Abduction, xyz-Fad: xth yth zth-Digit Finger Adduction,
xyz-FE: xth yth zth-Digit Finger Extension, xyz-FF: xth yth zth-Digit Finger Flexion, (xyz)-Fab: Group of xth yth zth-Digit Finger Abduction, (xyz)-Fad: Group of xth yth zth-Digit
Finger Adduction, (xyz)-FE: Group of xth yth zth-Digit Finger Extension, (xyz)-FF: Group of xth yth zth-Digit Finger Flexion, HO: Hand Open, HC: Hand Close, KG: Key Grip,
ChG: Chuck Grip, PG: Power Grip, FP: Fine Pinch, TG: Tool Grip, HG: Hook Grip, LaP: Lateral Pinch, CeG: Centralized Grasp, CyG: Cylindrical Grasp
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Table 3 – Pattern Recognition-based Control of Upper Limb Prosthesis

Author EMG Ch. #Subjects Movements #Repetitions Algorithm Accuracy
AbdelMaseeh, Chen and Stashuk (2016) 12 40 Health NinaPro (ATZORI et al., 2014) 6 MD-DTW 89.00%

Adewuyi, Hargrove and Kuiken (2016)
21 9 Health 1-Fab, 1-Fad, 12345-FE, 12345-FF,

HO, KG, ChG, PG, FP, TG
10

LDA 96.00%
13 4 Amputee LDA 85.00%

Al-Timemy et al. (2016) 16 9 Amputee 12-FF, ChG, PG, FP, HG 15 - 24

Bayes 91.50%
kNN 92.50%
LDA 92.00%
RF 91.00%

Duan et al. (2016) 3 6H 2A WP, WS, WF, WE, HO, HC 100
ANN 93.22%
WNN 94.67%

Kyranou et al. (2016) 12 8 Health 2-FE, HO, ChG, LaP, CyG 5 LDA 94.50%
Naik, Al-Timemy and Nguyen (2016) 11 5 Amputee 1-Fab, 12345-FE, 12345-FF 5-7 LDA 96.60%
Vidovic et al. (2016) 8 7H 4A WP, WS, WF, WE, HO, KG, FP 15 LDA 92.00%
Fan et al. (2017) 3 3 Health WP, WS, WF, WE, HO, HC 10 ANN 91.44%

Guo et al. (2017) 4 7H 2A
WP, WS, WUD, WRD, WF, WE,

2-FE, HO, HC, ChG, FP, CeG
- LDA 95.60%

A: Amputee subjects, H: Health subjects
EE: Elbow Extension, EF: Elbow Flexion, HMR: Humerus Medial Rotation, HLR: Humerus Lateral Rotation, WP: Wrist Prontation, WS: Wrist Supination, WUD: Wrist Ulnar
Deviation, WRD: Wrist Radial Deviation, WF: Wrist Flexion, WE: Wrist Extension, xyz-Fab: xth yth zth-Digit Finger Abduction, xyz-Fad: xth yth zth-Digit Finger Adduction,
xyz-FE: xth yth zth-Digit Finger Extension, xyz-FF: xth yth zth-Digit Finger Flexion, (xyz)-Fab: Group of xth yth zth-Digit Finger Abduction, (xyz)-Fad: Group of xth yth zth-Digit
Finger Adduction, (xyz)-FE: Group of xth yth zth-Digit Finger Extension, (xyz)-FF: Group of xth yth zth-Digit Finger Flexion, HO: Hand Open, HC: Hand Close, KG: Key Grip,
ChG: Chuck Grip, PG: Power Grip, FP: Fine Pinch, TG: Tool Grip, HG: Hook Grip, LaP: Lateral Pinch, CeG: Centralized Grasp, CyG: Cylindrical Grasp
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Analyzing the works in Table 3 we noticed that there are several papers that
propose interesting classification approaches, which will be used as ground for our work.
However, almost all articles use only the EMG signal for the task of classification.

Kyranou et al. (2016) have observed higher classification accuracy when inertial
information measured on the subject’s forearm was taken into consideration. Our work
aims to verify if the use of multi-modal data can enhance the performance of pattern
recognition-based myoelectric control. In the next chapter, we analyze the existing data
capture devices that could potentially be used.
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5 Human Motion Sensing Techniques

Human motion sensing systems were created to capture spatio-temporal informa-
tion that represents the movements of a human body or a part of it. The information
such as position, acceleration, joint angles, contact pressure, and muscle contraction can
be extracted from sensors (LIU et al., 2017).

The sensing techniques for human motions are generally categorized into two types:
vision-based sensing and wearable sensing.

5.1 Vision Based Sensing
Usually cameras are used to track the position of the body. Optical systems use

data captured from cameras to triangulate the 3D position of a human between two or
more calibrated cameras to provide overlapping projections (HASSAN et al., 2014). Data
acquisition is traditionally implemented using special markers attached to an actor. These
systems produce data with three degrees of freedom for each marker (Surging, Swaying,
Heaving). However, rotational information must be inferred from the relative orientation
of markers. The latest hybrid systems combine inertial sensors with optical systems to
reduce occlusion and increase the ability to track. Figure 14 shows some examples of
vision based systems.

(a) Hand tracking using the Kinect camera

Source Oikonomidis, Kyriazis and Argyros (2011)

(b) Body tracking using passive markers and
camera

Source http://motioncapture3dgaming.blogspot.com.br/

Figure 14 – Examples of Vision Based Systems

Although there are several interesting works using vision based sensing, it is nec-
essary that the user is in a controlled environment, making this technique impractical for
our application.
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5.2 Wearable Sensing
Advances in recent technologies have opened up new possibilities for the use of

wearable technology to monitor the human body, especially in health care. Integrated
with miniature circuits, powerful microcontrollers, wireless data transmission and large
capacity battery, wearable sensors are now small enough for people to carry and deploy
it in digital health monitoring systems.

These sensors can be integrated into various personal accessories such as clothing,
necklaces, hats, gloves, shoes and other devices such as wrist watches, headphones and
smartphones. The sensing techniques are mainly based on inertial tracking, ultrasonic and
other similar sensing techniques.

According to Liu et al. (2017) data gloves are one of the most important input de-
vices for analyzing the hand movements. Examples of data gloves are shown in Figure 15.
Considering the facility of using an o�-the-shelf product to perform our research, we con-
duct an exploratory survey of the existing hand data capture devices, their specifications,
price and availability in the market.

Table 4 was created to present the existing hand data capture devices. It is sorted
by the application type of the device and contains the device’s name, the sensors used,
the resolution of the data, the speed that the data is captured, the interface used to
communicate with a computer and the market price of the device.

(a) CyberGlove Systems CyberGlove III

Source http://www.cyberglovesystems.com/

(b) Synertial IGS Cobra Glove

Source https://www.synertial.com/

Figure 15 – Examples of Data Gloves
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Table 4 – Glove-Based Systems and Their Applications

Application Device Sensors Precision Sample Rate Interface Price

Health YouRehab YouGrabber AS, OT - - - -
K/M Peregrine Glove CS - - USB $150.00
K/M Air Mouse CS, OT - - - -
K/M Key Glove CS 10 bit - Bluetooth $200.00
K/M Mister Gloves AS, IMU, CS 8 bit - USB -
K/M Wireless Hand Sensor IMU, CS 10 bit - Bluetooth $50.00
M/A AC Sensorizer Glove AS, IMU, CS 10 bit - USB -
M/A Aura AS, IMU, CS - - - -
M/A Crochet Gloves FS - - - -
M/A DJ GLove AS, IMU, US - - Bluetooth -
M/A Hypersense AS 8 bit 100Hz USB -
M/A Imaginary Marching Band FS, IMU, US, PS, TS 10 bit - USB -
M/A Musical Glove AS, OT 10 bit - - -
M/A mi.mu AS, IMU 13 bit - WiFi -

M/A
Rachel Yalisove’s
Conversational Gloves

AS, IMU 10 bit - USB -

M/A Sensitive Fingertips FS 10 bit - USB -
M/A The Lady’s Glove AS, FS, IMU, US, HE - - - -
M/A Un Doigt, Une Note FS 10 bit - USB -
M/A VAMP AS, FS, IMU - - Zigbee -
M/A Wireless Midi Glove FS - - - -
M/A Wristflickr Strech 10 bit - Bluetooth -
Robot Dextrous Hand Master by Exos HE 12 bit 75Hz - -
Robot FingerTPS II FS 16 bit 40Hz Bluetooth $2,995.00

SL Cornell Sign language translation AS, IMU, CS 1 bit - RF to USB -
SL EnableTalk sensory gloves AS, CS - - - -

IMU Inertial Measurement Unit, OT Optical Tracking, AS Angle, US Ultrasonic, CS Contact, FS Force, PS Pressure, TS Tilt, HE Hall, SS Strech, Ab Abduction, PA
Palm Arch, TC Thumb Crossover
K/M: Keyboard/Mouse, M/A: Music and Arts, SL: Sign Language, VR: Virtual Reality
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Table 4 – Glove-Based Systems and Their Applications

Application Device Sensors Precision Sample Rate Interface Price

SL FingerSpell AS, FS - - - -
SL Mobile Lorm Glove CS - - Bluetooth -
SL UW ASL Glove AS, IMU 10 bit - Bluetooth -
VR G-stalt IMU, OT - 100Hz - -
VR Matel Power Glove AS, US 8 bit - - -
VR 13 Cobra Glove IMU - - USB/WiFi $14,000.00
VR 16 Cobra Glove IMU - - USB/WiFi $24,500.00
VR 5DT Glove 14 Ultra AS, Ab 10 bit 75Hz USB/Bluetooth* $5,495.00
VR 5DT Glove 5 Ultra AS 10 bit 75Hz USB/Bluetooth* $995.00
VR 7 Cobra Glove IMU - - USB/WiFi $7,500.00
VR AnthroTronix Acceleglove IMU 10 bit 35Hz USB $499.00
VR CyberGlove II AS, Ab, PA - 90Hz WiFi $18,000.00
VR CyberGlove III AS, Ab, PA 12 bit 120Hz Wi-Fi/SD Card/USB -
VR CyberWorld P5 AS, OT - 60Hz USB $100.00
VR DG5 VHand 3.0 AS, IMU 12 bit 100Hz USB/WiFi $750.00
VR Didjiglove AS 10 bit 70Hz Serial $5.000.00
VR Fakespace PINCH CS 1 bit - Serial $2,200.00
VR Homebrew VR Data Glove AS, IMU 10 bit - USB -
VR Measurand ShapeHand AS - 80Hz Serial $11,000.00
VR Pliance R• glove sensor FS - - Analog Interface -
VR StretchSense AS 16 bit 1kHz SPI Interface $3,050.00
VR T(ether) IMU, CS - 30Hz WiFi -
VR The VPL DataGlove AS, IMU - 60Hz RS232 -
VR TouchGloves v2.3 FS n/a n/a Analog Interface $750.00
VR VMG 10 AS, FS, IMU 12 bit 90Hz USB/WiFi -
VR VMG 30 AS, FS, IMU, Ab, PA, TC 12 bit 90Hz USB/WiFi -

IMU Inertial Measurement Unit, OT Optical Tracking, AS Angle, US Ultrasonic, CS Contact, FS Force, PS Pressure, TS Tilt, HE Hall, SS Strech, Ab Abduction, PA
Palm Arch, TC Thumb Crossover
K/M: Keyboard/Mouse, M/A: Music and Arts, SL: Sign Language, VR: Virtual Reality



C
h
a
p
te

r
5
.

H
u
m

a
n

M
o
tio

n
S

e
n

s
in

g
T

e
c
h
n

iq
u
e
s

54

Table 4 – Glove-Based Systems and Their Applications

Application Device Sensors Precision Sample Rate Interface Price

VR VMG Lite AS, IMU 12 bit 90Hz USB/Bluetooth $750.00
VR X-IST HR3 3D AS, FS, IMU 10 bit 60Hz USB/ZigBee $5,000.00
VR X-IST SP1 3D AS, FS, IMU 10 bit 60Hz USB/ZigBee $4,000.00

IMU Inertial Measurement Unit, OT Optical Tracking, AS Angle, US Ultrasonic, CS Contact, FS Force, PS Pressure, TS Tilt, HE Hall, SS Strech, Ab Abduction, PA
Palm Arch, TC Thumb Crossover
K/M: Keyboard/Mouse, M/A: Music and Arts, SL: Sign Language, VR: Virtual Reality
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As we can see in Table 4 the existing commercial solutions are very expensive and
don’t provide a variety of sensors. Thus, eliminating the idea of buying an o�-the-shelf
glove. We used the knowledge acquired from Table 4 to help us build our own hand data
acquisition device.

Before starting the design process, we performed experiments applying new ma-
chine learning techniques to an open database called Ninapro DB (PIZZOLATO et al.,
2017), in order to improve the classification performance. The following chapter presents
these experiments.
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6 Experiments

The goal of this chapter is to introduce new machine learning (ML) approaches in
order to improve the performance of prosthetic hand movements classification. We chose
the Ninapro database to perform these experiments, since the NinaPro is a well known
database used by several authors in the literature, giving us a baseline to compare our
results using new ML approaches.

6.1 Experimental Settings

6.1.1 The Ninapro DB5 database

NinaPro is a project that aims to aid research on hand myoelectric prosthesis
making datasets available to everyone. The project has databases using several EMG
acquisition setups and the majority of them include data captured from a CyberGlove1

and an accelerometer.

Pizzolato et al. (2017) created a database using two Myo Armbands, a CyberGlove
II and an Accelerometer. Their goal was to compare the EMG classification accuracy of the
double-Myo Armband dataset against past NinaPro Datasets, which use state-of-the-art
EMG acquisition setups costing more than $10, 000.

The NinaPro DB5 contains data from 10 subjects, where each subject performed
52 movements, grouped in three categories: A) Basic movements of the fingers (12 move-
ments); B) Isometric, isotonic hand configurations and basic wrist movements (17 move-
ments); C) Grasping and functional movements (23 movements), repeating 6 times each
movement.

All experiments in this chapter were performed using exercises B, C and Rest from
the NinaPro DB5 (exemplified on Figure 16). Repetitions 1, 3, 4 and 6 were used to train
the classifiers and repetitions 2 and 5 to validate them.

Experiments #1 through #3 use only EMG data (16 EMG channels) in order
to replicate the experimental settings from Pizzolato et al. (2017). Experiment #4 uses
all data from the Ninapro DB5, such as 16 EMG channels, 22 Flex sensors and 3-axis
accelerometer. All versions of the NinaPro database are available at <http://ninapro.
hevs.ch>.

Figure 29 presents the class distribution for all the subjects. Because the distribu-
tion in the data is not equal, we calculate the Ninapro’s DB5 imbalance ratio for exercises
1 <http://www.cyberglovesystems.com/>
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Exercise B
Thumb Up

Extension of index 
and middle, flexion 

of the others

Flexion of ring and 
little finger, 

extension of the 
others

Thumb opposing 
base of little finger

Abduction of all 
fingers

Fingers flexed 
together in fist Pointing index Adduction of 

extended fingers

Wrist supination 
(axis: middle 

finger)

Wrist pronation 
(axis: middle 

finger)
Wrist supination 
(axis: little finger)

Wrist pronation 
(axis: little finger) Wrist flexion Wrist extension Wrist radial 

deviation
Wrist ulnar 
deviation

Wrist extension 
with closed hand

Exercise C

Large diameter 
grasp

Small diameter 
grasp (power grip) Fixed hook grasp Index finger 

extension grasp Medium wrap Ring grasp Prismatic four 
fingers grasp Strick grasp

Writing tripod 
grasp

Power sphere 
grasp

Three finger 
sphere grasp

Precision sphere 
grasp Tripod grasp Prismatic pinch 

grasp Tip pinch grasp Quadpod grasp Lateral grasp

Parallel extension 
grasp

Extension type 
grasp Power disk grasp Open a bottle with 

a tripod grass
Turn a screw (grasp the screwdriver 

with a stick grasp)
Cut something (grasp the knife with an 

index finger extension grasp) Rest

Figure 16 – Sets of Movements from NinaPro Database

Source – Adapted from Atzori et al. (2014)

B and C:

IR = {0 : 3.85; 1 : 1.39; 2 : 1.17; 3 : 1.18; 4 : 1.20; 5 : 1.06; 6 : 1.08; 7 : 1.23; 8 : 1.16;

9 : 1.27; 10 : 1.21; 11 : 1.36; 12 : 1.22; 13 : 1.24; 14 : 1.10; 15 : 1.00; 16 : 1.39;

17 : 1.28; 18 : 1.14; 19 : 1.19; 20 : 1.17; 21 : 1.18; 22 : 1.26; 23 : 1.43; 24 : 1.14;

25 : 1.23; 26 : 1.18; 27 : 1.22; 28 : 1.30; 29 : 1.26; 30 : 1.19; 31 : 1.30; 32 : 1.47;

33 : 1.30; 34 : 1.37; 35 : 1.44; 36 : 1.33; 37 : 1.31; 38 : 1.34; 39 : 1.53; 40 : 1.57}
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Figure 17 – Class distribution for the Ninapro database. The vertical axis shows the num-
ber of examples for all the subjects, the horizontal axis shows the class iden-
tification number.
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6.1.2 Evaluation Metrics

Based on Chapter 4, to the best of our knowledge, most of the relevant works in
the field of Machine Learning for Hand Movements’ classification use accuracy to evaluate
the performance of the classifier.

According to (FERREIRA et al., 2017), using accuracy as an evaluation metric is
inadequate when the objective is to reflect the performance of the classifier for each class,
especially on datasets with small classes.

As an example, Figure 18 presents a “mock" dataset with imbalanced classes C =
{A, B, C} and imbalance ratio IR = {A : 100; B : 10; C : 1}, with a total of 11, 100
instances.

Figure 18 – “Mock" data projected to IR2

Assume a hypothetical confusion matrix from the “mock" dataset (Figure 19),
which describes a model’s ability to identify the existing classes in the dataset.

Considering Ci as the class being evaluated, each decision from the confusion
matrix can be grouped as:

1. true positive (tpi): number of times Ci was correctly identified;

2. false negative (fni): number of times Ci was incorrectly identified;

3. true negative (tni): number of times any class but Ci was correctly identified;

4. false positive (fpi): number of times any class was incorrectly identified as Ci;
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Figure 19 – Confusion matrix shows the predictions from a classifier.

Referring to the confusion matrix (Figure 19) as CMk◊k, the classification accuracy
is calculated as:

Accuracy =
q

k

i=1 CMi,i

q
k

j=1 CMi,j

(6.1)

Evaluating the performance of this algorithm using Equation 6.1, we achieve an
accuracy of 92.16% of correctly identified classes. Although, analyzing each class in the
confusion matrix, the classifier correctly predicted only 1 out of 20 instances from class
C. Therefore, the accuracy is not su�cient to evaluate the performance of the classifier
considering each class.

In order to assess the performance of the classifier for each class, it should be
considered the model’s ability to find all the data points of interest in a dataset; This
condition is known as recall (Eq. 6.2).

Ri = tpi

tpi + fni

(6.2)

However, it is important to point out that as the number of classes increase, the
di�culty to evaluate the overall performance of the algorithms, based only on the results
per class, also increases. Therefore, it is easier to first evaluate the performance of an
algorithm using a single value, and then analyze its performance for each class. Thus, we
chose using the Macro Average Geometric (Eq. 6.3), proposed by (SUN; KAMEL; WANG,
2006), as the geometric means of recall values. It is a generalization of the G ≠ Mean for
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a multi-class scenario (KUBAT; HOLTE; MATWIN, 1998). Using the MAvG, each recall
value representing the classification performance of a specific class is equally accounted.

MAvG =
A

JŸ

i=1
Ri

B 1
J

(6.3)

In order to observe the di�erence between the MAvG and Accuracy, Table 5
presents the recall, accuracy and MAvG metrics to evaluate the performance of a classifier.

Table 5 – Recall per class and overall accuracy and MAvG for a classifier.

Class Recall
A 0.9777
B 0.4027
C 0.0500

Accuracy 0.9216
MAvG 0.2700

6.2 Experiment #1: Exploring di�erent algorithms
In this first experiment, we explore the use of di�erent ML algorithms for pros-

thetic hands movement classification task. The experiments are based on (ENGLEHART;
HUDGIN; PARKER, 2001). It consists of applying windows at 200ms with 100ms overlap,
feature extraction and classification. Two feature extraction algorithms and five classifi-
cation methods were employed.

The employed feature extraction algorithms are the Root Mean Square (RMS)
and the marginal Discrete Wavelet Transform (mDWT) (LUCAS et al., 2008), using a
db7 wavelet and 3 levels (Presented in Chapter 2). These features were chosen because
they present the best overall results in the NinaPro database experiments (ATZORI et
al., 2014; PIZZOLATO et al., 2017)

We used classifiers from two di�erent categories: Shallow and Deep architectures
(PASUPA; SUNHEM, 2016). The shallow architectures are Random Forests (RF), Sup-
port Vector Machines (SVM) (AL-TIMEMY et al., 2016; GEETHANJALI; RAY, 2015;
LUCAS et al., 2008; SHENOY et al., 2008; LIU; HUANG; WENG, 2007). The deep archi-
tectures consist of two Convolutional Neural Networks (CNN). The first network hereafter
referred to as eCNN, was trained using parameters chosen empirically by the author of
this dissertation. The second network, hereafter referred as NAS-CNN was trained using
a Neural Architecture Search (ZOPH; LE, 2016). It should be noted that in this work
we are using the deep architectures after the feature extraction approach, on the grounds
that (ATZORI; COGNOLATO; MÜLLER, 2016) shows that applying a CNN direct on
the EMG signal presents a bad result.



Chapter 6. Experiments 61

Table 6 presents the computational results for the four di�erent classifiers with
two di�erent feature extraction algorithms.

The experiments presented on table 6 allow us to answer the following questions:

1. Which classification algorithm is the best?

2. Which feature extraction algorithm is better?

It is important to remember that the experiments performed in this section are
based on (PIZZOLATO et al., 2017), using 41 classes from the NinaPro DB5 and building
a classification model for each individual using repetitions 1,3,4 and 6 for training and
repetitions 2 and 5 for testing.

First, the results using the NAS-CNN with RMS outperforms the results from
any other classification algorithm regardless of the feature extraction techniques with an
MAvG of 0.816. Although, analyzing the two di�erent feature extraction algorithms sep-
arately, using mDWT, the SVM outperforms the NAS-CNN most likely because creating
one model per subject the number of examples provided for the NAS-CNN algorithm was
not su�cient for it to find a good function approximation for the problem. On the other
hand, it is proven that the SVM performs well with low amount of data (FORMAN;
COHEN, 2004).

Although the results obtained are not directly comparable with (PIZZOLATO et
al., 2017) because of the evaluation metric. It is important to note that the experiment
using SVM with mDWT is equivalent to the best result obtained by (PIZZOLATO et al.,
2017). Which means that the NAS-CNN with RMS got better results than the current
state of the art.

Second, analyzing the results by feature extraction, it should be noted that re-
gardless of the machine learning algorithm used, the RMS always has the best MAvG.
Also, it is interesting that even though the RMS has less features (16 features), it gives a
better result than using the mDWT (48 features).

The feature extraction is one of the keys for a classifier to achieve a high classifi-
cation performance. We performed the Wilcoxon signed-rank test to evaluate if there is
statistical di�erence between the chosen features (RMS and mDWT). Surprisingly this
type of comparison has not been done before to the best of the authors knowledge. As-
suming that the two groups are identical as the null hypothesis and a two-sided level of
significance (– = 0.05), the test indicated that the MAvG for classification of movements
for prosthetic hand is significantly greater using RMS (Mdn = 0.764) than using mDWT
(Mdn = 0.712) (Z = 1367, p = 2.066E ≠ 18).
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Table 6 – Results for the subject dependent classifiers.

Class
Recall

RMS mDWT
RF SVM eCNN NAS RF SVM eCNN NAS

R 0.898 0.938 0.920 0.940 0.906 0.925 0.867 0.896
B1 0.653 0.799 0.846 0.882 0.697 0.836 0.818 0.837
B2 0.662 0.848 0.839 0.823 0.575 0.865 0.760 0.887
B3 0.800 0.832 0.870 0.848 0.769 0.832 0.810 0.863
B4 0.672 0.746 0.732 0.754 0.579 0.684 0.669 0.712
B5 0.758 0.789 0.804 0.874 0.644 0.791 0.660 0.717
B6 0.786 0.769 0.857 0.873 0.740 0.819 0.835 0.800
B7 0.744 0.858 0.856 0.863 0.746 0.942 0.772 0.822
B8 0.643 0.796 0.828 0.816 0.509 0.792 0.680 0.747
B9 0.653 0.778 0.744 0.803 0.513 0.733 0.672 0.752
B10 0.611 0.675 0.701 0.748 0.533 0.733 0.591 0.664
B11 0.506 0.712 0.729 0.754 0.452 0.664 0.606 0.636
B12 0.504 0.607 0.600 0.625 0.407 0.536 0.457 0.455
B13 0.737 0.765 0.783 0.851 0.707 0.756 0.658 0.720
B14 0.753 0.738 0.767 0.814 0.717 0.731 0.765 0.741
B15 0.785 0.812 0.899 0.963 0.759 0.753 0.741 0.767
B16 0.652 0.756 0.733 0.788 0.627 0.714 0.580 0.686
B17 0.825 0.744 0.778 0.829 0.685 0.739 0.685 0.737
C1 0.550 0.615 0.660 0.708 0.455 0.615 0.571 0.634
C2 0.500 0.650 0.716 0.773 0.437 0.606 0.569 0.635
C3 0.564 0.728 0.731 0.730 0.515 0.663 0.566 0.584
C4 0.709 0.729 0.781 0.889 0.698 0.773 0.663 0.866
C5 0.579 0.619 0.654 0.733 0.484 0.627 0.595 0.589
C6 0.736 0.773 0.784 0.869 0.711 0.706 0.659 0.705
C7 0.657 0.800 0.737 0.853 0.681 0.864 0.628 0.788
C8 0.706 0.759 0.805 0.817 0.588 0.823 0.726 0.746
C9 0.692 0.784 0.675 0.739 0.583 0.730 0.500 0.586
C10 0.515 0.645 0.760 0.842 0.570 0.674 0.595 0.775
C11 0.618 0.795 0.775 0.820 0.508 0.810 0.626 0.689
C12 0.661 0.661 0.795 0.862 0.504 0.667 0.663 0.699
C13 0.604 0.716 0.640 0.762 0.621 0.719 0.626 0.661
C14 0.600 0.706 0.725 0.718 0.597 0.737 0.653 0.674
C15 0.729 0.760 0.709 0.755 0.707 0.784 0.642 0.722
C16 0.679 0.780 0.685 0.760 0.616 0.757 0.575 0.621
C17 0.727 0.908 0.851 0.880 0.794 0.924 0.772 0.766
C18 0.721 0.806 0.732 0.810 0.652 0.815 0.629 0.714
C19 0.757 0.860 0.801 0.812 0.818 0.902 0.735 0.810
C20 0.844 0.860 0.869 0.870 0.839 0.873 0.861 0.816
C21 0.698 0.815 0.718 0.820 0.649 0.863 0.639 0.712
C22 0.889 0.891 0.886 0.953 0.873 0.901 0.816 0.840
C23 0.849 0.931 0.957 0.947 0.858 0.907 0.854 0.860

MAvG 0.681 0.765 0.770 0.816 0.629 0.764 0.671 0.724
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6.3 Experiment #2: Towards a subject independent model
Usually within the movement classification for hand prosthesis community, the

models are trained using machine learning algorithms for each subject at a time. i.e. one
model is trained and tested for each individual. This is deemed necessary by the commu-
nity as the di�erent placement of sensors and physiology of the subjects can compromise
the classification performance. Therefore, the usual approach is to train and test machine
learning classifiers per subject. However, in this work we believe that is possible to use
machine learning algorithms to build a subject independent model, i.e. a model which can
be used for any subject. For this reason, the motivation behind this second experiment
is to evaluate what happens when we use the traditional approach for movement classi-
fication using the data from the Ninapro DB5 with di�erent machine learning classifiers.
To the best of our knowledge, this type of experiment has never been done before, which
puzzles us, as it would make a lot of sense to build o� the shelves devices, rather than
buying a device and then having to train it in order to use it.

Table 7 presents the results experiment using the same classifiers and feature
extraction algorithms from Experiment #1 (Section 6.2). The main di�erence is that the
results presented on Table 7 are from using the movement classification regardless of the
individual, i.e. a subject independent model. It is expected to be more challenging than
subject dependent classification. It can be one of the reasons that, to the best of our
knowledge, it has not been done before.

The experiments presented on table 7 allow us to answer the following questions:

1. Which classification algorithm is the best?

2. Which feature extraction algorithm is better?

3. What is the di�erence between the subject dependent and subject independent
results?

The results using the NAS-CNN with RMS outperforms the results from the other
classifiers regardless of the feature extraction techniques with an MAvG of 0.705. Di�erent
from the results in Table 6, analyzing the algorithm’s performances using mDWT for a
subject independent model, the NAS-CNN achieves better MAvG than the SVM. This
happens because deep learning algorithms perform better when they have more data.

Analyzing the results by feature extraction, regardless of the machine learning al-
gorithm used, the RMS still always has the best MAvG compared to the mDWT. We
performed the Wilcoxon signed-rank test to evaluate if there is statistical di�erence be-
tween the chosen features (RMS and mDWT). Assuming that the two groups are identical
as the null hypothesis and a two-sided level of significance (– = 0.05), the test indicated
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Table 7 – Results for the subject independent classifiers.

Class
Recall

RMS mDWT
RF SVM eCNN NAS RF SVM eCNN NAS

R 0.855 0.834 0.897 0.856 0.818 0.715 0.898 0.916
B1 0.628 0.479 0.817 0.889 0.630 0.314 0.862 0.798
B2 0.575 0.397 0.796 0.785 0.460 0.293 0.703 0.726
B3 0.739 0.712 0.857 0.774 0.609 0.483 0.768 0.811
B4 0.570 0.444 0.670 0.789 0.467 0.204 0.582 0.707
B5 0.481 0.429 0.719 0.837 0.414 0.348 0.533 0.693
B6 0.655 0.538 0.743 0.903 0.617 0.378 0.673 0.786
B7 0.725 0.484 0.702 0.743 0.695 0.305 0.731 0.829
B8 0.457 0.263 0.703 0.730 0.425 0.227 0.543 0.632
B9 0.504 0.432 0.593 0.605 0.394 0.189 0.660 0.510
B10 0.543 0.466 0.626 0.630 0.472 0.291 0.566 0.483
B11 0.439 0.281 0.564 0.667 0.355 0.355 0.520 0.549
B12 0.448 0.333 0.500 0.569 0.359 0.214 0.338 0.440
B13 0.647 0.701 0.697 0.845 0.573 0.358 0.645 0.760
B14 0.742 0.519 0.631 0.762 0.621 0.228 0.621 0.703
B15 0.687 0.389 0.600 0.825 0.590 0.209 0.582 0.766
B16 0.594 0.477 0.667 0.691 0.561 0.301 0.610 0.574
B17 0.774 0.659 0.630 0.794 0.693 0.229 0.475 0.561
C1 0.431 0.410 0.538 0.619 0.371 0.266 0.421 0.485
C2 0.457 0.297 0.550 0.629 0.306 0.167 0.408 0.358
C3 0.346 0.289 0.448 0.626 0.409 0.269 0.412 0.532
C4 0.527 0.425 0.568 0.604 0.422 0.177 0.537 0.559
C5 0.490 0.377 0.489 0.608 0.362 0.284 0.372 0.469
C6 0.572 0.417 0.701 0.758 0.528 0.227 0.542 0.675
C7 0.459 0.405 0.556 0.762 0.400 0.272 0.529 0.634
C8 0.596 0.430 0.632 0.732 0.505 0.330 0.733 0.617
C9 0.540 0.272 0.538 0.557 0.455 0.233 0.494 0.559
C10 0.537 0.413 0.602 0.694 0.440 0.246 0.579 0.508
C11 0.491 0.459 0.511 0.512 0.360 0.110 0.389 0.493
C12 0.419 0.359 0.676 0.729 0.400 0.296 0.414 0.505
C13 0.400 0.299 0.546 0.575 0.418 0.098 0.442 0.544
C14 0.524 0.379 0.460 0.602 0.477 0.280 0.576 0.545
C15 0.660 0.432 0.629 0.770 0.582 0.241 0.584 0.653
C16 0.570 0.410 0.604 0.518 0.525 0.234 0.400 0.438
C17 0.675 0.438 0.647 0.775 0.624 0.346 0.577 0.555
C18 0.609 0.500 0.542 0.684 0.496 0.289 0.509 0.473
C19 0.677 0.390 0.723 0.744 0.636 0.381 0.705 0.699
C20 0.692 0.513 0.692 0.818 0.638 0.342 0.694 0.685
C21 0.604 0.340 0.492 0.649 0.533 0.208 0.349 0.589
C22 0.752 0.605 0.748 0.765 0.667 0.404 0.720 0.684
C23 0.806 0.531 0.720 0.804 0.701 0.320 0.750 0.704

MAvG 0.570 0.429 0.626 0.705 0.499 0.268 0.555 0.602
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that the MAvG for classification of movements for prosthetic hand is significantly greater
using RMS (Mdn = 0.602) than using mDWT (Mdn = 0.505) (Z = 599, p = 4.329E≠24).

Creating an independent model using the classic algorithms from the literature
to classify movements has lower MAvG compared to the results from Table 6. Although
adopting new approaches such as eCNN and NAS-CNN, we could achieve an MAvG for
a subject independent model close or even better than subject dependent models using
classic algorithms.

6.4 Experiment #3: Improving the results with Synthetic Samples
Considering the variability given by the sensors depending on the subject infor-

mation as well as the precise location where they are placed. In this third experiment we
are interested in investigating whether or not it is possible to improve the classification
results (for both subject-dependent classification as well as subject-independent classifi-
cation) using methods that automatically generates synthetic samples in order to balance
the database.

In this experiment, we used Synthetic Minority Over-Sampling Technique (SMOTE)
and its variation known as SMOTE-SVM (Presented in Chapter 2), to resample our data
in order to decrease the imbalance ratio of the original data set. It follows the same proto-
col as Section 6.2, with the di�erence that we have more data, since we generated synthetic
examples for each class using the SMOTE algorithm with the standard hyper-parameters
from (LEMAÎTRE; NOGUEIRA; ARIDAS, 2017) implementation.

Section 6.4.1, presents the results using SMOTE and SMOTE-SVM for the subject
dependent approach, i.e. train and test one classification model for each subject. Section
6.4.2, presents the results using SMOTE and SMOTE-SVM for the subject independent
approach, i.e. train and test one classification model for all subjects.

6.4.1 SMOTE and SMOTE-SVM in a Subject Dependent Approach

Tables 8 and 9 present the computational results for the four di�erent classifiers
with two di�erent feature extraction algorithms. The results allow us to answer the fol-
lowing questions:

1. Which classification algorithm is the best?

2. Which feature extraction algorithm is better?

3. Does using SMOTE improve the results?
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In regard to Table 8, the results using the NAS-CNN with RMS still outperforms
the results from other classification algorithm regardless of the feature extraction tech-
niques with an MAvG of 0.818. Comparing the results in Table 8 using SMOTE with the
results on Table 6, we noticed that the synthetic oversampling using SMOTE substan-
tially increased the MAvG for the Random Forests and NAS-CNN algorithms, improving
it in an average of 6.05% and 3.20%, respectively, despite of the feature extraction used.

Analyzing Table 9, the outcome using the NAS-CNN with RMS has better results
than any other classification algorithm presented in this dissertation, regardless of the
feature extraction techniques with an MAvG of 0.831. Observing the results on Table 9, we
also noticed that the synthetic oversampling using SMOTE-SVM considerably increased
the MAvG for all classification algorithms.

A Wilcoxon signed-rank test shows that there is statistical di�erence between
the chosen features (RMS and mDWT) for using SMOTE and SMOTE-SVM. Assum-
ing that the two groups are identical as the null hypothesis and a two-sided level of
significance (– = 0.05), the test indicated that the MAvG for classification of move-
ments for prosthetic hand is significantly greater using RMS (MdnSMOT E = 0.774 and
MdnSMOT E≠SV M = 0.791) than using mDWT (MdnSMOT E = 0.752 and MdnSMOT E≠SV M =
0.773) (ZSMOT E = 5209, pSMOT E = 1.063E≠02 and ZSMOT E≠SV M = 4154, pSMOT E≠SV M =
2.784E ≠ 05).

To evaluate if the improvements on the results with and without SMOTE and
SMOTE-SVM are statistically significant, we performed a Friedman test. The test shows
that there is a statistically significant di�erence between using or not using the SMOTE
and SMOTE-SVM, ‰

2(2) = 170.140, p = 1.1336E ≠ 37. Post hoc analysis with Wilcoxon
signed-rank tests was conducted with a Bonferroni correction applied, resulting in a sig-
nificance level set at p < 0.017. There are significant di�erences between the noSMOTE
and SMOTE results (Z = ≠7.594, p = 3.0906E ≠ 14), the noSMOTE and SMOTE-SVM
(Z = ≠11.813, p = 3.3306E ≠ 32), and the SMOTE and SMOTE-SVM (Z = ≠7.217,
p = 5.2991E ≠ 13).

Although the di�erence between the results seems small, using SMOTE-SVM is
significantly better than using SMOTE or not using any synthetic algorithms for a subject
dependent approach.

6.4.2 SMOTE and SMOTE-SVM in a Subject Independent Approach

In this section, Tables 8 and 9 present the computational results for three classi-
fiers, such as Random Forest, eCNN and NAS-CNN, with two di�erent feature extraction
algorithms, RMS and mDWT. The results allow us to answer the following questions:

1. Which classification algorithm has the best classification performance?
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Table 8 – Results for subject dependent classifiers using SMOTE

Class
Recall

RMS mDWT
RF SVM eCNN NAS RF SVM eCNN NAS

R 0.805 0.760 0.763 0.780 0.797 0.750 0.704 0.732
B1 0.788 0.841 0.850 0.938 0.782 0.847 0.942 0.875
B2 0.768 0.848 0.825 0.864 0.730 0.881 0.896 0.865
B3 0.813 0.832 0.847 0.850 0.806 0.831 0.912 0.864
B4 0.710 0.736 0.756 0.793 0.620 0.689 0.748 0.797
B5 0.679 0.768 0.804 0.854 0.649 0.789 0.701 0.863
B6 0.710 0.756 0.830 0.933 0.772 0.819 0.852 0.874
B7 0.802 0.872 0.860 0.878 0.842 0.931 0.817 0.867
B8 0.709 0.804 0.777 0.825 0.632 0.806 0.764 0.776
B9 0.679 0.769 0.780 0.819 0.669 0.729 0.832 0.797
B10 0.661 0.694 0.658 0.718 0.631 0.740 0.686 0.817
B11 0.718 0.711 0.733 0.819 0.610 0.669 0.629 0.707
B12 0.575 0.619 0.598 0.642 0.538 0.526 0.464 0.524
B13 0.748 0.772 0.786 0.817 0.745 0.758 0.685 0.778
B14 0.723 0.745 0.676 0.853 0.750 0.731 0.725 0.820
B15 0.776 0.852 0.873 0.925 0.707 0.773 0.753 0.914
B16 0.683 0.739 0.701 0.784 0.651 0.723 0.654 0.679
B17 0.750 0.748 0.705 0.837 0.742 0.752 0.737 0.739
C1 0.624 0.611 0.622 0.729 0.555 0.604 0.697 0.734
C2 0.620 0.673 0.728 0.782 0.566 0.603 0.606 0.669
C3 0.626 0.698 0.748 0.816 0.551 0.673 0.649 0.755
C4 0.647 0.729 0.721 0.869 0.728 0.780 0.726 0.728
C5 0.598 0.673 0.643 0.669 0.570 0.648 0.643 0.694
C6 0.733 0.770 0.769 0.860 0.723 0.706 0.745 0.815
C7 0.798 0.781 0.789 0.867 0.716 0.857 0.839 0.862
C8 0.737 0.791 0.807 0.787 0.722 0.833 0.869 0.823
C9 0.809 0.745 0.830 0.779 0.810 0.794 0.708 0.786
C10 0.658 0.633 0.669 0.739 0.638 0.679 0.677 0.739
C11 0.638 0.793 0.721 0.772 0.679 0.817 0.730 0.748
C12 0.628 0.669 0.706 0.812 0.689 0.667 0.682 0.773
C13 0.620 0.729 0.650 0.757 0.670 0.726 0.658 0.684
C14 0.638 0.712 0.722 0.824 0.682 0.739 0.762 0.795
C15 0.762 0.752 0.754 0.804 0.810 0.823 0.795 0.827
C16 0.758 0.771 0.678 0.767 0.735 0.789 0.670 0.694
C17 0.824 0.903 0.809 0.890 0.788 0.922 0.845 0.874
C18 0.788 0.812 0.788 0.815 0.753 0.824 0.787 0.803
C19 0.827 0.859 0.800 0.807 0.804 0.916 0.871 0.852
C20 0.908 0.860 0.852 0.881 0.884 0.873 0.850 0.913
C21 0.765 0.796 0.782 0.826 0.722 0.863 0.675 0.771
C22 0.856 0.890 0.825 0.927 0.875 0.913 0.859 0.868
C23 0.897 0.924 0.878 0.924 0.884 0.907 0.829 0.893

MAvG 0.724 0.763 0.755 0.818 0.707 0.767 0.742 0.786
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Table 9 – Results for subject dependent classifiers using SMOTE-SVM

Class
Recall

RMS mDWT
RF SVM eCNN NAS RF SVM eCNN NAS

R 0.809 0.774 0.798 0.809 0.804 0.762 0.756 0.795
B1 0.827 0.841 0.872 0.857 0.848 0.881 0.856 0.894
B2 0.785 0.862 0.857 0.898 0.775 0.858 0.896 0.860
B3 0.862 0.854 0.861 0.923 0.845 0.840 0.929 0.922
B4 0.730 0.790 0.765 0.779 0.696 0.732 0.686 0.776
B5 0.778 0.814 0.816 0.900 0.762 0.809 0.670 0.789
B6 0.854 0.819 0.819 0.952 0.754 0.838 0.864 0.887
B7 0.891 0.889 0.858 0.846 0.789 0.933 0.855 0.883
B8 0.676 0.787 0.779 0.845 0.561 0.772 0.750 0.782
B9 0.635 0.797 0.846 0.846 0.634 0.766 0.781 0.784
B10 0.697 0.707 0.705 0.784 0.688 0.775 0.757 0.820
B11 0.669 0.697 0.752 0.798 0.631 0.724 0.735 0.748
B12 0.570 0.634 0.609 0.644 0.516 0.546 0.477 0.582
B13 0.766 0.795 0.860 0.839 0.736 0.763 0.788 0.805
B14 0.778 0.783 0.786 0.873 0.733 0.776 0.789 0.785
B15 0.745 0.865 0.919 0.918 0.855 0.781 0.839 0.897
B16 0.738 0.773 0.762 0.800 0.708 0.741 0.627 0.721
B17 0.817 0.772 0.824 0.806 0.798 0.750 0.752 0.807
C1 0.593 0.639 0.663 0.800 0.600 0.604 0.620 0.739
C2 0.593 0.652 0.750 0.768 0.507 0.650 0.628 0.701
C3 0.576 0.733 0.796 0.812 0.617 0.740 0.664 0.740
C4 0.707 0.729 0.789 0.782 0.724 0.761 0.735 0.882
C5 0.600 0.692 0.720 0.676 0.550 0.664 0.588 0.728
C6 0.713 0.792 0.794 0.901 0.697 0.742 0.771 0.820
C7 0.712 0.827 0.869 0.857 0.758 0.848 0.848 0.857
C8 0.773 0.750 0.829 0.825 0.706 0.843 0.798 0.835
C9 0.773 0.712 0.743 0.882 0.698 0.796 0.775 0.758
C10 0.705 0.699 0.764 0.824 0.682 0.669 0.764 0.746
C11 0.731 0.800 0.750 0.843 0.723 0.803 0.769 0.896
C12 0.681 0.702 0.802 0.852 0.676 0.686 0.736 0.758
C13 0.660 0.760 0.766 0.831 0.624 0.757 0.642 0.791
C14 0.675 0.732 0.754 0.758 0.726 0.756 0.772 0.779
C15 0.755 0.783 0.763 0.767 0.739 0.815 0.773 0.855
C16 0.738 0.767 0.727 0.786 0.673 0.794 0.727 0.761
C17 0.844 0.883 0.856 0.866 0.837 0.893 0.897 0.909
C18 0.769 0.796 0.768 0.848 0.771 0.818 0.779 0.796
C19 0.843 0.859 0.833 0.841 0.853 0.918 0.881 0.890
C20 0.938 0.885 0.837 0.900 0.858 0.874 0.770 0.868
C21 0.776 0.785 0.748 0.819 0.689 0.875 0.743 0.868
C22 0.938 0.937 0.863 0.904 0.910 0.919 0.872 0.917
C23 0.916 0.918 0.958 0.910 0.921 0.924 0.901 0.880

MAvG 0.741 0.779 0.793 0.831 0.717 0.780 0.756 0.809
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2. Which feature extraction algorithm is better?

3. Does using SMOTE improve the results?

The increase in the number of examples for training, due to the synthetic instances,
requires more processing and may require a longer run-time for some classification algo-
rithms, as was the case with SVM. The main limitation of this algorithm for large amount
of data is the need to compare each pair of examples for each characteristic of the prob-
lem. This comparison demands an exponential increase in the number of processes as the
number of training examples increases. The training time complexity of SVM is O(n3)
and its space complexity is at least quadratic (ABDIANSAH; WARDOYO, 2015).

Table 10 shows that the results using the NAS-CNN with RMS performs bet-
ter than any other subject-independent-classification algorithm, regardless of the feature
extraction techniques, with an MAvG of 0.731.

Comparing the results in Table 10 with the results on Table 7, we observed that
using the SMOTE increased the MAvG for the Random Forests and NAS-CNN algo-
rithms, improving it in an average of 12.25% and 3.80%, respectively, despite of the
feature extraction used. Analyzing Table 11, the outcome using the NAS-CNN with RMS
and SMOTE-SVM shows even better results for a subject independent model, achieving
an MAvG of 0.735.

A Wilcoxon signed-rank test shows that there is statistical di�erence between
the chosen features (RMS and mDWT) for using SMOTE and SMOTE-SVM. Assum-
ing that the two groups are identical as the null hypothesis and a two-sided level of
significance (– = 0.05), the test indicated that the MAvG for classification of move-
ments for prosthetic hand is significantly greater using RMS (MdnSMOT E = 0.676 and
MdnSMOT E≠SV M = 0.695) than using mDWT (MdnSMOT E = 0.621 and MdnSMOT E≠SV M =
0.646) (ZSMOT E = 595, pSMOT E = 4.574E≠16 and ZSMOT E≠SV M = 1310, pSMOT E≠SV M =
4.431E ≠ 10).

We performed a Friedman test in order to evaluate if the improvements on the
results with and without SMOTE and SMOTE-SVM are statistically significant. The
test shows that there is a statistically significant di�erence between using or not using
the SMOTE and SMOTE-SVM, ‰

2(2) = 86.780, p = 1.432E ≠ 19. Post hoc analysis with
Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied, resulting
in a significance level set at p < 0.017. There are significant di�erences between the
noSMOTE and SMOTE results (Z = ≠7.203, p = 5.8804E ≠ 13), the noSMOTE and
SMOTE-SVM (Z = ≠8.813, p = 3.3306E ≠ 32), and the SMOTE and SMOTE-SVM
(Z = ≠3.152, p = 1.62E ≠ 03).

Observing the results in Tables 9 to 11, we noticed that the synthetic oversampling
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using SMOTE-SVM considerably increased the MAvG for all classification algorithms.
Even though the results obtained are not directly comparable with (PIZZOLATO et al.,
2017) because they use a di�erent evaluation metric and a subject dependent approach.
It is important to observe that the experiments using SMOTE in a subject independent
model, achieve results very close to the current state-of-the-art using a subject dependent
model. This means that we have been able to create a user-independent prosthetic control
model with almost the same precision as a user-dependent system that the user would
need to spend hours training before starting using the prosthesis.
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Table 10 – Results for subject independent classifiers using SMOTE

Class
Recall

RMS mDWT
RF eCNN NAS RF eCNN NAS

R 0.758 0.820 0.728 0.715 0.684 0.700
B1 0.762 0.734 0.912 0.745 0.780 0.863
B2 0.732 0.713 0.807 0.653 0.670 0.798
B3 0.824 0.764 0.912 0.746 0.776 0.841
B4 0.697 0.653 0.773 0.572 0.547 0.776
B5 0.688 0.568 0.796 0.602 0.709 0.779
B6 0.669 0.699 0.783 0.645 0.667 0.735
B7 0.761 0.695 0.850 0.759 0.689 0.816
B8 0.623 0.643 0.753 0.574 0.576 0.634
B9 0.633 0.594 0.743 0.547 0.581 0.692
B10 0.576 0.611 0.720 0.558 0.516 0.580
B11 0.576 0.570 0.686 0.570 0.442 0.605
B12 0.554 0.434 0.578 0.467 0.412 0.454
B13 0.684 0.614 0.760 0.705 0.646 0.752
B14 0.760 0.772 0.793 0.667 0.673 0.728
B15 0.677 0.692 0.820 0.640 0.571 0.687
B16 0.678 0.571 0.637 0.639 0.524 0.619
B17 0.783 0.731 0.748 0.732 0.595 0.601
C1 0.579 0.495 0.703 0.583 0.439 0.557
C2 0.496 0.469 0.670 0.400 0.412 0.434
C3 0.543 0.467 0.657 0.490 0.467 0.522
C4 0.663 0.513 0.664 0.591 0.466 0.612
C5 0.557 0.504 0.632 0.521 0.483 0.540
C6 0.708 0.662 0.790 0.654 0.576 0.712
C7 0.734 0.548 0.729 0.703 0.535 0.649
C8 0.733 0.596 0.683 0.716 0.652 0.626
C9 0.640 0.491 0.586 0.600 0.513 0.530
C10 0.571 0.574 0.698 0.587 0.385 0.625
C11 0.618 0.529 0.667 0.576 0.443 0.533
C12 0.617 0.565 0.692 0.565 0.440 0.673
C13 0.616 0.542 0.625 0.556 0.385 0.542
C14 0.650 0.611 0.723 0.577 0.533 0.618
C15 0.795 0.636 0.740 0.761 0.629 0.759
C16 0.713 0.554 0.661 0.620 0.457 0.516
C17 0.772 0.667 0.829 0.775 0.603 0.781
C18 0.671 0.623 0.655 0.696 0.611 0.621
C19 0.780 0.669 0.800 0.763 0.718 0.783
C20 0.841 0.626 0.815 0.787 0.703 0.746
C21 0.641 0.528 0.676 0.670 0.393 0.608
C22 0.796 0.642 0.840 0.753 0.632 0.706
C23 0.894 0.720 0.818 0.880 0.682 0.755

MAvG 0.679 0.606 0.731 0.635 0.555 0.652
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Table 11 – Results for subject independent classifiers using SMOTE-SVM

Class
Recall

RMS mDWT
RF eCNN NAS RF eCNN NAS

R 0.740 0.807 0.836 0.731 0.734 0.721
B1 0.773 0.820 0.859 0.709 0.797 0.776
B2 0.701 0.761 0.817 0.619 0.781 0.727
B3 0.836 0.748 0.941 0.762 0.833 0.847
B4 0.707 0.705 0.775 0.607 0.595 0.705
B5 0.703 0.704 0.812 0.660 0.630 0.744
B6 0.722 0.747 0.827 0.633 0.667 0.810
B7 0.739 0.750 0.832 0.775 0.784 0.811
B8 0.598 0.620 0.828 0.565 0.559 0.702
B9 0.632 0.747 0.833 0.564 0.650 0.664
B10 0.631 0.562 0.752 0.538 0.464 0.676
B11 0.598 0.558 0.703 0.563 0.504 0.758
B12 0.521 0.509 0.670 0.488 0.387 0.437
B13 0.768 0.766 0.579 0.697 0.594 0.687
B14 0.760 0.627 0.778 0.732 0.811 0.790
B15 0.711 0.611 0.822 0.713 0.590 0.722
B16 0.667 0.604 0.688 0.629 0.619 0.576
B17 0.717 0.640 0.870 0.712 0.595 0.638
C1 0.591 0.533 0.679 0.570 0.472 0.534
C2 0.565 0.475 0.636 0.500 0.420 0.636
C3 0.510 0.529 0.580 0.426 0.511 0.544
C4 0.623 0.571 0.816 0.604 0.553 0.706
C5 0.559 0.476 0.608 0.564 0.479 0.515
C6 0.698 0.789 0.773 0.658 0.545 0.605
C7 0.658 0.625 0.698 0.690 0.509 0.653
C8 0.664 0.669 0.810 0.628 0.726 0.726
C9 0.706 0.598 0.822 0.667 0.549 0.608
C10 0.550 0.578 0.693 0.556 0.482 0.688
C11 0.600 0.522 0.603 0.651 0.504 0.673
C12 0.630 0.564 0.557 0.646 0.450 0.639
C13 0.674 0.619 0.788 0.640 0.562 0.580
C14 0.577 0.535 0.689 0.603 0.525 0.602
C15 0.795 0.605 0.629 0.775 0.626 0.639
C16 0.695 0.612 0.758 0.570 0.477 0.507
C17 0.805 0.662 0.849 0.754 0.687 0.677
C18 0.676 0.580 0.564 0.659 0.683 0.656
C19 0.772 0.707 0.599 0.715 0.677 0.786
C20 0.811 0.775 0.870 0.802 0.627 0.746
C21 0.648 0.512 0.583 0.647 0.470 0.587
C22 0.761 0.711 0.775 0.761 0.720 0.761
C23 0.838 0.787 0.845 0.883 0.750 0.768

MAvG 0.676 0.635 0.735 0.644 0.589 0.667
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6.5 Experiment #4: Improving the results with additional sensors
The results of the previous experiments show that the use of NAS-CNN is the

best option for a subject independent classification approach using EMG signals. The
use of SMOTE-SVM improves the classifier’s performance but there is still room for
improvements. In this section we perform experiments using the NAS-CNN with RMS
using the all data from the Ninapro dataset. As stated in Section 6.1.1, additional sensors
from a CyberGlove II were captured along with the EMG during the Ninapro DB5’s
acquisition protocol. We conduct experiments comparing the classification performance
between the Ninapro DB5 using only EMG data and the Ninapro DB5 using EMG and
CyberGlove II.

In this experiment we included 25 additional data signals to the EMG signal from
the Ninapro DB5, having a total of 41 channels. This additional data was collected by
Pizzolato et al. (2017) using a CyberGlove II, with 22 flex sensors and a 3-axis accelerom-
eter. We performed the RMS feature extraction in all sensors. Subsequently, we trained
the NAS-CNN algorithm with this data, achieving an MAvG of 0.884, an improvement
of 20% compared to the results from Experiment #3. We then applied SMOTE-SVM in
the new data and one more time, trained the NAS-CNN to classify the 41 di�erent move-
ments. The obtained results were better than the results from the previous experiments.
Table 12 presents the recall per class for each dataset using NAS-CNN with RMS as the
classifier.
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Table 12 – Results for subject independent classifier NAS-CNN using RMS as feature
extraction. The first column presents the results using NAS-CNN with RMS
from Table 11; The second column present the experiments using EMG and
the CyberGlove II; The third column shows the experiments using EMG and
CyberGlove II with syntethic examples from SMOTE-SVM.

Class
Recall

EMG
SMOTE-SVM EMG+GLOVE EMG+GLOVE

SMOTE-SVM
R 0.836 0.945 0.752
B1 0.859 0.938 0.992
B2 0.817 0.872 1.000
B3 0.941 0.932 0.957
B4 0.775 0.956 0.942
B5 0.812 0.814 0.893
B6 0.827 0.917 0.980
B7 0.832 0.982 0.991
B8 0.828 0.737 0.956
B9 0.833 0.822 0.850
B10 0.752 0.884 0.885
B11 0.703 0.737 0.930
B12 0.670 0.734 0.762
B13 0.579 0.978 0.825
B14 0.778 0.928 0.932
B15 0.822 0.988 0.978
B16 0.688 0.724 0.804
B17 0.870 0.857 0.912
C1 0.679 0.927 0.939
C2 0.636 0.764 0.930
C3 0.580 0.895 0.956
C4 0.816 0.835 0.928
C5 0.608 0.835 0.921
C6 0.773 0.927 0.972
C7 0.698 0.960 0.970
C8 0.810 0.963 0.965
C9 0.822 0.878 0.966
C10 0.693 0.875 0.973
C11 0.603 0.800 0.875
C12 0.557 0.875 0.944
C13 0.788 0.849 0.878
C14 0.689 0.827 0.950
C15 0.629 0.977 0.930
C16 0.758 0.927 0.917
C17 0.849 0.969 0.963
C18 0.564 0.956 0.932
C19 0.599 0.932 0.969
C20 0.870 0.952 0.967
C21 0.583 0.855 0.930
C22 0.775 0.906 0.967
C23 0.845 0.959 0.968

MAvG 0.735 0.884 0.926
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7 Prototype Development

Due to the elevated cost of the data capture devices and the few options of sensors,
such as CyberGlove II, one of the goals of this project is to develop a low-cost hand
movement data acquisition device. Resulting in capturing acceleration, orientation, finger
joint angles, proximity of each finger to an object, and physical pressure on each finger
while grasping an object for example.

7.1 System Overview
Figure 20 presents an overview of the system. The system is composed of two

parts: A sensor unit, which is a glove with sensors to capture movements which is worn
by the user, and a base unit which is positioned on the individual’s forearm for signal
processing and store data locally.

BASE UNIT

EMG SENSORS

SENSOR UNIT

Figure 20 – Overview of the system

The base unit contains a computing platform, a battery, a battery charger circuit,
and the circuits required for proper acquisition of sensor data. The data is organized and
saved in a Comma Separated Value (CSV) file.

In order to optimize the weight distribution, the base unit is fixed in the indi-
vidual’s forearm as shown in Figure 20. The EMG sensor is placed over the muscles:
Flexor Digitorum Superficialis, Flexor Carpi Radialis, Extensor Carpi Radialis Longus as
recommended by Keating (2013) and Thalmic Labs (2016b), the device’s manufacturer.

Figure 21 illustrates the components in the sensor unit. The main role of the sensor
unit is to keep the sensors in place and wire them to the base unit.
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FLEX SENSOR

INERTIAL
MOVEMENT
UNIT

PROXIMITY
SENSOR

FORCE
SENSITIVE
RESISTOR

Figure 21 – Sensor Unit Overview

7.1.1 Project Specifications

The device must be robust to be used in research experiments. In order to assure
quality in the experiments, requirements must be completed such as: sensors must be
integrated into the system; in order to collect more natural movements inside and outside
the laboratory, the system must be lightweight and operable for a long period of time.
These are some examples of the project’s specific requirements we set for our device. The
full list of requirements and requirement achievements are available in Appendix ??, Table
13.

7.2 Hardware Implementation

7.2.1 Electronic Design

This section presents the choices made for the electronic design including sensor
selection and PCB layout.

7.2.1.1 Computing Platform

The Intel Edison was chosen to be our processor. It has a 22nm Intel SoC that
includes a dual-core Intel Atom CPU at 500 MHz and a 32-bit Intel Quark microcontroller
(MCU) at 100 MHz. The main advantage of having a MCU is that the data can be pre-
processed in it and then delivered to the CPU for heavier processing.

The Intel Edison includes a 1 GB LPDDR3 POP memory, 4 GB eMMC storage,
Wi-Fi dual-band and Bluetooth 4.0 integrated (INTEL CORPORATION, 2014). One of
the main advantage of the Intel Edison is that it includes all this features with a very low
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power consumption.

We chose an Arduino Breakout Board to be used with the Edison. This break-
out board is designed to be hardware and software pin-compatible with Arduino shields
designed for the Arduino Uno R3. The board also has a microSD card slot, micro USB
connector, USB 2.0 Host connector and many others features as seen on Figure 22.

Figure 22 – Intel Edison kit for Arduino block diagram

Source – Intel Corporation (2015b)

7.2.1.2 Electromyography Sensor

Since our goal is to create a low-cost device, we chose the Myo Armband as our
EMG sensor. The Myo Armband is an intelligent armband for gesture control. It detects
motion in two ways: muscle activity and motion sensing (NUWER, 2013).

As seen on Thalmic Labs (2016a), the Myo Armband uses Bluetooth 4.0 Low
Energy to communicate with other devices. It has on-board rechargeable Lithium-Ion
batteries and an ARM Cortex M4 Processor. Its sensors are eight Medical Grade Stain-
less Steel EMG surface electrodes, and highly sensitive nine-axis IMU with three-axis
gyroscope, three-axis accelerometer, and three-axis magnetometer, making it the perfect
candidate as our EMG/IMU sensor, costing only $200.

7.2.1.3 FSR, Flex and Proximity Sensors

As seen in section 7.1, our device is completely customized for our application.
Therefore, for the sensors that are attached to the glove, we chose to create our own
circuits. Being able to fully customize the sensors for our device.

As the FSR, we chose the Interlink Electronics FSR402, a force sensitive resistor
that can measure from 0.1 to 1002 Newtons of force (ELECTRONICS, 2015). The flex
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sensor was the Spectra Symbol FS-L-0055-253-ST, measuring angular displacements from
0 to 180 degrees (SPECTRA SYMBOL, 2014). We chose the Vishay VCNL4040 as our
proximity sensor. It is a tiny sensor (4.0mm x 2.0mm x 1.1mm) which detects objects
within a range of 200mm (VISHAY SEMICONDUCTORS, 2015).

7.2.2 Printed Circuit Board Design

We first designed a wiring diagram, presented on Figure 23, of how the hardware
is connected, including the communication protocols used.

Figure 23 – Overview of the hardware connection

In order to translate the connections presented on Figure 23 with fidelity to our
system, we designed a printed circuit board (PCB), hereafter referred to as base board.
Due to the dimensions of the proximity sensors, we had to design a specific breakout
board for it. This breakout board gives access to the I

2
C, V cc and GND pins.

The base board is the most important part of the system. This board contains
signal conditioning, analog to digital converters, multiplexers and power supply circuits
to have a high-fidelity data acquisition from all sensors. It has the shape of an Arduino
Uno Shield to better fit the Intel Edison Arduino Expansion Board pins.

Figure 24 presents the PCBs for the proximity breakout board and the base board.

For a better understanding of the circuits, the electric schematics are shown on
Appendix B.

7.2.3 Mechanical Design

In the design process for the sensor unit, we opt to use a glove made out of cotton.
The sensors slide into pockets sew on the glove. This pocket approach is useful because
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Figure 24 – Overview of base board and proximity sensor breakout board

it facilitates the removal of the sensors for eventual repairs.

An enclosure box was designed to fit all the components used in this project. It
was designed using the software Solidworks (Figure 25) and printed in a 3D printer.

Figure 25 – 3D Printed Box

7.3 Software Implementation

7.3.1 Operating System

The Edison Module combines a dual-core Atom processor running Yocto Linux
at 500MHz with an Intel’s MCU Quark processor clocked at 100MHz. The Quark co-
processor runs Viper RTOS, a real-time operating system (INTEL CORPORATION,
2015a).

The Yocto Project is a collaborative open-source project that provides templates,
tools and methods to assist in the creation of Linux-based systems for embedded systems,
regardless of the hardware architecture used (PROJECTS, 2016). Viper provides basic OS
function support, including thread scheduling, memory management, interrupt dispatch,
and more. The MCU is a separate CPU that handles the interface with the outside world.
The advantage of the Intel Edison OS is that we can ignore this separation because the
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main CPU (Intel Atom) communicates with the MCU by itself as can be seen in Figure
26.

Figure 26 – CPU + MCU Integration

Source – Intel Corporation (2015a)

7.3.2 Application

This section focuses on the design of the application that controls our device. It
handles all calculations, peripheral communication, sensor integration and data storing.

The software was coded in Node.js because of its support with the package Noble1.
It is a package for writing programs that interact with Bluetooth Low Energy devices,
making it possible to communicate the Intel Edison with the Myo Armband.

The algorithm first initializes the variables and defines the GPIOs that are be
used, then it configures the I

2
C, analog ports and connects via Bluetooth with the Myo

Armband. The system waits for the user to press the record button to start recording the
sensor’s data in a CSV file. To stop recording, the user needs to press the stop button.
After the system finishes recording each movement, it waits for the user to press the record
button again, making process of the data collection more e�cient. Figure 27 illustrates
the flow of the system.

7.4 Results
In this section we discuss the outcomes of our prototype. A multi-modal data

capture device was especially designed to record hand movement data following the spec-
ifications established by the author (Figure 28).
1 <https://github.com/sandeepmistry/noble>
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Figure 27 – Activity diagram

Figure 28 – Final prototype. This picture shows the final configuration of the device. All
principal electric components were placed in the 3d printed box to protect
the equipment from sweat contact.
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Table 13 – Comparison of project’s requirements and prototype’s achievements

Number Name Description Threshold Objective Completed
MECHANICAL

M001 Overall size
Overall dimensional
constraints of the
device

Fit into ski glove Fit into golf/driving glove XDriving Glove

Sensor size
Dimensional limits on
any single finger or
palm sensor

25 x 13mm 20 x 8mm X< 20 x 8mm

Base unit size External controller
unit size 145mmx70mmx80mm 70mmx60mmx20mm X

POWER
P001 Op Voltage Operating voltage DC <14.4V X7.4V
P002 Battery life Battery life for

100% operation 10 hours (continuous) 24 hours (continuous) X¥ 25 hours (continuous)
P003A1 Charging Charge time <5 Hours <3 Hours X2.5 hours
P003A2 Charge cable USB Wireless standard compliant XMiniUSB
P003B Replacement Replaceable battery

option Commercially available XLi-Ion Batteries
ELECTRICAL

E001 µP µP Capabilities
and Speed

Su�cient to meet sensor
requirements and processing
at 100ms intervals

Su�cient to meet sensor
requirements and processing
at 50ms intervals

XIntel Edison @ 5ms

E002 Connectors Connectorization of
sensors and wiring

All sensors shall be
connectorized for easy
repair/replacement

XMolex connectors

DATA

D001 Finger sensor range Distance to detect
object 3” 6” X7.8”

D002 Accelerometer Accelerometer
resolution +/-3g at 12 bit +/-3g at 14 bit X+/-3g at 12 bit

D003 Magnetometer 12 bit 14 bit X12 bit
D004 Gyro 12 bit 14 bit X12 bit
D005 Myo Data 2 Myo channels at 12 bit 2 Myo channels at 14 bit X8 channels at 12 bit
UI

UI001 Display
Representation of
recording state and
result of decision
making

LED indication of power,
recording,
and decision output,
at least 4 unique items

Character display XLED

UI002 Input
Ability to tag
data and
interface

Controls for power,
begin/end recording,
and 3 data event tags

Controls for power,
begin/end recording,
and six data event tags

XBegin/end recording

SOFTWARE
SW001 Language Common programming language XJavaScript
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The device was designed to be used in research experiments. For this reason, we
defined requirements for it. Table 13 shows the requirements recommended for the device
and how our design fulfills these requirements.

7.4.1 Costs

Since the purpose of our device is to be low-cost compared to the similar ones
available on the market, Table 14 shows a detailed price breakdown of our device.

Table 14 – Price breakdown of our device

Qty Description Price Total
2 Push Button $0.35 $0.70
1 Schottky Diode $0.33 $0.33
3 LED $0.17 $0.51
25 Capacitor $0.03 $0.75
18 Resistor $0.02 $0.36
15 Sensor Connector $0.25 $3.75
1 Multiplexer $0.62 $0.62
3 Power Connector $0.75 $2.25
2 Voltage Regulator $0.79 $1.58
4 Operational Amplifier $1.15 $4.60
1 Schmitt trigger $0.54 $0.54
1 I2C Multiplexer $1.51 $1.51
6 PCB Manufacturer $0.49 $2.94
1 Cotton Glove $5.00 $5.00
1 Myo Armband $200.00 $200.00
5 Flex Sensor $7.00 $35.00
5 FSR Sensor $7.00 $35.00
5 Proximity Sensor $1.63 $8.15
15 Wire $2.20 $33.00
2 Battery $14.95 $29.90
1 Battery Charger $12.50 $12.50
1 Intel Edison + Breakout $79.00 $79.00

Total $457.99

Comparing our device cost with products presented in Chapter 5, our glove has a
lower cost with virtually the same or better functionality. For instance, a CyberGlove II,
which to the best of our knowledge is the most used data glove in the literature consisting
of 22 flex sensors and an accelerometer, costs around $18, 000. Price-wise our device is
more than 39 times cheaper than the CyberGlove II and it has a broader number and
variety of sensors such as EMG, IMU, force and proximity sensors.
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7.5 Data Collection
Before starting the data collection task, we submitted the project to the Seattle

Pacific University Institutional Review Board (IRB), also known as ethical committee.
The data acquisition protocol was approved by the Seattle Pacific University IRB (IRB
number: 171801010).

In the data collection process, we recruited 5 subjects via email solicitations and
texts. Each subject was requested to give informed consent and to answer questions in-
cluding age, sex, height, weight and laterality. Afterwards, they were asked to wear the
data collection device, sit in at desk on an o�ce chair and comfortable rest the arms on the
desk. A screen was placed in front of them randomly showing the movements they should
perform. Each subject performed 6 repetitions of 21 grasping and functional movements,
including rest position. The set of movements were selected from Feix et al. (2016) with
the goal of replicating most of the activities of daily living (ADL), and are available at
Appendix C.

The database, hereafter referred to as Sensor Glove database (SGDB), contains
one csv file with synchronized variables for each subject. The variables included in the
files are:

• subject (1 column): subject id

• emg (16 columns): two samples of sEMG signal of 8 electrodes

• imu (10 columns): signal from the Myo armband’s IMU

• flex (5 columns): signal from the 5 flex sensors of our glove

• fsr (5 columns): signal from the 5 FSR sensors of our glove

• prox (5 columns): signal from the 5 proximity sensors of our glove

• repetition (1 column): repetition of the movement

• movement (1 column): movement id

Figure 29 presents the class distribution for all the subjects. Because the distribu-
tion in the data is not equal, we calculate the SGBD’s imbalance ratio:

IR = {0 : 1.07; 1 : 1.10; 2 : 1.22; 3 : 1.30; 4 : 1.11;

5 : 1.11; 6 : 1.22; 7 : 1.31; 8 : 1.24; 9 : 1.37;

10 : 1.23; 11 : 1.15; 12 : 1.16; 13 : 1.31; 14 : 1.16;

15 : 1.00; 16 : 1.24; 17 : 1.11; 18 : 1.21; 19 : 1.17; 20 : 1.32}
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Figure 29 – Class distribution for the Sensor Glove database. The vertical axis shows the
number of examples for all the subjects, the horizontal axis shows the class
identification number.

7.6 Low-cost sensor glove validation
This section aims to verify the functionalities of the proposed device. We performed

experiments using 20 movements + rest (i.e. 21 classes) from the SGDB. We applied the
algorithm NAS-CNN using RMS as a subject independent approach (Chapter 6, Section
6.3) in the SGDB using only EMG signals and in the SGDB using all 41 signals. It should
be noted that the results obtained using the SGDB cannot be direct compared with the
results from Chapter 6, because the SGDB’s data acquisition protocol di�ers from the
Ninapro DB5. The data from the Ninapro DB5 is submitted throughout several signal
processing steps such as: synchronization of the data using linear or nearest neighbor
interpolation; relabeling the data to perfect match only the performed movement, using
a generalize likelihood ratio algorithm; and filtering the data to remove noise.

Table 15 presents the recall for each movement and MAvG for each configuration of
the database. Analyzing the results using our device, it is noticeable that the classification
performance improved from MAvG = 0.370 using only EMG signals to MAvG = 0.581
using additional sensors. Proving that the use of additional sensors from our device along
with the EMG signal improves the classification performance.
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Table 15 – Results for the SGDB with EMG only and with all sensors. Using NAS-CNN
classifier with RMS as feature extraction in a subject independent approach.

Class
Recall

SGDB
EMG only SGDB

R 0.900 0.750
C1 1.000 0.938
C2 0.500 0.657
C3 0.387 0.778
C4 0.349 0.678
C5 0.762 0.761
C6 0.172 0.659
C7 0.111 0.240
C8 0.500 0.406
C9 0.312 0.318
C10 0.165 0.469
C11 0.429 0.732
C12 0.167 0.625
C13 0.750 0.410
C14 0.794 0.788
C15 0.200 0.560
C16 0.300 0.468
C17 0.243 0.581
C18 0.800 0.726
C19 0.102 0.486
C20 0.750 0.796

MAvG 0.370 0.581
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8 Concluding Remarks

This work presents new machine learning approaches in order to improve the
current results for classification of hand movements for prosthetic devices presented in
the literature. In addition, due to the high cost of data capture devices, we built a new
multi-sensor device for capturing hand movements. With this device we created a database
with 21 hand movements. Finally, we verified the functionalities of the device we proposed,
by comparing our database with the data from the Ninapro database, a database that
uses a setup similar to ours.

To the best of our knowledge, nearly all of the authors use accuracy to evaluate the
classification of hand movements, which is usually an imbalanced problem. We propose
the use of a metric called MAvG, which accounts each value representing the classification
performance for a specific class equally. It is also important to point out that most of the
authors do not specify whether they train one algorithm specifically for each subject or if
they train one algorithm for all subjects, we named that Subject Dependent and Subject
Independent approaches, respectively.

We performed experiments to evaluate how di�erent machine learning techniques
a�ect the results of the Ninapro DB5. The results using a subject dependent approach
shows significant improvements when deep learning techniques, more specifically convolu-
tional neural networks generated by a neural architecture search algorithm, are applied on
the Ninapro data. When these techniques are applied in a subject independent approach,
the results are worse, but considering that the classification model will be deployed in a
prosthetic hand, it will save the user the hassle of having to spend their time and money
training the prosthesis specifically for their use.

Considering the variability given by the sensors depending on the subject infor-
mation as well as the precise location where they are placed. We performed experiments
to investigate whether or not it is possible to improve the classification results (for both
subject-dependent and subject-independent approaches) using methods that automati-
cally generates synthetic samples in order to balance the database. The results show that
the use of synthetic samples to balance the database improve the classification perfor-
mance significantly. It is important to point out that using synthetic sampling and deep
learning techniques for a subject-independent approach, improves even more the classifica-
tion, achieving results very close to the current state-of-the-art using a subject dependent
model. This means that we have been able to create a user-independent prosthetic control
model with almost the same precision as a user-dependent system that the user would
need to spend hours training before starting using the prosthesis.
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Besides using only EMG signals, we suggest that the use of additional sensors along
with the EMG, improve the classification results. Applying the ML techniques proposed on
the previous experiments, using the Ninapro DB5 with the sensors from 2 Myo armbands
(16 EMG channels) and a CyberGlove II (22 flex sensors and a 3-axis accelerometer), we
were able to classify 92.6% of the movements correctly, proving that the use of additional
sensors help to improve the classification performance for hand movements. However, the
CyberGlove II has an extremely high price.

Thus, in order to find an alternative to the CyberGlove II, we created a low-cost
hand motion capture device. We performed tests using the SGDB, a database of hand
movements using the motion capture device created by the author of this dissertation.
The results for a subject-independent approach using NAS-CNN, shows that using our
device along with the EMG sensors from the Myo Armband, improves the classification
performance for classification of hand movements, showing that our glove is a viable
alternative to the CyberGlove II.
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APPENDIX A – Neural Networks
Architectures

We train the weights of our networks to minimize the cross-entropy between the
estimated class probabilities and the “true” distribution. Figure 30 shows the network ar-
chitecture, which consists of four layers, including a normalization layer, one convolutional
layer, one max-pooling layer and one fully connected layer.

Batch Normalization

Input planes 

16 x 1 

Normalized Input planes 

16 x 1 

Convolutional Feature Map 

filters: 16 

kernel_size: 16 

Max Pooling Layer

pool_size: 2

Fully connected layer 

Output: 41 classes 

Figure 30 – Neural Network Architecture for the eCNN trained with 500 epochs and
dropout rate of 0.2

The architectures generated by the NAS-CNN are presented on Table 16. It follows
the same architecture in Figure 30, changing the hyper-parameters: kernel_size, #filters,
pool_size and dropout rate.
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Table 16 – Neural Network Architectures generated by the NAS algorithm

RMS mDWT

Experiment Subject
Kernel

Size
Filters

Max

Pooling
Dropout Experiment Subject

Kernel

Size
Filters

Max

Pooling
Dropout

1

1 62 46 5 0.02

1

1 5 56 5 0.20
2 70 74 5 0.02 2 8 76 5 0.20
3 64 51 5 0.11 3 70 74 5 0.02
4 70 74 5 0.02 4 5 76 5 0.20
5 70 74 5 0.02 5 70 74 5 0.02
6 70 74 5 0.02 6 25 30 5 0.20
7 49 68 5 0.02 7 70 74 5 0.02
8 76 62 5 0.02 8 34 62 5 0.03
9 70 74 5 0.02 9 5 51 5 0.02
10 70 74 5 0.02 10 70 74 5 0.02

2 All 70 74 5 0.02 2 All 70 74 5 0.02

3

SMOTE

1 40 14 5 0.02 3

SMOTE
1 67 72 5 0.20

2 70 74 5 0.02 2 46 5 5 0.20
3 70 74 5 0.02 3 62 76 5 0.02
4 75 75 5 0.02 4 70 74 5 0.02
5 15 36 5 0.06 5 70 74 5 0.02
6 70 74 5 0.02 6 62 67 5 0.10
7 70 74 5 0.02 7 76 76 5 0.02
8 76 75 4 0.02 8 62 5 5 0.01
9 63 76 7 0.01 9 33 40 54 0.20
10 7 45 5 0.20 10 29 16 5 0.01

3

SMOTE

SVM

1 59 58 5 0.01

3

SMOTE

SVM

1 58 62 5 0.02
2 70 74 5 0.02 2 46 5 5 0.02
3 76 76 76 0.01 3 68 9 5 0.04
4 5 75 5 0.02 4 28 28 4 0.20
5 72 13 5 0.06 5 29 5 5 0.20
6 76 5 5 0.03 6 15 5 1 0.02
7 46 75 5 0.02 7 76 16 8 0.01
8 58 39 5 0.01 8 52 64 5 0.20
9 63 75 75 0.20 9 51 64 5 0.02
10 25 75 5 0.02 10 70 74 5 0.02

3

SMOTE
All 75 63 5 0.20 3

SMOTE
All 62 50 5 0.20

3

SMOTE

SVM

All 76 64 3 0.20
3

SMOTE

SVM

All 72 62 5 0.20
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APPENDIX B – Schematics
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APPENDIX C – Movements SGDB

The movements chosen for the SGDB were selected from Feix et al. (2016).



Mov. 
Id Name Picture Type Opp.Type Thumb 

Pos. 

1 Large 
Diameter 

 

Power Palm Abd 

2 Small 
Diameter 

 

Power Palm Abd 

3 Fixed 
Hook 

 

Power Palm Add 

4 
Index 
Finger 

Extension 

 

Power Palm Add 



Mov. 
Id Name Picture Type Opp.Type Thumb 

Pos. 

5 Medium 
Wrap 

 

Power Palm Abd 

6 Ring 

 

Power Pad Abd 

7 Prismatic 
4 Finger 

 

Precision Pad Abd 

8 Stick 

 

Intermediate Side Add 



Mov. 
Id Name Picture Type Opp.Type Thumb 

Pos. 

9 Writing 
Tripod 

 

Precision Side Abd 

10 Power 
Sphere 

 

Power Palm Abd 

11 Sphere 3 
Finger 

 

Power Pad Abd 

12 Precision 
Sphere 

 

Precision Pad Abd 



Mov. 
Id Name Picture Type Opp.Type Thumb 

Pos. 

13 Tripod 

 

Precision Pad Abd 

14 Palmar 
Pinch 

 

Precision Pad Abd 

15 Tip Pinch 

 

Precision Pad Abd 

16 Quadpod 

 

Precision Pad Abd 



Mov. 
Id Name Picture Type Opp.Type Thumb 

Pos. 

17 Lateral 

 

Intermediate Side Add 

18 Parallel 
Extension 

 

Precision Pad Add 

19 Extension 
Type 

 

Power Pad Abd 

20 Power 
Disk 

 

Power Palm Abd 

 


