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Abstract 

The aim of this work is to present and apply “The Enriched Modified 

Local Green’s Function Method” (EMLGFM). Its precursor, “The Modified Local 

Green's Function Method” (MLGFM) has been extensively employed during last 

decades to solve a large number of solid mechanics problems. The MLGFM is an 

integral method that uses projections of appropriate Green’s functions on 

subspaces generated by finite and boundary interpolation functions instead of a 

fundamental solution to be applied in a boundary system. Standard Lagrange 

shape functions are commonly used as these interpolation functions to 

approximate the solution space. In parallel, many efforts have been made in last 

decades to improve the well-established technique called “The Finite Element 

Method” (FEM). Among those improvements and enriched methods, the 

Hierarchical Finite Element Method and the Generalized Finite Element Method 

deserve to be highlighted. This work applies Hierarchical and Generalized Finite 

Element techniques into the Modified Local Green’s Function Method aiming to 

enrich the solution space of this new method now named as “The Enriched 

Modified Local Green’s Function Method”. Some two-dimensional (2D) elasto 

static problems are employed to test and investigate this new technique. This 

novel method is compared to some well-established methods, such as MLGFM 

and FEM as well as the analytical solution, presenting good displacement, 

stresses and convergence rate results.  

 

Keywords: Modified local Green’s function method; Hierarchical finite element 

method; Generalized finite element method; Lobatto shape functions; 

Trigonometric shape functions; Two-dimensional elasto static problems. 
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Chapter 1 

Introduction 

1.1 OPENING DISCUSSION 

 

From the beginning of the humankind, man argues himself: “From where 

does everything come? From what is everything created?” During a very long 

period of the humanity, mankind answered these and various others questions by 

myths and unnatural explanations. But something unusual happened in Greece 

almost two thousand and five hundred years ago: man started using the reason 

instead of mythological and unnatural explanations. Instead of reading various 

ancient scriptures or poems, they began to use reason, contemplation, and 

sensory observation to make sense of reality. Among of these giants of 

humankind, one of these lovers of wisdom, declared: “All things are number”. A 

strong statement assigned to Pythagoras (Figure 1.1). His famous “Pythagoras’ 

Theorem” is fantastic. It simply tells us that the geometry of objects embodies 

hidden numerical relationships. It says something very important about physical 

reality, namely the “sizes” and “shapes” of the objects that inhabit it. 

Mathematical relations underlie reality! Countless philosophers studied the 

nature and/or the man’s nature afterwards (including Socrates, Plato and 

Aristotle whose Pythagora’s ideas found fertile soil). The Pythagoras’ Theorem is 

nowadays really easy to understand and almost seen as silly if compared to the 

advances of the natural philosophy or what we call nowadays “science”. But it is 
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worth mentioning: Philosophy is the mother of all sciences we currently know. 

Imagine those human giants like Copernicus, Galileo, Descartes, Kepler, Leibniz, 

Newton, Hooke or even Einstein seeing the computers we have nowadays and 

how far humankind has gone. Each contribution, each effort led the mankind to 

this. Of course, there were a boost of new technologies from 20th’s century but 

these technologies couldn’t be created without each endeavor, each new 

discovery, each new method developed so far.  

 

 

Figure 1.1 – Pythagoras in a detail of Raphael's fresco “The School of Athens”. 

SOURCE: Wikipedia (2018). 

 

From the first mathematical relations found out by man to the highest 

technology such as nanotechnology, robots, GPS and so on, there were countless 

hours of brave men leaning over calculations and more calculations until they 

reached their ultimate goal: an explanation of reality by reason, a new discovery! 

It is not different when concerning the physics and one of its branches: solid 

mechanics. With the advent of the differential and integral calculus, mankind 

discovered a powerful mathematical tool to describe physical phenomena and 

predict them. The same occurred with the advent of the computers. But, there are 
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always bounds in all theories and methods created by mankind. And, overcoming 

these limits, new formulations, and new methods are created. 

Describing and predicting natural events are not an easy task. If an exact 

solution is available then we have essentially completed our task; there is enough 

information about the studied system and how to solve it. But, for a great part of 

physical problems, the task of finding an exact solution can prove fruitless. 

Eventually it is necessary to make some assumptions and simplify the system to 

be studied. Otherwise, several problems couldn’t be solved by man with current 

mathematical and physics/chemical tools. That is exactly what an approximate 

method does: to approximate a solution for a given problem. There might be a 

huge introduction describing all approximate methods developed by man but 

here, in this work, we are aiming to focus on two of them: the Finite Element 

Method (FEM) and its extensions as well as the Modified Local Green’s Function 

Method (MLGFM) and also its extensions (including the novelty of this work). 

The Finite Element Method (ODEN; REDDY, 1976; BECKER et al., 1981; 

BATHE, 1996; ZIENKIEWICZ et al., 2005) is proven one of the most widespread 

techniques used for the approximate solution of partial differential equations. 

However, several authors observed that low polynomial order of the finite 

elements may give poor results for some applications and improvements have 

been proposed (PEANO, 1976; ZIENKIEWICZ et al., 1983; CAMPION; JARVIS, 

1996; BESLIN; NICOLAS, 1997; RIBEIRO, 2001). Most improvements in FEM 

involve the enrichment of the approximation space by some set of functions such 

as seen in hierarchical formulations (Hierarchical Finite Element Method – 

HFEM) and the Partition of Unity (PoU) methods named by Arndt (2009) as 

“enriched methods”. In the hierarchical enrichment case, the approximation 

space is populated by a set of shape functions with order “p + 1” where the space 

of order “p” is a sub-space of the space of order “p + 1”. In other words, the 

approximation space with order “p” is “enriched” by shape functions of space with 

order “p + 1”. One example of polynomials used to enrich an approximation space 

in terms of hierarchical basis is the Lobatto shape functions (ŠOLÍN et al., 2004). 

Further developments in this field originated the Generalized Finite Element 

Method (GFEM) and its improvements (STROUBOULIS et al., 2000; BABUŠKA; 
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BANERJEE, 2012; ZHANG et al., 2014; BABUŠKA et al., 2017; FILLMORE; 

DUARTE, 2018). This method is based on the Partition of Unity Method – PUM – 

(MELENK; BABUŠKA, 1996) where the partition of unity can be provided by the 

Lagrange FEM shape functions or other shape functions that can be created as a 

partition of unity 

The Modified Local Green's Function Method (MLGFM) is an integral 

technique that explores the main benefits from three techniques: the Finite 

Element Method – FEM, the Boundary Element Method – BEM (BREBBIA et al., 

1984; BREBBIA; DOMINGUEZ, 1992) and the Green’s Function Method – GFM 

(BURNS, 1975; HORAK, 1980). The method was first proposed by Barcellos and 

Silva (1987) which applied MLGFM to the case of elastic membranes problems. 

Opposite to the BEM, the MLGFM does not use an explicitly fundamental 

solution. The matrices of the integral equation system are determined directly 

without the explicit knowledge of the Green Function. The MLGFM uses finite 

elements in domain to create discrete projections of the Green’s Functions, which 

correspond to the fundamental solutions to be used in integral equations system 

associated with the boundary approximation. When FEM and BEM are 

associated, the Modified Local Green's Function Method become as efficient as 

the former ones, making possible to apply it at any Continuum Mechanics 

problem, with any geometry and boundary condition (BARBIERI; BARCELLOS, 

1991a; 1991b; BARCELLOS; BARBIERI, 1991; MACHADO; BARCELLOS, 1993; 

MALDANER; BARCELLOS, 1992; FILIPPIN et al., 1992a; 1992b; 1992c; 

BARBIERI et al., 1993a; 1993b; MACHADO et al., 2008; MACHADO et al., 2012). 

In this work, for the first time, the Modified Local Green’s Function 

Method is enriched using the formulation proposed by Šolín et al. (2004) in the 

context of the Hierarchical Finite Element Method and its concept extended in 

the context of the Generalized Finite Element Method using, as partition of 

unity, the standard Lagrange shape functions. 
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1.2 OBJECTIVES AND METHODOLOGY 

1.2.1 Main Objective 

 

The novelty and main goal of this work is to present the Enriched 

Modified Local Green’s Function Method (EMLGFM). 

 

1.2.2 Specific Objectives and Methodology 

 

In order to achieve the main objective one intends to present HFEM and 

GFEM formulations and develop them appropriately to this work as well as the 

MLGFM is described and developed for elasticity. 

The MLGFM approximation space is then enriched using hierarchical 

concepts into the Modified Local Green’s Function Method, such that: 

a. For a Hierarchical Finite Element Method (HFEM) context it is 

used the Lobatto shape functions as described by Šolín et al. 

(2004); 

b. For a Generalized Finite Element Method (GFEM) it is used an 

extension of the hierarchical concept but employing trigonometric 

basis functions (BABUŠKA et al., 1994).  

The Modified Local Green’s Function Method is a powerful method 

especially when it concerns boundary flow variables (for example, stresses). But 

the MLGFM has never been experienced an improvement in its capabilities by 

using latest techniques such as enrichment methods so far. Since the Green’s 

function projections are approximated using the Finite Element Method, it is 

expected an improvement in Green’s function projections approximation and, 

consequently, in displacements results. Afterwards, when calculating strain and 

stress values, it is also expected a higher performance.  

In order to investigate the accuracy and potential of this new method, 

some 2D elasto static problems are presented and compared with: 

a. The standard FEM (without enrichment); 
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b. The conventional MLGFM (without enrichment); 

c. The available analytical solutions presented by Timoshenko and 

Goodier (1951), MacNeal and Harder (1985), Szabó (1986), 

Anderson (2005) and Pilkey and Pilkey (2008). 

All results for the Enriched Modified Local Green’s Function Method 

(EMLGFM), the scope of this work, were pre-processed, processed and post-

processed from an own algorithm developed here and implemented in a 

FORTRAN platform. 

 

1.3 OUTLINE OF THIS WORK 

 

Following this Introduction (Chapter 1), in Chapter 2 it is given a deep 

literature review of the enriched methods, especially the Hierarchical Finite 

Element Method and the Generalized Finite Element Method showing in a 

timeline its beginning from the Finite Element Method up to nowadays their 

advances employed in several areas of physics. Also, in this chapter, it is reserved 

a special section for the Modified Local Green’s Function Method demonstrating 

its application and advances so far. 

In Chapter 3, it is presented an introduction of the Enriched Methods 

focusing on methods employed in this work: the Hierarchical Finite Element 

Method (HFEM) and the Generalized Finite Element Method (GFEM). In this 

chapter it is discussed their mathematical approach and how it is possible to 

enrich a one-dimensional (1D) and a two-dimensional (2D) element using higher-

order finite element methods. 

In Chapter 4, the Modified Local Green’s Function Method (MLGFM) is 

introduced, going through its abstract formulation and variational approach, 

moving into the discretization of the problem by it, the Green’s function 

projections determination and how to implement the involved matrices and solve 

the equations system of this method. 

In Chapter 5, the methodology of the Enriched Modified Local Green’s 

Function Method (EMLGFM) is presented, demonstrating its formalism and 
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detailing how the Green’s functions projections are figured out for 2D elasticity 

problems. In the end, it is explained how to calculate the displacements, reaction 

forces and stresses in this new method. 

Chapter 6 is devoted to the applications of the EMLGFM for 2D elasto 

static problems, as following: a straight cantilever beam, a curved cantilever 

beam, a thick-walled cylinder, a rectangular plate with a center hole, a 

rectangular plate with a center crack and closing the application section, a L-

shaped domain with singularity, including results and discussions of each one of 

them. 

Finally, in Chapter 7 it is presented the conclusion where it is discussed 

the performance of the EMLGFM for 2D elasto static analysis and suggestions 

are presented for future applications of this new method. 
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Chapter 2 

Literature Review 

2.1 INTRODUCTION 

 

In this chapter, it is done a review of the Finite Element Method (FEM) 

and some extensions of this method called by Arndt (2009) as “Enriched 

Methods” in a timeline structure. There has been a lot of FEM contributions since 

late 50’s so there is a limitation of the scope focusing on main characteristics of 

the Hierarchical Finite Element Method (HFEM) and Generalized Finite 

Element Method (GFEM) since they are based on the Finite Element Method. 

Some other enriched methods share the same attributes and because of that, they 

are also quoted here in this revision. Also, in the second and last part of this 

chapter, there is a literature review of the Modified Local Green’s Function 

Method (MLGFM). The MLGFM has been successfully used during the last two 

decades and here, in this review, the focus is in its main contributions for 

engineering problems. The main objective of this thesis is to ally the major 

characteristics of both methodologies: the Enriched Methods (HFEM and GFEM) 

and the Modified Local Green’ function Method (MLGFM). Therefore, this 

literature review is so important in order to extract the central attributes of these 

methods. 
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2.2 REVIEW OF THE ENRICHED METHODS 

 

There is no way to begin a review of the literature on the enriched 

methods exploring the Hierarchical Finite Element Method (HFEM) and the 

Generalized Finite Element Method (GFEM) without first mentioning, even 

briefly, the precursor of it: the Finite Element Method (FEM) itself. 

The Finite Element Method (FEM) is a mathematical technique using 

numerical resolutions with the purpose of calculating an approximate solution of 

boundary-value problems. It is also considered as a generalization of the 

Rayleigh-Ritz Method being a well-known and powerful method for solving 

problems with any geometry and degree of complexity (ZIENKIEWICZ et al., 

2005). 

It is possible to increase the accuracy of FEM through certain 

refinements called in literature of “h”, “p”, “hp” and/or adaptive refinements 

(ARNDT, 2009). 

The simplest technique, called h-refinement, corresponds to the increase 

of the number of elements that compose the mesh whereas the p-refinement 

technique corresponds to increase the order (or degree) of the polynomial 

interpolator, as those used in standard (or conventional) FEM. The combination 

of the refinement techniques of the mesh h with the variation of the order of the 

polynomial approximation p is called the hp-refinement. All of these techniques 

can be adaptive as long as the mesh of elements, shape functions, or both, 

depending on the type of refinement, are adjusted during the analysis process in 

order to improve the solution. 

As quoted in Zienkiewicz et al. (1983), in a p-refinement, if the set of the 

approximate shape functions of an order “p” constitutes a subset of the 

approximate shape functions of an order “p + 1”, this approach is termed 

“hierarchical”. 

It is difficult to trace the origin of HFEM (Hierarchical Finite Element 

Method), but it seems to have been Peano (1976) who first presented the basic 

idea of the method. Subsequently, the concept was appropriately employed in 

Zienkiewicz et al. (1983), where it was shown that there is no need to completely 
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change the existing nodal interpolation functions, but only add enrichment 

functions. 

In Guo and Babuška (1986), it was shown that the hp-version leads to an 

exponential convergence rate by solving problems with analytical data by 

piecewise functions. 

A pioneer concept of hierarchical finite element adaptive meshes for 2D 

elliptic problems of second order (linear scalar) was presented in Deuflhard et al. 

(1989). It was shown that this approach allows a balance among the iterative 

algorithm, the local error estimator and the local mesh refinement mechanism 

that represent the main components of an adaptive partial differential equation 

code. 

In Leung and Au (1990), it was proposed to use other shape functions like 

spline functions (B3-spline) and not the standard polynomial shape functions 

used in standard FEM for beam and plate elements. This methodology was 

known as the “Spline Finite Element Method”. The disadvantage is that with this 

approach the function does not vanish at each node (i.e., this condition is not 

respected as it is in FEM) making necessary special procedures to be taken into 

account to apply boundary conditions. 

Ganesan and Engels (1992) developed a model for dynamic analysis of 

Bernoulli-Euler beams called the “Admissible Modes Method” (AMM) where it 

was used as the approximation space the union between a space that represents 

static displacements and another space that represents dynamic displacements. 

For the static displacements, FEM space is used, while in order to generate the 

space for the dynamic displacements, the admissible modes of vibration of the 

structure are used, canceling out at nodes of the elements (non-polynomial shape 

functions) and also their first derivatives. 

A special treatment of FEM was developed in Babuška et al. (1994) where 

it was considered the approximate solution of a class of elliptic second-order 

equations with coefficients that change abruptly or that are highly oscillating. 

This method was called “Special FEM” (SFEM) because it employs special shape 

functions chosen precisely to model the unknown solution. 

In 1995, in a report of Duarte and Oden (1995), the concept of the “hp 
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Cloud Method” was presented, based on the “Partition of Unity Method” (PUM), 

the method uses radial base functions by varying the size of the supports and 

reproducing polynomial properties of arbitrary order. Together with Melenk and 

Babuška (MELENK, 1995; BABUŠKA et al., 1995; MELENK; BABUŠKA, 1996; 

BABUŠKA; MELENK, 1997), it is considered the precursor of GFEM. In 

Melenk's PhD thesis (MELENK, 1995), the method was formally presented and 

called the Generalized Finite Element Method. In Babuška et al. (1995), GFEM 

was applied to solve boundary-value problems governed by the Helmholtz 

equation. In Melenk and Babuška (1996) and Babuška and Melenk (1997) the 

"Partition of Unity Finite Element Method" (PUFEM) was presented, being the 

main mathematical foundation of the “Generalized Finite Element Method” 

(GFEM) and it is still one of the pioneering works to introduce concepts of 

Meshless Method in finite element formulation. 

Belytschko and others (BELYTSCHKO et al., 1995) proposed a new 

method for crack propagation analysis. The new method, called by the authors as 

“Galerkin's Meshless Method”, was one of the pioneers in the study of meshless 

methods and its application in crack propagation. 

In 1996, several papers dealing with the hp Cloud Method were published 

in literature, such as, Liszka et al. (1996), analyzing stresses close to a 

singularity, Duarte's PhD thesis (DUARTE, 1996), where the formalism of the 

method was presented,  Duarte and Oden (1996a) and Duarte and Oden (1996b), 

developing this method. 

Beslin and Nicolas (1997) used a trigonometric functions approach that is 

similar to the polynomial functions but which has better numerical manipulation 

characteristics in a HFEM context. It was shown that for high-order polynomials 

a locking behavior can occur. It was verified that in trigonometric functions 

approach, one has the advantage of causing smaller locking errors. Results for 

rectangular plate vibrations under bending were studied. 

Concurrently, Houmat (1997) proposed the use of trigonometric functions 

that resemble the polynomials that would be obtained from HFEM. Again, better 

results were obtained when using high order approximations. 

An extension of the hp cloud method for fracture mechanics problems as 
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an example of the custom cloud functions development was studied in Oden and 

Duarte (1997). Some applications for boundary-value problems were presented in 

that paper. 

In 1998, Taylor, Zienkiewicz and Oñate (TAYLOR et al., 1998) deduced 

hierarchical enrichment functions based on the partition of unity technique, 

applying the methodology to linear elasticity. 

The “Partition of Unity Method” (PUM) was again used in the work of 

Babuška and Zhang (1998) for analysis of Timoshenko’s beam under elastic 

support. Also, the “hp Cloud Method” was again used in Oden’s work (Oden et al., 

1998) showing its advantages with severely distorted meshes and its exponential 

convergence rates. 

Another method presented in 1998 was the Composite Element Method – 

CEM (ZENG, 1998) where the proposal was to use the standard element of FEM 

together with functions enriched by the addition of non-polynomial functions 

related to the analytical solutions of the problem. It was shown that the results 

presented a great superiority compared to the FEM with constant order. 

This enrichment technique – the Composite Method –  was used in Arndt 

et al. (2003), proving to have better results than those obtained by the h-

refinement of the standard FEM for the analysis of Euler-Bernoulli bars and 

beams in free-vibration. 

In Cramer et al. (1999), an adaptive finite element procedure for the 

analysis of elastoplastic problems was developed. Special attention was given to 

the essential ingredients of the adaptive process and the mapping of history-

dependent state variables between different meshes. The hierarchical strategy 

facilitated the simple definition of transfer operators for history-dependent 

variables. Some numerical examples demonstrated the applicability of the 

approach to general elastic-plastic problems including associated as well as non-

associated plasticity. 

In 2000, Babuška’s work (BABUŠKA; SAUTER, 2000) showed that by 

carrying out a Galerkin Method modification based on GFEM, one can eliminate 

the so-called "pollution effect" in one dimension. However, in two or more 

dimensions, the "pollution effect" cannot be eliminated completely, but 
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substantially reduced. 

A new finite element method for elliptic problems called “Generalized p-

FEM in Homogenization” was developed and analyzed by Matache et al. (2000). 

It was demonstrated, through numerical experiments, its feasibility and the 

theoretical results were confirmed. 

Strouboulis, Babuška and Copps (STROUBOULIS et al., 2000; 2001) 

defined GFEM as simply a combination of the Finite Element Method and the 

Partition of Unity. Strategies for solving linear dependence and numerical 

integration were described as well as discussions on computational code 

architectures, feasibility and capacity of GFEM. 

The main ideas of the Generalized Finite Element Method (GFEM) were 

described in Duarte et al. (2000) and some of its advantages were demonstrated 

against the standard FEM in solutions of three-dimensional structural mechanics 

complex problems. These include the ability to produce finite element hp-

refinements with non-uniform h and p, and to generate subspaces of particular 

approximations for specific applications. 

In Sukumar et al. (2000), it was discussed another method based on the 

Partition of Unity (PoU) called the “Extended Finite Element Method” (XFEM) 

that afterwards it would be concluded to be very similar to GFEM. This work was 

based on the three-dimensional modeling of cracks and on presenting a study 

using discontinuous functions and crack tip displacement fields to enrich the 

standard finite element method. Good results were shown and compared to the 

literature. The XFEM was also applied in Daux et al. (2000) work for cracks with 

arbitrary intercepting branches. 

Ribeiro (2001) examined the Hierarchical Finite Element Method 

(HFEM) using trigonometric (non-polynomial) functions to analyze vibrations in 

beams and plates. The results were compared with polynomial shape functions. 

The Extended Finite Element Method (XFEM) was used to model 

arbitrary holes and material interfaces (inclusions) without the need of meshing 

within internal bounds in Sukumar et al. (2001). Numerical examples were 

presented for the case of linear elasticity in two dimensions (2D). 

Also in 2001, De and Bathe's work (DE; BATHE, 2001) suggested the 
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“Method of Finite Spheres” (MFS) based on the “Partition of Unity Method” 

(PUM) as a truly meshless technique with the objective of achieving a better 

computational efficiency. Numerical rules with an emphasis on reducing 

computational cost were shown in this paper. 

In Duarte et al. (2001), it was again applied the technique of Partition of 

Unity (PoU) through the Generalized Finite Element Method (GFEM), but here 

for three-dimensional analysis of the dynamic crack propagation using a couple of 

enrichment functions in elements where the crack is crossed by. 

Duarte and Babuška (2002) continued working on the Generalized Finite 

Element Method proposing a simple but effective process of implementing an 

independent mesh p-orthotropic enrichment. 

One of the pioneering texts on the selection of shape functions for 

GFEM is the work of Babuška et al. (2002). Some theorems based on the 

mathematical principles of functional analysis were presented and shape 

functions selections in Sobolev space for one-dimensional problems were 

discussed. 

In Barros’ PhD thesis (BARROS, 2002) a non-linear analysis of structures 

was presented using the meshless methods and GFEM, where some enrichment 

functions were applied in the study and simulation of the propagation of 

discontinuities. It was enumerated some proposals for the application of GFEM 

in propagation of defects problems. 

Another contribution in the Generalized Finite Element Method (GFEM) 

was presented in 2003 by Torres’ PhD thesis (TORRES, 2003). There, it was 

applied GFEM in three-dimensional non-linear analysis of solids considering 

three constitutive models: plasticity, fragile damage and damage with coupled 

plasticity. 

Garcia's PhD thesis (GARCIA, 2003) addressed two fundamental aspects 

of GFEM: the construction of local spaces on curved surfaces and the imposition 

of strong boundary conditions. Examples were given for composite and 

homogeneous materials with linear elastic behavior. 

Strouboulis et al. (2003) described a new version of the Generalized Finite 

Element Method (GFEM) that is well suited for problems in domains with large 
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number of inclusions, voids and cracks using different constructions of known 

functions in literature.  

In Zhang’s PhD thesis (ZHANG, 2003), it was described a new version of 

the Generalized Finite Element Method called GFEM for multiscale analysis. 

The robustness of the method was illustrated by several model problems defined 

in domains with a large number of closely spaced voids and/or inclusions with 

various shapes, including the heat conduction problem defined on domains with 

porous media and/or a real composite material. 

A review of meshless methods and methods closely related to GFEM for 

solving elliptic linear equations using variational principles was addressed in 

Babuška et al. (2003). The intention was to show a unified mathematical theory, 

some aspects of implementation and numerical examples. 

In 2004, Góis (2004) proposed a discussion in his Master's dissertation of 

the combination of “Mixed Hybrid Volumetric Formulation” and the Generalized 

Finite Element Method (GFEM). It was accurately possible to calculate stresses 

for this formulation using several enrichment functions in analysis, among them, 

polynomial functions and trigonometric functions. 

Pereira’s work (PEREIRA, 2004) showed a study on the method of stress 

intensity factor (SIF) using GFEM. Several methods of fracture mechanics were 

presented in his work addressing them in the context of GFEM and applying this 

method to the pure and mixed modes of classic fracture mechanics problems. 

The characteristics of the meshless and GFEM methods are investigated 

in Santana (2004), their advantages and limitations in the application of 

computational fracture mechanics. Numerical tests for plane problems were 

presented. 

A book (ŠOLÍN et al., 2004) dealing with the higher-order finite element 

methods where several categories of hierarchical functions could be used as 

enrichment functions was published in 2004. In this work the basic principles of 

high-order FEM, adaptive discretization and refinement techniques were 

presented. 

GFEM was applied for non-linear analysis where it was proposed a p-

adaptive strategy motivated by the problem of the reinforced concrete beam in 
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Barros et al. (2004). The p-adaptive scheme consists of multiplying the functions 

of the partition of unity by a set of polynomials. The effectiveness of the error 

estimator index proposed in this paper was exemplified by a numerical example. 

The “Fourier Finite Element Method” (FFEM) was again revisited in 

2004 through the work of Leung and Zhu (LEUNG; ZHU, 2004) applied to the 

vibration problem of in plane thin and thick curved beams with p-elements. 

Fourier trigonometric functions were used as enrichment functions, showing the 

numerical stability of this method. This method was first employed in 1998 by 

Leung and Chan (1998). 

A general overview of the main ideas of the Generalized Finite Element 

Method was presented in Babuška et al. (2004), presenting the basic results, 

experiences and potentials of the method so far, proving that the Finite Element 

Method (FEM) is actually a particular case of GFEM. 

In 2005, Nirschl's master dissertation (NIRSCHL, 2005) studied GFEM 

applied to the analysis of cylindrical tubes and spherical shells. For this purpose 

polynomial and trigonometric functions were used as enrichment functions and 

the results were compared with FEM and analytical solutions. 

A method of extracting stress intensity factors (SIF) using GFEM was 

studied in Pereira and Duarte (2005). Several methods such as the contour 

integral, cutoff function and the “J” integral were used in the fracture mechanics 

scope. Numerical experiments showed that the contour integral and cutoff 

functions were more robust than the "J" integral method and the cutoff function 

is the most accurate. 

Nicolazzi and others (NICOLAZZI et al., 2005) discussed another 

meshless approach called the “Generalized Boundary Element Method” (GBEM). 

This work can be understood as an extension of the BEM using enrichment 

approach. The “Moving Least Square Method” – (MLS) – was used to build a 

partition of unity but now on boundary and then applied to Galerkin's boundary 

element formulations. Numerical solutions were reported in this work, verifying 

good accuracy and convergence. 

GFEM technique of "grouping elements" was used in Duarte et al. (2005a) 

making possible to combine neighbor elements and to generate correct and 
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smooth approximation solutions for these groups. Some examples were presented 

illustrating the reduction of the processing time and proposing future 

improvements. 

Duarte et al. (2005b) was focused on a marriage of the Finite Element 

Method and any approximation based on the Partition of Unity (PUM). It was 

emphasized the combination of the shape functions from finite element and from 

meshless methods like those of the hp cloud method. This work also contributed 

showing a procedure of building shape functions with any degree of regularity 

using the so-called “R-functions”. Some numerical experiments were reported 

demonstrating the proposed technique. 

One of the pioneering works on the concept of isogeometric analysis was 

presented by Hughes and others (HUGHES et al., 2005) where the base functions 

were generated from the NURBS (Non-Uniform Rational B-Splines) to build an 

exact geometric model. This technique was applied to problems of linear elasticity 

with extremely satisfactory results and it was much more efficient compared to 

other methods using a new refinement technique called “k-refinement". 

A classification of numerical formulations divided into methods by 

standard finite elements and methods without mesh (meshless) was proposed in 

Idelsohn and Oñate (2006). It was argued, using some numerical examples, what 

would be the best choice for each studied case. 

Strouboulis et al. (2006a) applied GFEM to the Helmholtz equation using 

meshes that may overlap the boundaries of the problem domain and enriching 

the approximation by wave functions based on the discontinuous Galerkin with 

Lagrange multipliers (based on the Partition of Unity Method). Subsequently, in 

Strouboulis et al. (2006b), a methodology to estimate errors a posteriori was 

developed and the reliability of these estimators was examined. It was shown 

that the proposed algorithm is as efficient as an adaptive mesh strategy. 

In Mangini’s master dissertation (MANGINI, 2006), GFEM was applied 

to the analysis of shells of revolution structures exploring its axisymmetric 

geometry. Polynomial enrichment functions were used for this analysis. The 

obtained results were compared to analytical and numerical solutions generated 

by FEM. 
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An analysis of polycrystal structures with explicit treatment of grain 

boundaries by GFEM was proposed in Simone et al. (2006). This methodology 

allows the finite element mesh does not need to conform to the polycrystalline 

topology. The potential and precision of the method was demonstrated by a 

numerical example. 

Chessa and Belytschko (2006) developed a locally enriched space-time 

finite element method for solving hyperbolic problems with on move 

discontinuities. The space-time scheme in which the discontinuities were 

explicitly obtained with enrichment was combined with classical formulations of 

finite elements for hyperbolic problems. The enriched space-time formulation was 

coupled with semi-discrete finite elements outside the discontinuity region. 

Results were presented for two examples: linear wave equation and Burgers 

equation. 

In Duarte et al. (2006), it was intended to show a procedure to construct 

Ck, with k arbitrarily large, shape functions for the generalized finite element 

defined in unstructured finite element meshes. The so-called R-functions were 

used to build Ck partition of unity functions based on finite elements with non-

convex support. This technique is quite similar to GFEM except by the arbitrarily 

smooth shape functions. The method was applied for solving a linear elasticity 

problem with good results and low computational cost. 

The use of GFEM is dealt with an arbitrary degree of smoothness called 

the p-adaptive technique in Barros et al. (2007). The weight functions were 

obtained from R-functions where one could construct approximations Ck, with k 

arbitrarily large, similar to that employed by Duarte et al. (2006). Error 

indicators were used taking into account the typical scheme of the nodal 

enrichment method. It was presented some numerical examples of in plane 

elasticity problems where the performance was investigated. 

The concept of grouping nodes and elements where in this group a 

partition of unity in the modified finite element is enriched through GFEM by 

any desired order was proposed in Duarte et al. (2007a). Some numerical 

experiments were presented as well as some implementation details. 

Duarte, Reno and Simone (DUARTE et al., 2007b) dedicated themselves 
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to present high order implementations of GFEM for three-dimensional through-

the-thickness branching cracks. Discontinuities such as triple joints in 

polycrystalline materials and branched cracks are accurately represented 

independently by the mesh in use. The combination of local refinement at the 

crack tip and the higher order of nodal enrichment proved to be an excellent 

alternative. 

Duarte et al. (2007c) proposed a development of enrichment functions in a 

global-local approach using a fixed global mesh around the crack front, being 

especially attractive for non-linear problems and/or time dependent problems. 

Numerical experiments were reported demonstrating the accuracy and efficiency 

of the method. 

A method for treatment of Dirichlet boundary conditions for the 

Laplacian under GFEM was proposed in Babuška et al. (2007a). The method is 

based on using approximate Dirichlet boundary conditions and polynomial 

approximations of the boundary. Quasi-optimal convergence rates are obtained 

for GFEM approximations sequence. The results were extended for the problem 

of the non-homogeneous Dirichlet boundary value, including the case when the 

boundary data has low regularity (i.e., it is a distribution, in the functional 

analysis context). 

Babuška, Banerjee and Osborn discussed in Babuška et al. (2007b) the 

problem of the super convergence points existence obtained from GFEM 

approximate solutions for an elliptic boundary-value problem of Neumann type. 

It was shown that the super convergence points for the approximate solution 

gradient were the zero values of a system of nonlinear equations; not depending 

on the solution of the boundary-value problem. It was observed that the 

smoothed generalized finite element approximation is easy to be built. 

An application of the PUM to the problem of the thick sandwich plates 

vibration with viscoelastic layers, taking polynomial functions as basis functions 

for a Mindlin’s plate element was proposed in Hazard and Bouillard (2007). Their 

results were compared with available numerical and experimental results. 

Gracie, Ventura and Belytschko (GRACIE et al., 2007) showed a 

technique based on XFEM (similar to GFEM) where plasticity phenomena were 
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modeled directly by interior discontinuities and the tangential enrichment was 

applied. Some examples were examined and it was found that the method 

exhibits excellent accuracy. 

The hybrid cracking element (HCE) combined with the XFEM was 

implemented in Xiao and Karihaloo (2007). Studies showed that the HCE 

element was one of the most accurate and convenient for obtaining stress 

intensity factors (SIF) and higher order terms. This work presented the 

technique to implement the HCE in a general mesh of FEM, maintaining the 

advantages of both methods: HCE and XFEM. Some numerical results were 

reported to validate the proposal. 

Lu and Law (2007) addressed the Composite Element Method (CEM) in 

beam free vibration analysis with the use of different analytical functions, 

according to the beam’s boundary conditions and considering the coupling terms 

of the nodal coordinates and coordinates "c" in the stiffness matrix. It was shown 

that the Composite Element Method was improved with the proposed 

modifications, and the solutions had better results than the former approach. 

It was analyzed the propagation of cracks in a structure under dynamic 

loading based on the numerical implementation of the Extended Finite Element 

Method (XFEM) in Nistor et al. (2008). Also, in Khoei et al. (2008), a new 

computational technique was presented based on the Finite Element Method 

called as arbitrary Lagrangean-Eulerian for problems of solid mechanics with 

large deformations. This technique captured the advantages of both the 

Lagrangian and Eulerian methods. 

Abdelaziz and Hamouine’s work (ABDELAZIZ; HAMOUINE, 2008) 

reported a global vision and the progress of the Extended Finite Element Method 

(XFEM) up to that moment, proving that the technique was an alternative to 

problems that could not be solved by the standard FEM. 

Some aspects of the Generalized Finite Element Method (GFEM) and the 

classic p-refinement in the hybrid-Trefftz stress formulation for the two-

dimensional elasticity was introduced in Souza (2008). It was also preliminary 

discussed a study of plate with multiple cracks by the Partition of Unity Method 

in Hybrid-Trefftz formulation with selective enrichment that revealed an 
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excellent performance of the numerical analyzes. 

Babuška et al. (2008) elaborated a method for approximation of the 

essential boundary conditions (Dirichlet type conditions) within GFEM where the 

results were applied to elliptic general boundary-value problems. 

A work related to the application of GFEM for cracking analysis, with 

special attention focused on local and global enrichment functions was presented 

in Duarte and Kim (2008). Local enrichment functions were used in the region 

near the crack, or even at the crack border, while global enrichment functions 

were applied to the rest of the solid observing a major improvement in this 

approach. 

In Strouboulis et al. (2008), it was published a GFEM approach applied to 

solution of Helmholtz equation. Enrichment functions involving exponential and 

trigonometric functions for the propagation of two-dimensional waves were 

demonstrated. It was considered in the choice of these functions, solution already 

tested and studied in literature and, in addition to that, GFEM criteria, 

previously established, was also met. 

A general formulation of GFEM to solve two-dimensional problems 

characterized with continuity C0 with gradient jumps such as those found in 

thermal analyzes and heterogeneous structures was demonstrated in Aragón et 

al. (2008). It was shown that the introduction of the enrichment functions led to 

accurate solutions with meshes that did not conform to the geometry of the 

discontinuity lines. The convergence was studied by demonstrating that 

quadratic approximations did not require corrections and they had better 

performance than linear approximations by investigating them with the available 

literature. 

The effectiveness of the Global-Local Finite Element Method versus the 

Generalized Finite Element Method with enrichment functions in a global-local 

approach to three-dimensional fracture mechanics problems was compared in 

Kim et al. (2008). It was demonstrated through numerical experiments that 

interactions among cracks with different sizes are taken into account by GFEM 

even when all cracks in the global domain are not modeled. 

The technique of enriching the partition of unity was developed and 
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extended in Góis’ PhD thesis (GÓIS, 2009) to two non-conventional formulations 

in plane elasticity: the hybrid stress formulation and the hybrid-mixed stress 

formulation. Polynomial functions were used to enrich the approximations. Some 

numerical examples were demonstrated to illustrate the performance of both 

approaches, especially when the enrichment technique is applied. 

The multilevel hp-adaptive solution of elliptic second-order partial 

differential equations using the meshfree method – “Particle-Partition of Unity 

Method” (PPUM) was treated in Schweitzer (2009). New discretization points (or 

particles) were automatically created in the proposed refinement scheme, the 

analogue of an adaptive meshfree h-refinement method. For local approximation 

spaces it was employed a better local resolution similar to a p-refinement. It was 

presented some numerical results that showed the efficiency of the proposed 

scheme. 

Kim, Duarte and Proença in 2009 (Kim et al., 2009a) and Pereira, Duarte, 

Guoy and Jiao (Pereira et al., 2009a; 2009b) focused on the topic of generalized 

enrichment functions but now for 3D non-planar cracks. The representation 

preserved continuity of the crack surface while it was able to represent non-

planar, non-smooth, crack surfaces inside of elements of any size. It was 

illustrated some numerical experiments to show the accuracy and robustness of 

the proposed approaches. 

The problems of three-dimensional fracture mechanics using GFEM 

based on the solution of the global (structure) and local (crack) interdependent 

problems was developed in Kim et al., 2009b. The effect of the local boundary 

condition on the performance of the proposed method was studied and several 

problems of the three-dimensional fracture mechanics were investigated to test 

the accuracy and performance. 

In Barcellos et al. (2009),  GFEM based on the Partition of Unity (PoU) 

with smooth approximation functions was employed by modeling anisotropic 

laminated plates under the Kirchhoff hypothesis. The enriched shape functions 

were obtained by the product of Shepard's partition of unity and the polynomial 

enrichment functions. Different edge functions were investigated to generate the 

Ck functions. 
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A mapping method to integrate weak singularities that result from 

GFEM/XFEM enrichment functions for bi- and three-dimensional problems (2D 

and 3D) was developed in 2009, Park et al. (2009). The accuracy and convergence 

of the proposed method were demonstrated by 2D and 3D numerical examples. 

Heat transfer problems in steady state with strong thermal gradients by 

both the standard finite element method and GFEM were analyzed in O’Hara et 

al. (2009). The robustness and feasibility of the heat transfer method was 

investigated in order to generate accurate approximations. It was shown that the 

global problem converges at least as fast as the local problems and in many cases 

the enriched global problem could offer much more accurate solutions than the 

local ones. 

GFEM continued to be explored in Arndt (2009) for free vibration 

analysis of straight bars, beams, trusses and frames, specifically in the 

determination of natural frequencies of structures. In his work, the h-, p- and 

adaptive refinement methods were analyzed and compared. Enriched 

formulations for free vibration dynamics problems were inspected as well as a 

detailed convergence analysis using h- and p- refinements where it were 

developed adaptive methods to improve the determination of eigenvalue and 

eigenvector pairs. 

Belytschko et al. (2009) exposed a review of GFEM and XFEM, verifying 

the application of these methods in engineering and proving both methods are 

practically the same. It was emphasized in this work the application of numerical 

techniques in fracture mechanics problems, dislocations, grain boundaries and 

phases interface. 

In Alves' PhD thesis (ALVES, 2010), the Partition of Unity Method 

(PUM) was applied in the analysis of problems with multiple cracks, one of the 

main objectives being to check the ability of the method to obtain stress intensity 

factors (SIF). Later on, GFEM was applied in the analysis of the local sub-

problem. Numerical examples were presented, proving that the use of GFEM 

allows good approximate results even with poorly refined meshes. 

Argôlo (2010) used the Partition of Unity Method in the analysis of 

problems with multiple distributed cracks. Here, in addition to GFEM, the 
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Hybrid-Treffz Stress formulation was also used. Numerical examples were 

reported in order to prove the efficiency of the proposed method. 

It was discussed the link between two methods: GFEM and the “Face 

Compensation Method” (FCM) in Pereira et al. (2010). Applying GFEM at each 

step of the crack growth, the higher order approximations were locally refined in 

the mesh while controlling the evolution of the crack front in the explicit crack 

surface representation by the Face Compensation Method. The robustness and 

precision of the proposed methodology were illustrated by numerical simulations. 

Improvements in simulation of three-dimensional crack propagation by 

GFEM were presented in Garzon et al. (2010). In particular, new updated 

algorithms suitable for explicit crack surface representations and simulations in 

which the initial crack surfaces grow significantly in size (one order of magnitude 

or more) were also included in this paper. Numerical examples were provided 

illustrating the robustness and capability of the proposed approaches and some of 

their potential applications in engineering. 

Kim, Pereira and Duarte (Kim et al., 2010), using GFEM, applied it to the 

study of fracture in a global (structural) and local (crack) interdependent solution 

approach. A number of three-dimensional fracture mechanics problems were 

proposed to investigate the accuracy of the method and its computational 

performance, both in terms of problem size and computational processing time. 

In Yu et al. (2010), it was shown the formulations of a multivariable 

hierarchical beam element for static analysis and vibration analysis based on the 

generalized variational principle. Two forms of hierarchical Legendre 

polynomials were used as basic interpolation functions. The method was applied 

to several cases of static analysis and the results were satisfactory while further 

development is still required for dynamic analysis. 

It was developed a first application of the adaptive GFEM for free 

vibration analysis of straight bars and trusses applying adaptive refining 

strategies with generalized enrichment functions in Arndt et al. (2010). The 

frequencies obtained by the adaptive GFEM were compared with those obtained 

by the analytical solution, by the Composite Element Method (CEM) and by the 

h- version of the Finite Element Method. 
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In Lins’ master dissertation (LINS, 2011), the question of a posteriori 

estimation of discretization errors and particularly the retrieval of numerical 

solutions gradients obtained with the Finite Element Method (FEM) and the 

Generalized Finite Element Method (GFEM) was dealt with. The schemes 

presented through numerical examples were illustrated to evaluate the efficiency 

of each estimator. 

Soghrati et al. (2011) presented a new GFEM scheme based on the 

interface for solving problems with discontinuous gradient fields. The method is 

based on enrichment functions associated with generalized degrees of freedom at 

nodes generated from the intersection of the phase interface with the elements 

edges. A convergence study for heat transfer problems was illustrated and 

compared with FEM. 

The intergranular brittle cracking of polycrystalline aggregates by means 

of GFEM with cohesive grain boundaries and linear elastic grains was analyzed 

in Shabir et al. (2011). It was shown that the resulting crack path is insensitive 

to the key cohesive law parameters such as maximum cohesive strength and 

critical fracture energy. 

Kim et al. (2011) looked over a “parallel” simulation of GFEM where 

custom enrichment functions were used for applications which a priori solution is 

known. The parallel solution of local boundary-value problems was involved in 

the procedure using the boundary conditions of a coarse global problem. Problems 

of the three-dimensional fracture mechanics were analyzed in order to 

investigate the precision and performance of the proposed GFEM. 

GFEM was applied with global-local enrichment but for transient heat 

transfer problems with solutions exhibiting abrupt, highly localized thermal 

gradients in O’Hara et al. (2011). It was required, with the use of time-dependent 

functions, that the system of equations were discretized temporally first, and 

then spatially, in order to adequately account for the dependence of time. 

Applications were provided for heterogeneous materials and moving heat sources 

as well as a convergence analysis was done for the proposed method. 

Babuška and Lipton (2011) were engaged in a numerical method to solve 

second-order elliptic partial differential equations describing fields inside 
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heterogeneous media such as micro-structures and media with multiple non-

separated length scales. It was shown that the homogenization theory could be 

used to construct local approximation spaces with errors decaying exponentially 

in a pre-asymptotic regime. 

In Yang et al. (2011), it was conceived an h-hierarchical adaptive mesh 

strategy based on finite element method (FEM) and boundary element method 

(BEM) for transient elastodynamic problems. It was shown that this mixed 

formulation is efficient to determine displacement fields, stresses, velocities and 

accelerations using semi-analytical functions. 

GFEM was applied in framed structures by examining the convergence 

rates for natural frequencies in comparison to a reference situation in Arndt et al. 

(2011). In the study, it was shown that GFEM is efficient to determine natural 

frequencies of higher orders compared to other methods. 

A procedure to generate, numerically, adequate enrichment functions for 

three-dimensional problems, with confined plasticity where the plastic evolution 

is gradual was proposed in Kim et al. (2012). It was shown that with this 

procedure it was possible to produce precise nonlinear solutions with reduced 

computational effort. Numerical three-dimensional nonlinear problems based on 

the rate-independent J2 plasticity theory with isotropic hardening were studied 

to demonstrate the robustness, precision and efficiency of the proposed method. 

Pereira et al. (2012) again looked over the topic of crack growth by GFEM 

but based on two-scale decomposition (global-local) – a smooth coarse-scale 

component and a singular fine-scale component. The fine-scale component was 

approximated by discretizations defined on coarse finite element meshes while 

the fine-scale component was approximated by the solution of local problems 

defined in neighborhoods of cracks. Numerical examples demonstrating the 

approximation properties of proposed enrichment functions and the 

computational performance of the methodology were illustrated. 

Gupta et al. (2012) demonstrated that GFEM with global-local 

enrichment functions (named as GFEMgl) could be implemented in a non-

intrusive way in finite element closed-source codes as an add-on module. The 

global problem was solved through commercial finite element analysis software 
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(Abaqus) while the local problem containing three-dimensional fractures were 

solved by hp-adaptive GFEM. The applicability and accuracy of the methodology 

were investigated through several problems of three-dimensional fracture 

mechanics. 

Ozer et al. (2012) used GFEM/XFEM to deal with discontinuities 

arbitrarily located within a finite element mesh with the intention of formulating 

and implementing a three-dimensional and high order integral method of domain 

for the calculation of the energy release rate. Numerical examples were reported 

to verify the convergence rates where the results were compared with numerical 

solutions available in literature. 

The use of GFEM based on the global interdependent solution (structure) 

and on a fine scale (local problems) – GFEMgl – was exploited in Garzon et al. 

(2012). Local problems were treated using the adaptive hp-GFEM considering 

fine-scale features, such as areas with cracking process, while the overall 

problem is addressed by the structural behavior of the macro-scale. Numerical 

examples of crack growth and high fatigue cycle were illustrated as well as 

problems exhibiting localized nonlinear responses. 

In Amorim's master dissertation (AMORIM, 2012), it was studied hybrid-

mixed and purely mixed formulations, both combined with techniques to enrich 

the solutions provided by GFEM. The numerical methodology was applied to 

problems of the solid mechanics modeled by damage mechanics. The results were 

compared to simulated and non-linear complete strategies, proving that the 

simplified model could be used in localized damage situations in small domain 

regions. 

GFEM global-local approach (GFEMgl) was also studied in Alves (2012). 

In this scheme, the enrichment functions for a certain region of the mesh are 

numerically constructed from the solution of a local problem restricted to that 

region allowing the use of coarse meshes around the domain with complex stress 

field distribution. The proposed methodology was applied in two numerical 

examples, validating its results: beam under simple bending and wedge/plate 

with cracks. 

The formulation and implementation of an interface-based GFEM scheme 
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for solving thermal problems in discontinuous gradient fields in a 2D model has 

been presented in Soghrati et al. (2012), allowing the accurate and efficient 

capture of the discontinuity gradient along the solid-fluid interface without the 

need for meshes that conform to the geometry of the problem. The method was 

validated by comparison with infrared measurements of the polymeric fin 

thermal response with an embedded sinusoidal microchannel. 

Three-dimensional GFEM applied to discontinuous gradient fields was 

discussed in Soghrati and Geubelle (2012), showing that the method yields 

similar rate of convergence and accuracy level with non-conforming meshes as 

that of the standard FEM with conforming meshes at a computational cost 

similar to or lower than that of conventional GFEM. It has been demonstrated 

the potential of the method by solving some heat transfer problems. 

The application of GFEM to the problem of structural dynamic analysis of 

bars subject to axial displacements and trusses for the evaluation of the time 

response of the structure was presented in Torii and Machado (2012). 

Trigonometric functions were used as enrichment functions and the Newmark 

method and modal superposition method were used as algorithms for solution. 

The results were compared with available analytical solutions, FEM and HFEM. 

In Torii’s PhD thesis (TORII, 2012), the GFEM formulation was 

developed for the dynamic transient analysis problems for: bars subjected to axial 

displacements, beams subject to transverse displacements, two-dimensional wave 

equation and plane stress state. Studies were performed for time response and 

modal analyses. The results were compared with those obtained with the 

polynomial Hierarchical Finite Element Method (HFEM), being allowed to 

develop the formulation of higher order elements. 

The issue of ill-conditioning of the stiffness matrix and a proposal of 

modification in GFEM, being referred as the “Stable GFEM” (SGFEM) was 

presented in Babuška and Banerjee (2012). It was shown that the conditioning of 

the SGFEM stiffness matrix is not worse than the standard FEM in addition to 

being very robust in relation to the enrichment parameters. Several examples 

were performed applying the new SGFEM strategy. 

A heat transfer study using GFEM was presented in Soghrati et al. 
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(2013). In this work, a computational design of a three-dimensional 

microvascular mesh of actively-cooled composite material with sinusoidal and 

straight microchannels was developed. The aim was to minimize the maximum 

composite temperature, the volume fraction of the microchannels and the 

pressure drop required for the circulation of the fluid in microchannels. GFEM 

with enriched interface was used to calculate the temperature field and also a 

GFEM based solver was included to simplify the Petrov-Galerkin stabilization 

scheme in order to eliminate the spurious oscillations of the temperature field 

due to the heat transfer in microchannels be dominated by convection. 

An alternative to approach the free and forced vibrations in elastic bi-

dimensional problems using the high regularity GFEM to avoid the singularity of 

stiffness and mass matrices was discussed in Mazzochi et al. (2013). The 

approximation space was obtained from the high regularity explicit enrichment of 

the partition of unity (PoU) with complete polynomial functions. It was 

illustrated some examples where one investigates the influence of the regularity 

of the approximation spaces in obtaining relatively high frequencies. The modal 

superposition method was employed together with Newmark method for time 

integration. 

In Barros et al. (2013), GFEM was adapted to four types of error 

measures with particular attention to the two-dimensional elasticity problems 

with singular stress fields. The first error estimator was obtained by using the 

equilibrated element residual method, while the other three estimators overcame 

the necessity of equilibrating the residue by employing a subdomain strategy. 

The goal of this study was to investigate the performance of the four estimators 

in two-dimensional elasticity problems with geometries that produce 

singularities in the stress field and concentration of the error in the numerical 

solution. 

GFEM was applied to predict the potential of crack propagation in 

concrete slabs using a two-scale global-local approach (GFEMgl) in Evangelista et 

al. (2013). The main contribution of this work was the extension of GFEMgl 

approach to a class of three-dimensional multi- site cracking problems involving 

realistic boundaries conditions and existence of multiple cracks spanning 
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different orders of magnitude in size within the domain. 

The problems of heat transfer with sharp thermal gradients by GFEM 

with global-local enrichment functions (GFEMgl) were again analyzed in O’Hara 

et al. (2013). With this approach, the enrichment functions were generated in real 

time, providing enrichment functions tailored to the problem to be analyzed 

without a priori knowledge of the exact solution. Some simulations and 

convergence studies were performed. 

An adaptive mesh strategy was applied to analyze crack propagation 

using the hierarchical finite element method (HFEM) in Murotani et al. (2013). 

Like other strategies, an error estimator was presented as a first step and then 

an error value estimator using the deformations (Zienkiewicz-Zhu method, Wu et 

al. 1990) and, thereafter, the mesh was refined where need. 

Non-linear solid mechanics problems were analyzed by GFEM in Piedade 

Neto’s PhD thesis (PIEDADE NETO, 2013). It was discussed the development of 

a generalized contact element “segment-to-segment” based on the “mortar 

method” – a Lagrange multipliers method. The results were validated with some 

numerical examples. 

In Gupta et al. (2013a), it was conceived an extension of the global-local 

GFEM (GFEMgl) for problems of three-dimensional fracture mechanics involving 

again confined plasticity. The effectiveness of the proposed method was 

demonstrated by means of nonlinear numerical examples. 

The accuracy and conditioning of the stable GFEM (SGFEM) was 

analyzed and compared to the standard GFEM for problems of two-dimensional 

fracture mechanics in Gupta et al. (2013b). It was presented an additional set of 

enrichment functions yielded accurate results while not deteriorating the 

conditioning of the stiffness matrix and some rules of selection of the optimal set 

of nodes for enrichment. A simple strategy for implementing the stable GFEM in 

existing software was described too. The results presented in this paper showed 

that SGFEM delivered optimal convergence rates while the conditioning of the 

method is comparable to the standard FEM even when geometrical enrichments 

were adopted. 

The formulation of GFEM for analysis of free and transient vibration of 
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bars was looked over in Arndt et al. (2014). The efficiency and convergence of the 

proposed method for analysis of vibration of bars were studied. The results 

obtained by GFEM were also compared to those obtained by the analytical 

solution, some enrichment methods and the h- and p- versions of the Finite 

Element Method (FEM). 

The hydraulic fracturing was investigated in Gupta and Duarte (2014)  to 

complex-layered naturally fractured reservoirs, modeled in three-dimension 

using the adaptive GFEM to simulate the non-planar fracture propagation. An 

efficient technique to numerically integrate boundary conditions on crack 

surfaces was also proposed and implemented. In this method, stress intensity 

factors (SIF) with pressure on crack faces were extracted using the “Contour 

Integral Method” (CIM). Various non-planar crack geometries were investigated 

to demonstrate the robustness and flexibility of the proposed simulation 

methodology. 

In Malagù et al. (2014), the application and performance of high-order 

approximation techniques to one-dimensional nonlocal elastic rods was 

investigated. A set of one-dimensional integral-differential formulations and 

boundary-value problems with strain gradients were studied using the finite 

element method equipped with classic and high order basis functions. The 

accuracy and convergence properties of the approximation schemes against 

analytical solutions were evaluated. It was concluded that the B-spline basis 

functions were the most efficient at modeling problems in the presence of 

nonlocal and gradient constitutive law. 

A general construction of finite-dimensional approximation spaces 

leading to quasi-optimal convergence rates for Galerkin's approximation of 

solutions and elliptic equations in the polygonal domain when mixed Dirichlet-

Neumann boundary conditions are in place were presented in Mazzucato et al. 

(2014). The construction is quite general and depends on the choice of a sequence 

of spaces with good approximation on a certain subdomain that is some distance 

from the vertices. Several theorems, propositions and mathematical proofs were 

presented in this paper. 

Simulations of electromagnetic problems using a hybrid technique called 
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the “Vector-Generalized Finite Element Method” (VGFEM) allied to the standard 

Finite Element Method (FEM) was studied in Tuncer et al. (2014). This allowed 

the analysis of non-homogeneous problems without the definition of additional 

constraints in basis functions. The method was tested in several analyzes 

demonstrating the advantages in some applications as well as convergence 

characteristics. 

Zhang et al. (2014) showed GFEM has excellent approximation 

properties, but its conditioning can be much worse than that of FEM. It was 

exposed that the conditioning may not be worse than the standard FEM if some 

properties for the enrichments are satisfied. This is the principle of the already 

mentioned Stable GFEM (SGFEM). It was discussed the higher-order SGFEM in 

which higher order convergence occurs and suggested a specific modification of 

the enrichment function where the required conditioning was guaranteed, 

obtaining a robust implementation of this method. 

The objective in Cervelin's master dissertation (CERVELIN, 2014) was to 

develop an enrichment formulation of a polynomial high-order beam element that 

was able to improve the numerical results of the conventional methods. Different 

levels of enrichment were tested as well as the selection of elements to be 

enriched. Some examples were modeled by showing the performance of GFEM 

and the results were compared to commercial software’s and analytical solutions. 

It was reported that better results were obtained in analyzes with considerations 

of material non-linearity. 

In Shang’s PhD thesis (SHANG, 2014), it was developed elastodynamic 

analyzes in solid media aimed to problems of propagation of mechanical waves. 

The bar, beam and plane stress quadrilateral elements were implemented by 

discretizing the time with different algorithms, such as Newmark, Hilbert - 

Hughes – Taylor and generalized alpha methods. The solution space was 

discretized by standard and enriched elements using hierarchical enrichment 

and the partition of unity method. The performance of standard and enriched 

elements with different run-time algorithms including plastification was 

analyzed. 

Kim and Duarte (2015) worked with the global-local GFEM (GFEMgl) by 
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simulating the propagation of three-dimensional fracture mechanics. A non-

linear cohesive law was adopted to capture objectively the dissipated energy 

during the process of material degradation without the need of adaptive 

remeshing at the macro scale or artificial regularization parameters. The 

robustness, efficiency and accuracy of the approach were demonstrated by the 

results obtained in numerical experiments. 

An extension of the stable GFEM (SGFEM) for problems of 3-D fracture 

mechanics problems was developed in Gupta et al. (2015). It was shown an 

enrichment scheme based on singular bases and linear polynomials to recover the 

optimal convergence of the SGFEM. The accuracy and conditioning obtained with 

the SGFEM was compared with GFEM for different types of singular enrichment 

bases. The convergence of stress intensity factors (SIF) extracted from GFEM 

and SGFEM solutions and the effect of the size of enrichment sub-domains on the 

accuracy of extracted stress intensity factors (SIF) were also studied. 

GFEM was developed with enriched interface based on NURBS (Non-

Uniform Rational B-Spline) in Tan et al. (2015). This method was able to 

efficiently handling branched and curved microchannels. Almost optimal 

convergence rates were achieved with this method by demonstrating the 

capability of this numerical scheme using problems with complex microchannel 

configurations. 

Kim et al. (2015) elaborated GFEM with global-local enrichment 

functions (GFEMgl) using numerical experiments to confirm its effectiveness and 

showed that it was computationally more efficient than the analysis utilizing 

direct methods. The proposed methodology was capable of generating enrichment 

functions for problems where a priori knowledge of the solution was limited. 

Numerical experiments were developed to confirm the effectiveness and efficiency 

of this methodology. 

GFEM was introduced for three-dimensional solid analysis of physical 

problems exhibiting localized heating and its corresponding thermomechanical 

effects in Plews and Duarte (2015a). It was demonstrated the method in several 

applications, with localized thermal and mechanical characteristics and studied 

the accuracy and relative efficiency of traditional direct modeling approaches. 
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Plews and Duarte (2015b) modeled local heating problems where complex 

temperature gradients in materials caused three-dimensional, localized, intense 

stress and strain variation. To address them, the authors introduced a 

generalized FEM (GFEM) approach for analyzing three-dimensional solid, 

coupled physics problems exhibiting localized heating and corresponding 

thermomechanical effects. The capabilities of traditional hp-adaptive FEM or 

GFEM as well as GFEM with global-local enrichment functions were extended to 

one-way coupled thermo-structural problems. The method was demonstrated on 

some example thermal problems, and accuracy as well as computational 

efficiency relative to traditional direct modeling approaches was discussed. 

An adaptive refinement scheme to reduce geometry discretization errors 

and provide high-order enrichment function for interface-enriched GFEM was 

studied in Soghrati et al. (2015). The proposed method is based on h-adaptive and 

p-adaptive refinement techniques to reduce the discrepancies between the exact 

and discrete geometries of the curved materials interfaces. Several examples 

were presented to demonstrate the application of GFEM with interface-enrich by 

modeling thermo-mechanical problems with complex geometries. The accuracy 

and convergence rates of the proposed method were also studied. 

An “Interface-Enriched Generalized Finite Element Method” (IGFEM) for 

efficient 3-D electromagnetic analysis of heterogeneous materials was introduced 

in Zhang et al. (2015). To eliminate the requirement of generating conformal 

meshes for geometrically complex domains, FEM solution space was enriched at 

material interfaces to capture the discontinuities of the field and its derivatives. 

It was presented three application problems with complex internal structures to 

demonstrate the ability of the proposed method to analyze efficiently highly 

inhomogeneous composite materials, without a need to create multiple meshes 

for problems with randomly distributed inclusions. 

In Meschke and Leonhart (2015), a “novel” Generalized Finite Element 

Method (GFEM) was proposed for the approximation of the liquid pressure in 

hydro-mechanically coupled finite element analyses of hydraulic fracturing 

problems. While for the approximation of propagating cracks an enrichment of 

the displacement field according to the XFEM, adopting the Signum function 
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sgn(x) – (sgn(x) = +1, if x > 0; sgn(x) = 0, if x = 0; sgn(x) = –1, if x < 0) – in 

association with crack tip functions, was employed, problem specific and 

physically motivated enrichment functions for the liquid pressure field in the 

vicinity of pressurized cracks were proposed. The performance of the proposed 

GFEM model in the analysis of propagating, hydraulically induced cracks was 

demonstrated by means of a benchmark problem. 

A gradient-based shape optimization over a fixed mesh based on the 

recently introduced Interface-Enriched Generalized Finite Element Method 

(IGFEM) has been developed in Najafi et al. (2015), taking advantage of both 

Eulerian and Lagrangian approaches to eliminate mesh distortion issues as well 

as to represent geometrical features accurately. It was solved various numerical 

examples to demonstrate the capability of the method including the 

computational design of particulate and microvascular composites. 

A new formulation for the imposition of Dirichlet boundary conditions for 

problems with complex boundary geometries was proposed in Ramos et al. (2015). 

The Interface-Enriched Generalized Finite Element Method (IGFEM) was 

combined with the Lagrange multiplier method, and the results showed that the 

optimal rate of convergence was preserved. The new formulation yielded a 

symmetric stiffness matrix and through the solution of linear elastic problems, it 

was shown that the optimal rate of convergence was preserved for piecewise 

linear finite elements. 

Wu and Li (2015) aimed to remove, or at least, alleviate, the ill-

conditioning or even the singularity issue vulnerability to the system matrix of 

standard XFEM/GFEM while preserving accuracy of the solution as much as 

possible. Their objective was achieved by introducing a “novel” enrichment 

function, defined as the linear combination of the shifted Heaviside function 

(with respect to the node value) and the residual one (with respect to its linear 

interpolants). Several representative numerical simulations of element and 

structure benchmark tests were presented to validate the so called “Improved 

stable XFEM” (Is-XFEM), regarding both accuracy of the solution and 

conditioning of the system matrix. 

Torres et al. (2015) sought to identify and understand the advantages of 
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better capturing the information provided by singular enrichments over mesh-

based smooth partitions of unity. The purpose herein was to investigate some 

possible advantages of mesh-based smooth partition of unity for modeling 

discontinuities and singularities, in two-dimensional problems of linear elastic 

fracture mechanics, in such a way that the discretization error associated to 

stress discontinuities inherent in standard C0-continuous GFEM/XFEM 

approximations could be eliminated. The special instance of GFEM/XFEM that 

furnishes smooth approximations, Ck-GFEM, was applied to modeling singular 

stress fields that occur in problems of two-dimensional linear elastic fracture 

mechanics. 

It was shown an application of the Generalized Finite Element Method 

(GFEM) for modal analysis of 2D wave equation in Torii et al. (2015). The 

proposed GFEM approach was based on trigonometric functions, since these 

functions commonly appear in analytical solutions of wave propagation problems. 

The results were compared with the ones obtained with the polynomial FEM 

using higher order elements. 

A stable and flexible generalization of PUM that they called 

“Orthonormalized Generalized Finite Element Method” (OGFEM) was presented 

in Sillem et al. (2015). The method could construct a well-conditioned constrained 

stiffness matrix from an arbitrary basis. Partial or full orthonormalization could 

be applied, and every instance of PUM could be expressed in OGFEM framework, 

including GFEM and SGFEM. The method was demonstrated for the one-

dimensional modified Helmholtz, Poisson equations and compared to FEM, 

GFEM and SGFEM. 

Liu et al. (2015) applied the “Differential Quadrature Hierarchical Finite 

Element Method” (DQHFEM) to thickness-shear vibration of quartz circular 

crystal plate. The DQHFEM uses a reformulated differential quadrature rule 

(DQFEM) added to a Gauss-Lobatto quadrature rule and hierarchical finite 

element method to construct the shape functions. It overcame the numerical 

stability problem in the Hierarchical Finite Element Method (HFEM) and it was 

as accurate as the previous quoted method DQFEM. Numerical results of the 

DQHFEM were compared with the results of other methods, which validated the 
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high accuracy of the DQHFEM. 

Liu et al. (2016a) again looked over the differential quadrature 

hierarchical finite element method (DQHFEM) but now applied to vibration and 

bending of Mindlin’s plates. A numerical comparison and convergence studies of 

the DQHFEM were carried out by comparing the DQHFEM results with 

available exact or highly accurate approximate results in literatures. 

A generalized finite element method for linear elasticity equations with 

highly varying and oscillating coefficients was proposed in Henning and Persson 

(2016). The proposed GFEM was based on ideas often referred to as “Localized 

Orthogonal Decomposition” (LOD). It was considered linear elasticity equations 

with mixed inhomogeneous Dirichlet and Neumann boundary conditions. The 

theoretical a priori error estimate was confirmed by numerical examples. 

Arndt et al. (2016) developed an accurate assessment for determine 

natural frequencies for uniform and non-uniform Euler-Bernoulli beams and 

frames by an adaptive generalized finite element method (GFEM). In this 

adaptive GFEM, trigonometric and exponential enrichment functions were added 

to FEM shape functions by the partition of unity approach. Numerical examples 

were used to verify the accuracy of the iterative proposed method. 

An interface-enriched generalized finite element method (IGFEM) was 

presented for analyzing electromagnetic problems involving highly 

inhomogeneous materials in Zhang et al. (2016a). In order to avoid creating 

conformal meshes within a complex computational domain and prepare multiple 

meshes during optimization, it was introduced the enrichment vector basis 

functions concept. Two examples, involving multiple microvascular channels and 

circular inclusions of different radii, were analyzed to illustrate the capability of 

the proposed approach in handling complicated inhomogeneous geometries. 

It was developed a coupled hydro-mechanical formulation for the 

simulation of non-planar three-dimensional hydraulic fractures in Gupta and 

Duarte (2016a). A Generalized/eXtended Finite Element Method (G/XFEM) was 

adopted for the discretization of the coupled system of equations. Several three-

dimensional numerical verification examples were solved illustrating the 

generality and accuracy of the proposed coupled formulation and discretization 
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strategies. 

Shang et al. (2016) presented dynamic analyses of one-dimensional bar 

and Euler–Bernoulli beam problems with Generalized Finite Element Method 

(GFEM). This new enriched finite element formulation for one-dimensional bar 

and Euler–Bernoulli beam were enriched by trigonometric and exponential 

functions. Results of a beam free vibration analysis, of a bar elastodynamic 

analysis, and of a beam elastoplastic dynamic analysis were presented and 

compared to results from a standard FEM formulation. 

A free vibration analysis of Timoshenko beam models by using enriched 

finite element approaches was presented in Shang (2016). It was performed some 

analysis of free vibration of Timoshenko enriched by a C0 element formulated by 

GFEM and HFEM. The shear locking was briefly investigated in static analysis 

as well as a normalized discrete spectra analysis was examined. 

Zhang et al. (2016b) aimed to achieve more computational accuracy, 

especially on the conductivity boundaries and interfaces of inclusions, developing 

a forward solver in MAT-MI to compute the electromagnetic field and the induced 

acoustic field with generalized finite-element method (GFEM). The magneto 

acoustic tomography with magnetic induction (MAT-MI) is an emerging imaging 

approach. The aim of MAT-MI is to image the electrical conductivity distribution 

of biological tissue. The results demonstrated the feasibility of the forward solver 

in MAT-MI. 

Serdoun and Cherif (2016) developed a new C1 HSDT p-element with 

eight degrees of freedom per node and used it to find natural frequencies of 

laminated composite and sandwich thick plates in conjunction with Reddy’s 

higher order shear deformation theory (HSDT). This proposal was made to 

overcome the well-known C1 continuity requirement in with Reddy’s HSDT. 

Monotonic and uniform convergence occurred as the number of trigonometric 

shape functions was increased. The effects of the boundary conditions, core to 

face sheet thickness ratio, Young’s modulus ratio on natural frequencies were 

investigated through the analysis of these numerical results. 

The Interface-Enriched Generalized Finite Element Method (IGFEM) 

using a thermal solver combined with a gradient-based shape optimization 
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scheme to obtain optimal designs of a set of branched microchannel networks was 

analyzed in Tan et al. (2016). The aim of utilizing IGFEM was to make easy the 

discretization of the many configurations analyzed in the design process, and to 

avoid issues associated with mesh distortion presented in standard finite element 

shape optimization studies. The IGFEM solver has been verified against 

nonlinear, fluid/thermal 3D FLUENT solutions, and validated against 

experimental measurements. 

The challenge of a direct extension of the singular crack tip enrichment to 

dynamic/time dependent problems in the development history of XFEM was 

addressed in Wen and Tian (2016). Based on earlier works (TIAN, 2013; TIAN; 

WEN, 2015), an extra-dof-free (DOF = degree of freedom) partition of unity 

enrichment technique improved XFEM through a crack tip enrichment without 

extra dof (DOF). Numerical tests showed that the new XFEM was not only 

straightforward in implementation in dynamic problems, also provided the most 

accurate dynamic stress intensity factor in benchmark problems and it was 

orders of magnitude faster with an iterative solver. 

Liu et al. (2016b) worked again with the differential quadrature 

hierarchical finite element method (DQHFEM) to analyze the interface of 

composite structures. The micro/macro-mechanical analysis of the interface of 

composite structures was very convenient for this method in which both the 

interfaces of grains and grain boundaries and the interfaces of nanoparticle and 

the matrix were analyzed. Numerical comparison of the DQHFEM results for the 

plane static problems with exact and approximated analytical results showed the 

high accuracy and efficiency of the DQHFEM. 

It was suggested a modified intrinsic extended finite element method 

(XFEM) for one-dimensional and two dimensional elliptic equations with 

discontinuous coefficients and interfaces in Zhao et al. (2016). The shape 

functions on critical subdomains were special functions that reflected the 

discontinuous information of the interface. The Gauss integration in special 

elements crossed by interfaces was also changed. Numerical experiments were 

presented to verify the feasibility and superiority of the modified intrinsic XFEM 

compared with the standard FEM and extrinsic XFEM for this type of problem. 
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Gupta and Duarte (2016b) continued working with the 

Generalized/eXtended Finite Element Methods (G/XFEM) specifically in this 

paper studying an a priori estimate for the minimum size of the enrichment zone 

required for optimal convergence rate of GFEM/XFEM. Detailed numerical 

verification of these findings was also presented. 

Kergrene et al. (2016) expanded the study of the Stable Generalized 

Finite Element Method (SGFEM) presenting a numerical study that showed that 

if the “angle” between the finite element space and the enrichment space was 

bounded away from 0, uniformly with respect to the mesh, then GFEM is stable, 

i.e., the conditioning of GFEM is not worse than that of the standard FEM. It was 

explored some iterative methods and discussions about this approach with a solid 

mathematical background. 

A generalized finite element method based on the use of parametric 

solutions as enrichment functions was proposed in Canales et al. (2016). They 

called as V-GFEM (vademecum GFEM) aiming for efficient simulations of 

manufacturing processes. Its main advantage consists in adapting the trial space 

in real-time to approximate the solution of the problem optimally. Some 

numerical examples related to the simulation of thermal models encountered in 

welding processes were studied. 

A hierarchical beam finite element based on the p-version of FEM, using 

the kinematics of the Tessler’s refined zigzag theory (TESSLER et al. 2007), for 

the analysis of laminated composite beams was developed in Nallim et al. (2017). 

The hierarchical finite element proposed allowed taking into account all coupling 

effects in an efficient and unified procedure. This approach was validated in the 

analysis of laminated beams with some sequences of symmetric and asymmetric 

stacking, studying in each case its accuracy and stability. 

Son et al. (2017) proposed a generalized finite element technique that 

could accurately approximate the solution of the flexural-shear cantilever model 

of wall-frame structures proposed by Heidebrecht and Stafford Smith (1973). 

This approach adopted scaled monomials as enrichment functions inasmuch it 

consists of smooth functions such as polynomials, hyperbolic and trigonometric 

functions. Static and modal analyses of the flexural-shear cantilever wall-frame 



Enriched Modified Local Green’s Function Method Applied to Elasto Static Problems   

Literature Review 

 

 

41 

structures were performed using the proposed GFEM, and their accuracies were 

compared with those obtained using the standard FEM to investigate the 

effectiveness and robustness of the proposed method. 

The development of isogeometric analysis (IGA) for the free vibration 

problem of usual structures was presented in Rauen et al. (2017). According the 

frequency spectra results, IGA showed a higher amount of accurate frequencies 

for bar and beam problems, in which accuracy was improved when the NURBS 

(Non-Uniform Rational B-Splines) degree increases. The results were compared 

to FEM, GFEM and some of enriched methods. 

The aim of Lazzari’s master dissertation (LAZZARI, 2017) was to propose 

a NURBS-based enhancement to the Discontinuity-Enriched Finite Element 

Method (DE-FEM) in two dimensions. The capabilities of the NURBS-enhanced 

DE-FEM to solve several weakly discontinuous problems were assessed for 

composites of different complexities. The accuracy, convergence properties and 

numerical efficiency of the proposed method were investigated, in particular in 

comparison with the standard DE-FEM. 

Gupta et al. (2017) continued studying extraction methods of three stress 

intensity factor (SIF) but in this paper adopting the Generalized/eXtended Finite 

Element Method (G/XFEM), the Cutoff Function Method (CFM), the Contour 

Integral Method (CIM), and the Displacement Correlation Method (DCM). 

Several problems aimed at investigating the applicability and accuracy of the 

various extraction methods was solved. The study presented in this paper showed 

that the DCM is a competitive extraction method for the G/XFEM. 

The effects of temperature in the “Shape Memory Alloy Hybrid 

Composites” (SMAHC) cylindrical stiffened panels’ aero elastic stability using the 

hierarchical Rayleigh–Ritz method combined with the micromechanical model 

was investigated in Matos et al. (2017). The implementation of hierarchical 

functions proved to be very important in parametric studies, since it allowed 

improving accuracy without changing the mesh usually employed in standard 

finite element analysis. Different geometric configurations, laminate stacking 

sequences, boundary conditions and radii of curvature were investigated.  

Iqbal et al. (2017) proposed the study of a posteriori error estimates for 
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time-dependent generalized finite element simulations of heat transfer problems. 

It was investigated the estimate both for problems with a known exact solution, 

for which it was compared the indicator with the known error, and in cases where 

the exact solution was not known. The results provided the basis for space–time 

adaptive GFEMs for the heat equation. 

The determination of the stress intensity factors (SIF) of cracked 

homogeneous specimens using a low-order accurate eXtended Finite Element 

Method (XFEM)  was studied in Benvenuti (2017). The XFEM was considered not 

only in relation with a functional space but also with a variational principle, 

where the singular part of the strain was regarded as an equivalent eigenstrain. 

The proposed XFEM has been tested on some plane strain examples that 

demonstrated the approach is generally computationally more robust and 

accurate than existing comparable XFEMs, while keeping a minimal 

implementation effort. 

Komijani and Gracie (2017) proposed a new numerical method based on 

enriched finite element methods to analyze wave propagation in fractured media, 

modeling cracks independently of the mesh. The numerical method combines the 

Phantom Node Method (PNM) to model fractures and a Generalized Finite 

Element Method (GFEM) to accurately model wave phenomena. Through three 

numerical examples it was demonstrated that the spurious oscillations that 

appear in propagation pattern of high-frequency transient waves in PNM 

simulations can be effectively suppressed by including harmonic enrichment 

functions (PNM-GFEM). 

It was again considered the differential quadrature hierarchical finite 

element method (DQHFEM) to analyze the dynamic response of sandwich 

laminated plates with a viscoelastic core and laminated anisotropic face layers in 

Liu et al. (2017a). The DQHFEM presented good results using a few nodes on the 

boundary of an element and only several clamped modes inside the element. The 

response of the model has also been compared with approximated results 

available in literature, showing excellent agreement. 

Liu et al. (2017b) also again carried out a study involving the differential 

quadrature hierarchical finite element method (DQHFEM) but now, for the first 
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time, for hexahedral, triangular prism and tetrahedral domains were applied to 

three dimensional analyses of the interfaces of composites.  A representative 

volume element (RVE) was built considering a continuum-based analytical 

model. This model of grains and their boundaries allied to a two-scale RVE model 

of nanoparticles and the matrices were analyzed. Numerical results showed the 

high efficiency and accuracy of the DQHFEM in three dimensional analyses of 

the two-scale problems for the interfaces of composite structures. 

Pinheiro et al. (2017) studied the Ck, with k arbitrarily large, partition of 

unity function, built over a finite element mesh to simulate the non-linear 

behavior of structures with quasi-brittle materials. The numerical simulation of a 

plain concrete L-shaped panel was adopted with different kinds of polynomial 

enrichments in order to test the implemented resources and evaluate its 

performance on the analysis of damaged quasi-brittle media, comparing with the 

experimental results. 

A systematic approach using GFEM to determine the optimal number of 

plane waves for a given problem was proposed in Mahdinejad et al. (2017). 

Actually, this work addressed the methodology to identify the best number of 

enrichment functions for GFEM solution. The results indicated that the adopted 

strategy could guarantee accurate and converging responses for GFEM in 

complex problems, along with remarkable reductions of the computational cost. 

In Kim et al. (2017), a robust and efficient strategy was proposed to 

simulate mechanical problems involving cohesive fractures in the context of h-

adaptive generalized and standard finite element methods. The proposed 

approach was based on the division of a simulation into a suitable number of sub-

simulations where adaptive mesh refinement was performed only once based on 

refinement window around crack front process zone. Furthermore, a simplified 

strategy without the need of any data transfer between sub-simulations was 

proposed so that it could be readily employed in existing FEM software. The 

computational efficiency, accuracy, and robustness of the proposed strategies 

were demonstrated by an application to cohesive fracture simulations. 

A direct extension of the multiscale GFEM (MS-GFEM) was carried out 

in Friderikos et al. (2017) where damage and fracture mechanisms were now 
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taken into account. A methodology to enrich the global computational domain 

with numerically constructed enrichment functions of cracks was presented. The 

multiscale approach was implemented inside commercial finite element software 

in order to use the existing infrastructure of the object oriented code for the 

development of MS-GFEM. Preliminary numerical results showed that with a 

proper selection of enrichment functions based on the physics associated with the 

problem, it could be possible to predict the local microstructure interactions that 

cause damage. 

Shang et al. (2017) proposed a study with C0 quadrilateral enriched 

element by the Generalized Finite Element Method (GFEM), both trigonometric 

and exponential functions as enrichment functions, applied in free vibration 

analysis with distorted mesh. The enriched 2D quadrilateral element was 

employed for static bending problem and some free vibrations analyses providing 

accurate results with low level of enrichment and few degrees of freedom in 

several applications. The results were compared with other numerical 

formulations and showed that the proposed element had good performance. 

Some numerical tests in order to implement the latest stable GFEM 

(SGFEM) improvements were investigated in Sato (2017). Some aspects about 

integration when using higher order SGFEM were taken into account too. The 

numerical examples involved 2D panels that presented favorable geometries to 

explore the advantages of the method comparing it with standard FEM. The 

results showed the higher order SGFEM was more robust and reliable among the 

versions of GFEM tested. 

The study of NURBS Interface-Enriched GFEM (IGFEM) for a gradient-

based shape optimization over a fixed mesh was addressed in Najafi et al. (2017). 

It was combined the advantages of Eulerian approaches in eliminating mesh 

distortion issues with the accurate representation of the interface geometry in 

NURBS-based shape optimization. The analytical sensitivity developed in this 

work introduced new terms involved in the sensitivity of the shape functions and 

their derivatives for GFEM-based approaches. The method has been verified by 

solving two benchmark problems, and three application problems demonstrated 

the capabilities of the shape optimization scheme. 
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In Babuška et al. (2017), it was presented the theoretical justification for 

the Stable Generalized Finite Element Method (SGFEM) when applied to smooth 

interface problems. It was proven that a Generalized Finite Element Method 

(GFEM) is stable, i.e., its conditioning is not worse than that of the Finite 

Element Method, and it is robust with respect to the mesh, if the enrichment 

space of GFEM satisfies two axioms. The idea of a strongly stable GFEM 

associated with one of the two axioms was introduced. This work was the 

continuation of Kergrene et al. (2016), where the stability of GFEM, when applied 

to interface problems, was established through numerical experiments. The 

numerical results in Kergrene et al. (2016) indicated that GFEM is indeed 

strongly stable. 

A new methodology for modeling problems with both weak and strong 

discontinuities independently of the finite element discretization as a variance of 

eXtended/Generalized Finite Element Method (X/GFEM) was introduced in 

Aragón and Simone (2017). This method so called “Discontinuity-Enriched Finite 

Element Method” (DE-FEM), added enriched degrees of freedom only to nodes 

created at the intersection between a discontinuity and edges of elements in the 

mesh. Emphasis has been placed on the solution of problems in fracture 

mechanics but the formulation is general and could therefore be applied to solve 

other partial differential equations. This approach was compared to X/GFEM 

showing the same convergence rate as the standard FEM with matching meshes. 

Liu et al. (2017c) continued studying the differential quadrature 

hierarchical finite element method (DQHFEM) but applied for free in-plane 

vibration analysis of plates. The NURBS geometries were first transformed into 

differential quadrature hierarchical geometries and then the solutions field also 

used the differential quadrature hierarchical basis for analysis. Both curvilinear 

quadrilateral plates in several platforms and structures composed of several 

curvilinear quadrilateral elements were analyzed. The accuracy and convergence 

of the DQHFEM were validated through comparison with exact and approximate 

results in literature. 

An algorithm for non-intrusively coupling commercial finite element 

software with a research code implementing a hierarchical enrichment of finite 
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element spaces was discussed in Fillmore and Duarte (2018). The proposed 

algorithm could be used with any method that hierarchically enriches a finite 

element space. Examples showing the application of the hierarchical non-

intrusive algorithm (HNA) to the coupling of Abaqus with tridimensional GFEMgl 

software were presented. 

Gupta and Duarte (2018) worked with three-dimensional no-planar 

hydraulic fracture propagation proposing an algorithm and a fully coupled hydro 

mechanical-fracture formulation in a GFEM approach. The proposed algorithm 

extended the work of Gupta and Duarte (2016ab nm,) previously quoted by 

coupling a new fracture propagation model, so called “the GD model”, based on a 

regularization of Irwin’s criterion with the fluid flow in the fracture and the 

mechanical deformation of the rock. Examples demonstrating the accuracy and 

robustness of the proposed formulation and algorithm were presented. 

The reduced order modeling (ROM) of structures with local defects 

undergoing large deformations, i.e., within the nonlinear geometric range was 

the object of study in Wang et al. (2018). The aim was to develop this ROM as an 

enhancement of its counterpart for the virgin structure so that it could be easily 

adapted as the defects change and/or new defects appear. In order to numerically 

implement that, it was used the generalized finite element (GFEM). Validation 

results on the finite element model of a beam-like panel with a notch confirmed 

the appropriateness of these basis enrichments. 

Chen et al. (2018) proposed to compute elliptic equations with rough 

coefficients using random sampling strategies in the context of Generalized 

Finite Element Method (GFEM). It was addressed a quantitative criterion to 

analyze and compare these sampling strategies. Numerical evidence showed that 

the optimal basis functions could be well approximated by a random projection of 

generalized eigenvalue problem onto subspace of a-harmonic functions. 

And, the last but not the least, Weinhardt et al. (2018) dealt with two 

proposals to minimize the problem of sensitivity of GFEM in the dynamic 

analysis: an adaptation of the Stable Generalized Finite Element Method 

(SGFEM) and a stabilization strategy based on preconditioning of enrichment. 

Examples of one-dimensional modal and transient analysis were presented as 
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bars with cross section area variation. The results of this work pointed out that 

there are ways to overcome instability problems in GFEM applied to dynamic 

analysis, since simple proposals were able to positively impact the approaches. 

 

2.3 REVIEW OF THE MODIFIED LOCAL GREEN’S 

FUNCTION METHOD 

 

The Modified Local Green’s Function was developed by Barcellos and 

Silva (1987) and Silva (1988) after studies and modifications of the technique 

used by Burns (1975), Horak (1980) and Horak and Dorning (1981) called the 

“Local Green Function Method”. 

The initial conception of the Modified Local Green’s Function was to 

explore the main advantages of three other techniques: the Finite Element 

Method (FEM), the Boundary Element Method (BEM) and the Green’s Function 

Method (GFM). Through the MLGFM, the matrices of the integral equations 

system are determined directly without the explicit knowledge of the Green’s 

Function. This is one of the greatest advantages compared to the original method. 

The first applications (BARCELLOS; SILVA, 1987; SILVA, 1988) of this 

new technique were based on solutions of membranes problems, rods and beams. 

Later on, publications such as Barbieri and Barcellos (1993a; 1991a; 1991b; 

1993b) and Barcellos and Barbieri (1991) used this method to solve problems of 

nonhomogeneous potential, three-dimensional potential, Mindlin's plate and 

singular potential, with good results. 

The new method then turned over to the case of bending in orthotropic 

laminated plate by first order theory through the work of Machado and Barcellos 

(1993) investigating the MLGFM in problems not adequately solved by other 

numerical techniques. 

In Barbieri’s PhD thesis (BARBIERI, 1992), a generalization of the 

MLGFM to problems of structural mechanics was exposed, presenting the 

problems of homogeneous and nonhomogeneous potential, two-dimensional 

elasticity, including fracture problems and Mindlin’s plate bending. 
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The performance of the MLGFM in static and dynamic analyzes (modal 

analysis) concerning potential problems was examined in Fillipin, Barbieri and 

Barcellos’ paper (FILLIPIN et al., 1992a) as well as the "p-" and "h-” convergence 

rates. 

Other works also used this new numerical technique, reinforcing the good 

numerical performance of this integral method, such that 

 Barbieri et. al. (1992) applied to elasto static problems; 

 Machado et. al. (1992), in the case of laminated plates analyzed by 

higher order theory (KANT; PANDYA, 1988); 

 Filippin et. al. (1992c), to dynamic problems governed by the Helmholtz 

Equation, as free vibrations in membranes and propagation of waves 

in acoustic cavities; 

 Filippin et. al. (1992b) presented the MLGFM as a computational tool, 

to exemplify membrane-free vibration problems. It was suggested the 

use of adaptive techniques to maximize the potential of the method; 

 Filippin (1992), in his master's dissertation, presented more details 

and cases for problems of membrane-free vibration and acoustic 

cavities; 

 Maldaner and Barcellos (1992) for two-dimensional fracture problems. 

Several laminated plate problems with first order and higher order 

theories employing the MLGFM were shown in Machado's PhD thesis 

(MACHADO, 1992) where the results were compared with the available 

literature. 

In Barcellos et al. (1992a; 1992b) papers, it was consolidated a review of 

the method until that moment, with some of its latest applications. 

A new application of the MLGFM was presented in Barbieri et al. 

(1993a), where the problem of shells was treated through the one-cell approach. 

In 1993, other works based on MLGFM were developed and published 

such as 

 Barbieri and Barcellos (1993a), for potential problems in which the 

properties of the medium vary continuously or continuously in parts; 
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 Barbieri and Barcellos (1993b), advancing in studies of Mindlin’s plates 

with emphasis on numerical applications; 

 Maldaner et. al. (1993), amplifying the range of the MLGFM for two-

dimensional fracture using the "quarter-point" element; 

 Maldaner and Barcellos (1993) presenting a comparison of the special 

fracture elements performance based on the family of Akin and Stem, 

applying the MLGFM; 

 Machado et al. (1993) comparing the performance of MLGFM with 

some Finite Element formulations to solve the problem of orthotropic 

laminated plates; 

 Filippin et al. (1993), more results were presented for free-vibration of 

membrane and acoustic cavities problems emphasizing the excellent 

convergence of results for the high frequencies; 

 Barbieri et al. (1993b) presenting a study of mesh distortion sensitivity 

and punctual convergence in Mindlin’s plate problems; 

 Munoz et al. (1993), was devoted to a first free-vibration analysis of 

Mindlin's plate problem. 

In Maldaner's master dissertation MALDANER (1993), the MLGFM was 

studied, implementing special non-isoparametric fracture elements, comparing 

its performances with those of conventional elements. 

Muñoz (MUÑOZ, 1994) dealt with the application of the Modified Local 

Green’s Function Method (MLGFM) to problems of bending and free-vibration of 

Reissner-Mindlin’s plates. A general alternative formulation of the method was 

presented, demonstrating that the approximate solution error is minimized only 

in domain, within each Green cell. Particular attention was assigned to the 

analysis of the locking phenomenon when approaching Green's function with 

finite elements based on displacements. 

The Modified Local Green’s Function (MLGFM) was adopted to solve 

problems of three-dimensional elastostatics in Meira Junior’s work (MEIRA 

JUNIOR, 1994). The MLGFM was used to solve some examples of three-

dimensional elasticity applications, such as: prismatic bar under uniform 

traction, block subjected to simple shear, bending of a short beam uniformly 
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loaded, thick-walled cylinder with internal pressure, bending of a beam curve by 

a load at its extremity and pure bending of a prismatic beam. 

A comparative analysis of the MLGFM performance versus FEM for 

bending and free-vibration Mindlin's plate solution was presented in Muñoz and 

Barcellos (1994a). Comparisons were made for displacements, reactions and 

natural frequencies (vibration). 

Muñoz and Barcellos (1994b) presented more results of the MLGFM 

application in the free-vibration Mindlin’s plate solution. It was shown the 

MLGFM formulation for free-vibration Mindlin’s plate problems and numerical 

results for plates with some boundary conditions. 

A detailed review of the MLGFM can be found in Muñoz (1994) and Meira 

(1994) works, up to 1994. 

In Barbieri et al. (1998), it was formally introduced the mathematical 

basis of MLGFM. In fact, this work is split into two parts (two publications). 

Although many researchers have presented numerical results using this 

technique, no attempt had been made until at the time of this work to 

demonstrate the solid mathematical basis of this method. These publications 

were sought to close this gap. 

Barbieri and Muñoz (1998) published this second paper commented above 

showing a compilation of significant results obtained by the application of the 

MLGFM to the potential problems and Mindlin’s plate. Numerical examples were 

given explaining the main points of the method, for example, convergence rate, 

processing time, application to the problems of one-cell and multi-cell two-

dimensional potential, two-dimensional elasticity problems and Mindlin’s plates 

under bending with one-cell approach. 

After a long period, in Silva (2004), the application of MLGFM was 

resumed, applying this technique to laminated composite plates previously 

explored by Machado (1994) but including the damage within these structures. 

The damage was modeled as transverse cracks distributed in the matrix and 

some configurations of cracked laminated plates were studied. 

Continuing the studies of laminated composite plates with cracks in their 

matrices, Silva et al. (2005) proposed an investigation of strain-displacement 
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relations for damaged structures and, subsequently, including the cracks in the 

matrix. The MLGFM was used to approximate the final solution. Some results 

were shown by varying the stacking sequence of the plates, number of laminated 

layers, orientation of the fibers and the extension of damage compared to other 

publications. 

With Tassini’s master dissertation (TASSINI, 2005), the studies of 

laminated composite plates with cracks in the matrix were extended, but now 

considering the evolution of the damage being clearly the continuity of the 

studies developed by Silva (2004). In this work, it was shown that the strength of 

the laminated plates is affected by the damage process when subjected to some 

loading in time. The strain energy criterion was used to calculate the evolution of 

the damage. 

It was shown a comparison between the MLGFM for the evaluation of the 

heat flow in anisotropic media with finite volumes and finite elements in Muñoz 

and Vaz (2007). In this paper, the heat flow was approached by using a super 

convergent recovery scheme, while the former flow quantities were calculated 

directly at nodes. Linear elements were used in the numerical example. Non-

homogeneous temperature and flow boundary conditions were included. 

Again, MLGFM was used in Machado et al. (2008) to solve problems of 

laminated composite plates with generalized transversal cracks. The effect of the 

damage was considered as an additional loading vector and no modification was 

necessary in the stiffness matrix of the problem. 

Machado et al. (2012) dealt with laminated composite plates with 

generalized transversal cracks in the matrix by applying the Mechanical Damage 

Theory (LEMAITRE, 1992) where the loss of stiffness in laminated composite 

plates was calculated when the cracks were formed into the matrix and the 

consequent evolution of the damage based on time and loading. This work was 

presented in the form of a chapter of a book. 

It was presented a review of the main applications of the Modified Local 

Green’s Function Method in the context of the structural mechanics of plates in 

Machado et al. (2013). This contribution was part of the celebration of the 70th 

Prof. Clovis Sperb of Barcellos’ anniversary. 
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Barbieri and Machado (2015) resumed the local strategy (multiple cells) 

for calculating the projections of Green's function using de Finite Element 

Method (FEM). The numerical examples showed some aspects of the method that 

had not yet been observed and good results for the flow in all nodes of the mesh 

as expected in the multi-cell approach. 

In 2017, two conference papers were published dealing with the 

enrichment of the MLGFM. In Silva et al. (2017a) and Silva et al. (2017b), the 

first application of this approach was employed to solve some 2D elasticity 

problems both in plane strain and stress states. The results showed the great 

potential of this application and further developments are expected with this new 

concept. 

In next chapter, in order to properly prepare the mathematical 

formulation of the Enriched Modified Local Green’s Functions Method, the 

enriched methods used in this work – HFEM and GFEM – are presented and 

developed. 
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Chapter 3 

Enriched Finite Element Methods: 

HFEM and GFEM 

3.1 Introduction 

 

Since the 1950s, with the computational advance fomented mainly by the 

spatial race, several approximate methods of solving equations that govern 

physical problems have been developed. These methods are able to solve 

approximately problems where analytical solutions are not feasible. One of these 

methods widely used until now is the Galerkin Method (REDDY, 1986). The 

Galerkin Method is an established procedure of converting a continuous operator 

problem (such as a differential equation) to a discrete problem, seeking an 

approximate solution of a boundary-value problem in a finite-dimensional space. 

Actually, the determination of suitable basis functions for use in the Galerkin 

method can be extremely difficult. The Finite Element Method (FEM) overcomes 

this difficulty by providing a systematic means for generating basis functions on 

domains of fairly arbitrary shape. There are several methods that have the basic 

characteristics of FEM in addition to some kind of modification or enrichment. 

Arndt (2009) was one of works that classified a group of methods based on FEM 

as “Enriched Finite Element Methods”. The main feature of the enriched methods 

is the enrichment of the shape functions space from the classical FEM by adding 
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other polynomial or non-polynomial functions related to the solution of the 

governing differential equation of the problem. The approximated solution of 

these methods – the finite element approximation of displacements – in element 

domain, for example, is obtained adding the FEM displacement FEMu  and the 

enriched displacement ENRICHEDu . This concept will be further detailed in this 

chapter. 

Different sets of enrichment functions can produce different enriched 

methods as quoted by Arndt (2009) such as: Assumed Modes Method (ENGELS, 

1992; GANESAN; ENGELS, 1992), Composite Element Method (ZENG, 1998) 

and p-Fourier Finite Element Method (LEUNG; CHAN, 1998). These methods 

classified by Arndt as “enriched methods” have also in common another 

important characteristic: the approximation functions are reused when the order 

of the approach is increased. This characteristic is known as “Hierarchical”. 

Although these concepts were applied by Arndt (2009) in a vibration/dynamic 

analysis context, this idea was firstly employed in static and singular problems 

analysis (PEANO, 1976; ZIENKIEWICZ et al., 1983). The Hierarchical Finite 

Element Method (HFEM) is the subject of the first part of this chapter. 

Among the enriched formulations, the Generalized Finite Elements has to 

be highlighted. GFEM described by Babuška and Melenk (1997) has been 

presented as a way of generating approximation spaces from any basis functions 

by multiplying these basis functions and a partition of unity (PoU). GFEM is 

based on the Partition of Unity Method (PUM) presented by Melenk and Babuška 

(1996) that showed that the space obtained from PUM was able to inherit the 

approximation properties of the original space and moreover the conformity and 

regularity properties. For instance, the conventional Lagrangian FEM shape 

functions form a partition of unity. 

 Independently, similar concepts were presented by Duarte and Oden 

(1995) – the hp Cloud Method. According to Babuška et al. (2003), several other 

methods are strictly related to GFEM, because they are based on PUM, such as, 

The Method of Finite Spheres – MFS – (DE; BATHE, 2001) and the Extended 

Finite Element Method – XFEM – (BELYTSCHKO et al., 2009). Anyway, the 

concept developed by Duarte and Oden (1995) as well as Babuška and Melenk 
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(1997) are very similar, being unified later on as the name GFEM. This is the 

concept explored here in this work and the subject of the second part of this 

chapter. 

Wrapping up this chapter, the element’s enrichment is established 

following the procedure proposed by Šolín et al. (2004). It is important to point 

out that the element’s enrichment for both approaches, HFEM and GFEM, are 

implemented according to the developments described in last section of this 

chapter. 

 

3.2 ENRICHED METHODS 

3.2.1 The Hierarchical Finite Element Method (HFEM) 

 

The standard finite element formulation uses polynomials as shape 

functions. Furthermore, the coefficients of these polynomials are determined by 

using mathematical boundary conditions, related to nodal positions. This type of 

formulation presents several difficulties in the case where element order increase 

is desired, thus the quantity of nodes should be increased. Therefore, a serious 

drawback exists with this “standard” shape functions (for example, Lagrange 

shape functions) since when element refinement is made totally new shape 

functions have to be generated and hence all calculations repeated. In other 

words, it is necessary to generate new shape functions to increase the element 

order, without possibilities to reuse those from previous order. It represents a 

difficulty in computational code implementation, thus there is not hierarchical 

characteristic in this type of mesh refinement. From a computational cost point of 

view, it will be advantageous to have a solution that permits increasing the mesh 

refinement order without necessity to recalculate the matrices created from 

previous orders. The finite element formulations with hierarchical enrichment 

present this characteristic. When the enrichment level is augmented, it increases 

the element order, but without the necessity to reconstruct the terms in matrices 
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obtained from previous level. The new enrichment functions increase the matrix 

size, however, reuse integrally those terms generated from previous level. 

It seems that the hierarchical functions were introduced by Zienkiewicz, 

Irons, Scott and Campbell around the year 1971, according to the work of 

Zienkiewicz et al. (1983). Campion and Jarvis (1996) highlighted the main 

advantages of hierarchical methods: the retention of the coefficients of the 

stiffness matrix when the order of the interpolation increases and the 

achievement of high convergence rates without the need to refine the mesh, 

besides resulting in improved conditioning of the involved system equation. It is 

difficult to trace the origin of the name “Hierarchical Finite Element Method – 

HFEM”, but it seems that Peano (1976) was the first to use it. 

The idea of HFEM is to utilize approximation spaces that are 

hierarchical. That is, by increasing the order of an approximation space from “p” 

to “p+1” the functions used for order “p” are kept. In traditional form, HFEM 

employs the Lagrange polynomials as hierarchical functions, due to the fact that 

these polynomials are relatively easy to be obtained, and they respect the 

features of conventional FEM, that makes easier the application of boundary 

conditions and determination of stiffness matrix. This is cited by Beslin and 

Nicolas (1997) as “a particular class of the p-version of the finite element 

method”. But a hierarchical basis doesn’t necessarily need to be a polynomial 

form since it is found developments in trigonometric basis too, for instance 

(RIBEIRO, 2001). 

In this work, the context of HFEM employs hierarchical polynomials as 

“enrichment functions”. These functions are developed and incorporated into 

standard finite element shape functions. A special attention has been taken in 

handling these hierarchical functions to avoid compromising the nodal physical 

meanings, in finite element mesh. It is desirable to employ the hierarchical shape 

functions that assume zero value in nodal points and any other values in other 

points in element domain. That is exactly the case of Lobatto shape functions! 

Hence, the Lobatto shape functions are referred as enrichment functions with 

hierarchical characteristics. 
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The construction of hierarchical mathematical spaces by polynomials is 

described in detail by Šolín et al. (2004) as mentioned before but we can 

summarize the concept in such way (see Appendix “A”):  

According to Ciarlet (1991) and Šolín et al. (2004), a finite element in ℝn 

is a triad K =  ;; p

e

h PK , where 

 e

hK  is a closed subset of ℝn with a nonempty interior and a Lipschitz-

continuous boundary; 

 Pp is a finite-dimensional space of real-valued functions defined over 

the set e

hK  of dimension Np = dim(Pp); 

 Σ is a set of Np linear forms ζi, 1 ≤ i ≤ Np, defined over the space Pp and, 

by definition, it is assumed that the set Σ is Pp-unisolvent, in the following sense: 

given any real scalars i , 1 ≤ i ≤ Np, there exists a unique function l ∈ Pp that 

satisfies 

 

ii l  )(  for 1 ≤ i ≤ Np, (3.1) 

 

in particular 

 

ijij l  )(  for 1 ≤ j ≤ Np, (3.2) 

 

and the following identity holds 

 

i

N

i

i lll
p





1

)(  for all l ∈ Pp. (3.3) 

 

Here δij is the standard “Kronecker delta” (for discrete cases), δij = 1 if i = j 

and δij = 0 otherwise. The linear forms ζi, 1 ≤ i ≤ Np, are called the degrees of 

freedom (DOF) of the finite element, and the functions li, 1 ≤ i ≤ Np, are called the 

basis functions of the finite element. The basis functions are also called the shape 

functions in engineering literature. The set e

hK  itself is often called a finite 
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element. What makes the method especially attractive is the fact that these basis 

functions are piecewise polynomials that are non-zero only a relatively small part 

of the domain 

Now, consider a domain e

hK  and a space Pp of polynomials of the order at 

most “n” of dimension Np. Consider a hierarchic basis  N

n
BBBB ...,2,1,  in the 

space Pp. By hierarchic we mean that 

 

1 nn
BB   (3.4) 

 

for every “n”. Every polynomial pPg  can be uniquely expressed as a linear 

combination 

 





pp N

i

ii

N

i

ii gLg
11

)( BB   (3.5) 

 

where λi are real coefficients and ii gL )(  linear forms 

 

Li : Pp → ℝ,     i = 1, 2,…, Np. (3.6) 

 

Obviously, the choice  
pN ,,, 21 n

B  yields a unisolvent finite 

element  ;; p

e

h PK  as defined in Šolín et al. (2004), and by the definition, the 

hierarchic basis B  has the “delta-property”1. “Unisolvency” here is another 

expression for compatibility of the set of degrees of freedom Σ with the 

polynomial space Pp. So, the standard Lagrange interpolation in FEM has now to 

be combined with projection onto hierarchically constructed subspaces of the 

space Pp, technique also known as “projection-based interpolation” (ŠOLÍN et al., 

2004). This nontrivial technique extends the standard nodal interpolation to 

hierarchic higher-order elements and forms an essential part of higher-order 

finite element methods. It is not the objective of this work to explore it and for 

                                                
1 δ-property: only one shape function is non-null at each node. 
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further details, please see Šolín et al. (2004). In there, the developments of the 

projection-based interpolant is constructed as a sum of a vertex and bubble 

interpolants in a 1D element and a sum of a vertex, edge and bubble interpolants 

in a 2D element. This concept will be better developed further in this work in last 

section named “The Element’s Enrichment”. 

One way of constructing the hierarchical mathematical space, among any 

other ones, is to use the Lobatto shape functions. The first six Lobatto shape 

functions used in this work can be visualized on Table 3.1. 

 

Table 3.1 – First six Lobatto shape functions and their polynomial order. 

HFEM ENRICHED SHAPE FUNCTIONS 
    

Polynomial 

Order 
Lobatto Shape Functions 

p = 1 
2

1
0


l  

2

1
1


l  

p = 2 )1(
2

3

2

1 2

2  l  

p = 3  )1(
2

5

2

1 2

3 l  

p = 4 )15)(1(
2

7

8

1 22

4  l  

p = 5  )37)(1(
2

9

8

1 22

5 l  

 

Observe that   = [−1, 1] is the finite element natural coordinate known 

as local coordinates. These shape functions can be plotted in a graph as shown in 

Figure 3.1. Also, note that the boundary conditions can be easily set for Lobatto 

shape functions with p > 2 where “p” is the Lobatto shape function polynomial 

order since they have null values at the end of the interval   = [-1, 1]. 

It was observed by Torii (2012) there are only diagonal terms added to the 
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stiffness matrix when increasing the element order “p” of a one-dimensional 

approximation using Lobatto shape functions. This characteristic is due to the 

fact that the Lobatto shape functions are “orthogonal polynomials” with respect 

to the bilinear operator norm of the problem’s weak form. But it is important to 

emphasize that this attribute may not be kept for bi-dimensional problems. 

 

 

Figure 3.1 – HFEM shape functions used in this work: first six Lobatto shape functions 

(ŠOLÍN et al., 2004). 

 

3.2.2 The Generalized Finite Element Method (GFEM) 

 

According to Barros (2002), “The Generalized Finite Element Method – 

GFEM” was independently proposed by Babuška, Caloz and Osborn as “Special 

Finite Element Method - SFEM” (BABUŠKA et al., 1994) and further by Babuška 

and Melenk as “The Partition of Unity Finite Element Method – PUFEM or 

simply PUM” (MELENK; BABUŠKA, 1996) at the same time that Duarte and 
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Oden established “The hp Cloud Method” (DUARTE; ODEN, 1995) as a hybrid 

FEM formulation. 

The GFEM is nowadays understood as an extension of the standard 

Finite Element Method (FEM) in the sense that it allows us to incorporate into 

the basis of the approximation any special functions which are known to well 

approximate the solution locally. These special functions are pasted into the 

standard FEM basis of mapped polynomials by employing the Partition of Unity 

Method (PUM). So, the key feature of these methods is the use of a partition of 

unity (PoU). 

It is important to emphasize the distinction proposed by Torii (2012) and 

also used here in this work: we named PUM the methodology of obtaining local 

approximate functions from any PoU plus a basis function that represent the 

physical phenomenon to be studied. On the other hand, the name “GFEM” is 

adopted in the case of the obtained functions from PUM are added with the 

standard FEM functions. 

Next section will deal with the definition of the PUM and it will make 

clear that it is a generalization of a partition of unity given by the standard FEM. 

 

3.2.2.1 The partition of unity method (PUM) 

 

The most prominent features of PUM according to Melenk and Babuška 

(1996) are: 

1. The ability to include a priori knowledge about the local behavior of the 

solution in the finite element space; 

2. The ability to construct finite element spaces of any desired regularity 

(as may be important for the solution of higher order equations); 

3. The fact that the PUM falls into the category of “meshless" methods; a 

mesh in the classical sense does not have to be created and thus the complicated 

meshing process is avoided; 

4. The fact that the PUM can be understood as a generalization of the 

classical h, p, and hp versions of the Finite Element Method. 

The main technical notion in the construction of the PUM spaces is the 
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(M, C∞, CG) partition of unity. The mathematical foundation of the Partition of 

Unity Method will be then further examined (MELENK; BABUŠKA, 1996). 

 

Definition 3.1 (Partition of Unity). Let  ℝn be an open set,  i  be 

an open cover of   satisfying a pointwise overlap condition 

 

NM           x           card{i|x i } ≤ M. (3.7) 

 

Let  i  be a Lipschitz partition of unity subordinate to the cover  i  

satisfying 

 

    iii  closuresupp  , (3.8) 

 on1
i

i , (3.9) 

 CnLi )(R
 , (3.10) 

i

G

Li

C
n


 

diam)(R
  (3.11) 

 

where C∞, CG are two constants and L∞ is the space of all measurable functions 

which are bounded almost everywhere. Then  i  is called a (M, C∞, CG) partition 

of unity subordinate to the cover  i . The partition of unity  i  is said to be of 

degree 0Nm  if   i  Cm(ℝn). The covering sets  i are called “patches”. 

From the Definition 3.1, the constant M from expression 3.7 controls the 

overlap of the patches. In particular, not more than M patches overlap in any 

given point x  of the domain. The expression 3.8 express that the functions 

 i  must be non-null only inside their patches. The expression 3.9 points out the 

fact that the functions  i  of a PoU must have the unit value when added with. 

And, finally, the expression 3.10 denote that the functions  i  must be bounded 

and the expression 3.11 that  i  possess bounded derivatives, i.e., it expresses 

the fact that we need to control the gradient of the partition of unity functions 
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 i  if we are interested in H1 estimates. 

 

Definition 3.2 (PUM space). Let  i  be an open cover of  ℝn and let 

 i  be a (M, C∞, CG) partition of unity subordinate to the cover  i . Let 

  ii HV 1  be given. Then the space 

 

 








  1HVvvVV
i

ii

i

iiiiPUM   (3.12) 

 

is called the PUM space. The PUM space VPUM is said to be of degree Nm  if 

PUMV  Cm(ℝn). The spaces Vi are referred to the local basis (approximate) 

spaces. 

 

Theorem 3.1 (PUM approximation). Let  ℝn be given. Let  i ,  i  

and {Vi} be as in Definitions 3.1 and 3.2. Let   1Hu  be the function to be 

approximated. Assume that the local basis (approximate) spaces Vi have 

following approximation properties: On each patch i , u can be 

approximated by a function ii Vv   such that 

 

 
 ivu

iLi 12 ε


, (3.13) 

 
 

 ivu
iLi 22 ε


. (3.14) 

 

where  i1ε  and  i2ε  are dependent values of an “i-th” cover that confine  ivu  

and their derivatives according to a convenient norm. 

Then the function 

 

  1HVvu
i

iih   (3.15) 

 

satisfies 
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The Theorem 3.1 demonstrates that the PUM space is similar to the base 

spaces Vi. From expression 3.16 it is observed that the difference between the 

original solution u and the approximate one hu  depends on a constant and the 

individual differences of the chosen functions ii Vv  . That is the same for the 

gradient of the approximate function in expression 3.17. Consequently, it is 

expected the PUM space VPUM is able to give similar results as the local basis 

space Vi once the ii Vv   is a good approximation of u. 

There is an advantage on using the PUM space: it is possible to employ 

non polynomial functions ii Vv   once these functions represent the physical 

phenomenon to be studied. This aspect allows enlarging the approximate spaces. 

It is possible to build several kinds of PoU using, for instance: Lagrange and 

Legendre polynomials, Lobatto and Shepard functions, B-Splines and 

trigonometric functions (SHANG et al., 2017). 

As a matter of fact, the usual FEM piecewise linear hat functions on a 

regular mesh in two dimensions satisfy the above conditions of a (M, C∞, CG) 

partition of unity; and condition 3.11 is satisfied because of the regularity of the 

mesh, i.e., the minimum angle condition satisfied by the triangulation. For 

instance, the classical bilinear finite element functions on quadrilateral meshes 

form a (M, C∞, CG) partition of unity (M = 4, C∞ =1). 

Actually, the partition of unity generated by the usual FEM linear hat 

functions can be better visualized in a one-dimensional finite elements example 

as in Figure 3.2. In this case, each global approximate function ϕi is a PoU φi 

given by Definition 3.1. Examining this definition: the cover {Ωi} is the finite 

element mesh and each patch Ωi corresponds to a subdomain of Ω formed by the 

union of the elements that share an arbitrary node xi. Each function ϕi is defined 

by two neighboring elements except by the functions ϕ1 and ϕ4. For example, the 
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function ϕ2 is defined by the union of the first and second elements. Hence, each 

patch is given by two adjacent elements as previously mentioned and, in this 

case, the number of patches in each finite element is 2; thus, M = 2. From 

expression 3.9, the sum of all functions ϕi results in unity across the domain. 

Moreover, both the functions ϕi and their first derivatives are bounded from 

expressions 3.10 and 3.11. Finally, it is observed that ϕi acts only under its patch 

Ωi as enunciated by expression 3.8. In other words, the support of each PoU ϕi is 

constrained in the closure of each patch Ωi; ϕi is different of zero only inside the 

patch Ωi. 

 

 

Figure 3.2 – FEM linear hat functions as a partition of unity – PoU. SOURCE: 

Adapted from Torii (2012). 
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For GFEM employed in this work, the standard FEM shape functions are 

taken as the partition of unity (PoU). For example, for 1D problems, the standard 

FEM uses the already mentioned linear “hat functions” as well as for the 2D 

problems, the standard FEM uses the bilinear Lagrangian functions. The original 

element domain is then enriched by appropriated enrichment local functions. 

 

3.2.2.2 GFEM generalization 

 

Taking the hp cloud method (DUARTE; ODEN, 1995) as reference, the 

element domain can then be enriched by multiplying the standard shape function 

of finite elements by a new set of linearly independent functions called here as 

“enrichment functions”. These enrichment functions can be selected arbitrarily or 

even can be set from the analytical solutions, since they are in accordance with 

mathematical condition previously established by GFEM. This a priori 

knowledge is introduced by the PUM into the local approximate space to generate 

the “generalized finite element functions” or simply the “enriched shape 

functions”. They can range from polynomials to very sophisticated handbook 

functions (STROUBOULIS et al., 2001). These are local approximations and they 

should represent the solution on the associated support in its own patch Ωi. So, 

using the PUM to generate local approximation spaces in patches Ωi, it is possible 

to represent the overall approximation in the cover Ω (BABUŠKA et al., 2002). 

A generalization of GFEM formulation in ℝ2 can be understood as an 

overlap of an arbitrary enrichment function and a partition of unity (PoU), as can 

be seen in Figure 3.3. For the linear standard element (hat function), the PoU is 

a polynomial function of order p = 1 (bilinear function), which generates an 

approximation C0 (Figure 3.3a). The enrichment function is an arbitrary special 

function, polynomial or non-polynomial form (Figure 3.3b). The appropriate 

combination of these two functions, the enrichment function and the PoU (in this 

case, the hat function from the standard FEM), provides the enriched shape 

function (Figure 3.3c) which has special characteristics of the approximating 

chosen function and, at the same time, incorporates the compact support from the 

PoU. Thus, the overall approximation is constructed without penalizing the 
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continuity between the elements. 

 

 

Figure 3.3 – Construction of an enriched shape function (also known as a “generalized 

FEM shape function”) using the Partition of Unity Method (PUM): 

schematic representation. SOURCE: Duarte and Kim (2008). 

 

Note that an approximate solution proposed by GFEM in element domain 

may be written as an Enriched Method, i.e., as the sum of two parts:  

 

ENRICHEDFEM

e

h uuu   (3.18) 

 

where uFEM is the standard Finite Element Method (FEM) part based on nodal 

degrees of freedom and uENRICHED is the enrichment part produced by the 

partition of unity approach based on field degrees of freedom. In this sense, the 

nodal displacement )(e

hu  for an element can be expressed by 
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where φi are the partition of unity functions, γjn are the enrichment functions, Ne 

is the total number of nodes in the element, Nj is the number of used enrichment 

functions, ui are the nodal displacements (nodal degrees of freedom) and bjn are 

the field degrees of freedom related to the enrichment functions γjn without a 

physical meaning. 

Hence, for a given one-dimensional domain Ω1D, the set of functions i  

constitutes a partition of unity φi in Ω1D and it has the unity value in one node of 

element and zero in all other nodes, such as 

 

1)( 

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i

i

1

  (3.20) 

 

and for a given two-dimensional domain Ω2D, the set of functions i  constitutes a 

partition of unity φi in Ω2D and it has the unity value in one node of element and 

zero in all other nodes, such as 
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where   = [−1, 1] and   = [−1, 1] are the finite element natural (local) coordinate. 

The enrichment functions (also named in literature as basis functions) 

used in this work are the trigonometric functions firstly proposed by Arndt (2009) 

and adapted by Torii (2012), such that 
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which in  jj   is a hierarchical enrichment parameter proposed by Arndt 

(2009) for “j” levels of functions and   is an adaptable parameter that can 

involve the material parameters, e.g., length, density and Young’s modulus (only 

for adaptive GFEM). Multiplying the partition of unity by the trigonometric 

shape functions described in Equations 3.22 to 3.25 we can find GFEM enriched 

shape functions used in this work. They can be visualized in Table 3.2 and can be 

plotted in a graph as shown in Figure 3.4. 

 

Table 3.2 – GFEM enriched functions and their level of enrichment. 

GFEM ENRICHED SHAPE FUNCTIONS 
    

Level of 
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GFEM Functions 

le = 0 
2

1
0


l  

2

1
1


l  

le = 1 
 








 







 


2

1
sin

2

1
2

 j
l  

le = 2 
 








 







 


2

1
sin

2

1
3

 j
l  

le = 3 
 
















 







 
 1

2

1
cos

2

1
4

 j
l  

le = 4 
 
















 







 
 1

2

1
cos

2

1
5

 j
l  

 

Afterwards, Torii (2012) proposed a modification of trigonometric 

enrichment functions, removing the influence of the parameter βj from the 
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material parameters (length, density and Young’s modulus) and rewriting it for 

the elementary domain   = [−1, 1], resulting in expressions from 3.22 to 3.25 

used in this work. It is interesting to observe that Arndt (2009) subtracted the 

unity from some basic functions to ensure that these functions in PUM space 

could always be cancelled at element nodes, avoiding the use of special 

procedures to impose boundary conditions. 

 

 

Figure 3.4 – GFEM enriched shape functions for   . 

 

These functions were already successfully tested by Arndt (2009), Torii 

(2012) and Shang (2014) but in vibration and dynamic analysis cases moreover 

the analytical solution of the proposed studied problems in this work present 

trigonometric terms. So, because of that, these shape functions have been chosen. 

For all applications where these functions are used, it is assumed the 

  (constant). The level of enrichment is increased adding new enriched shape 

functions as further described in next session. 
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3.3 THE ELEMENT’S ENRICHMENT: 1D LINEAR ELEMENT 

AND 2D BILINEAR ELEMENT 

 

As described in previous section, an enriched shape function (generalized 

finite element function), named henceforth as k in a 1D domain or k  in a 2D 

domain, can be obtained by multiplying the PoU, φi by an enrichment (basis) 

functions, γjn. The sub-index “k” indicates the polynomial order (in case of HFEM) 

or the order of enrichment level (in case of GFEM). A set of functions define a 

polynomial order or an enrichment level. So, functions l0 and l1 expressed in 

Tables 3.1 and 3.2 are associated to level zero or indicate the conventional C0 

element (hat functions) for a 1D element. For the first enrichment level, function 

l2 is included, and so on. As the level of enrichment increases, the value of sub-

index “k” is added, while the value βj remains the same. It is easily possible to 

increase the level of enrichment in an approximate solution only changing the 

parameter βj and adding the new resulting function to the approximate space in 

GFEM. So, when all enriched shape functions are used, new enriched shape 

functions can be generated by changing the value of βj,  jj  . But this is not 

the case in this work: the value of βj is kept constant (   ) and the level of 

enrichment is only increased by adding new enrichment functions. It is relevant 

to point out again that the enriched shape functions generated by GFEM should 

assume null values at nodal points to make it easier for the application of 

boundary conditions. An important aspect to be considered on boundary of the 

enriched elements regards to the continuity across the border, where there 

should have a compatibility of mathematical functions between neighbor 

elements as seen in Figure 3.5. It means neighbor elements sharing same side 

have linked edge shape functions with each other. It is a crucial fundament that 

will be further detailed in the construction of mathematical space. 
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Figure 3.5 – A non-compatible and a compatible edge shared by two finite elements. 

 

After the enriched shape functions are generated, these functions can be 

used to produce a one-dimensional enriched element and a two-dimensional 

quadrilateral enriched element. The construction of mathematical space of 

enriched elements (both for HFEM and GFEM approaches) is as following: 

consider a parametric interval for the one-dimensional (1D) case 
ahK  and a 

parametric domain for the two-dimensional (2D) case 
qhK  such that 

 

ahK  = {   ∊ ℝ;  −1 <   < 1 }, (3.26) 

qhK  = {  ,  ∊ ℝ2;  −1 <  ,  < 1 } (3.27) 

 

where   is the natural coordinate of a 1D finite element and  ,  represent the 

natural coordinates of a square 2D finite element. 

The enriched mathematical space in an elementary element (a “master” 

element) is constructed by functions related to the vertices and its interior for a 

1D element and to the vertices, its edges and its interior for a 2D element 

according to Šolín et al. (2004). We will firstly begin investigating the enriched 

mathematical space for a 1D element. 

In the case of the 1D isoparametric element used in this work on 

boundary (Figure 3.6), the vertex shape functions )(vertex  are given by 
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)()( 0

1,  lvertex  , (3.28) 

)()( 1

2,  lvertex   (3.29) 

 

and the interior functions, called bubble functions, are expressed by 

 

)()(  k

bubble

k l ,      2 ≤ k ≤ bubblep  (3.30) 

 

where bubblep  ≥ 2 is the local order of approximation in element interior. 

 

 

Figure 3.6 – A 1D linear element with local coordinate ξ = [−1, 1]. 

 

In Figure 3.7,  it is possible to visualize an example of the vertex and 

bubble shape functions in the case of the boundary 1D element used in this work 

for k = 2. 

In the case of the 2D isoparametric quadrilateral element used in domain 

(Figure 3.8), it is firstly important to emphasize the minimum rule for 

conforming approximation according to Šolín et al. (2004). In order to compose an 

enriched shape function for a quadrilateral element, the polynomial order (in the 

context of HFEM) for edge and bubble functions must comply with the minimum 

requirement of the Hilbert space H1, such that the polynomial order of the edge 

functions must be less than or equal to the order of the bubble functions, that is 

 

1,4,2, , bubbleedgeedge ppp   and 2,3,1, , bubbleedgeedge ppp   (3.31) 

 

where 3,2,1, ,, edgeedgeedge ppp  and 4,edgep  are related to the polynomial order, here in 

this work, the four edges of a quadrilateral element whereas ,1bubblep  and ,2bubblep  

are related to the polynomial order of the element interior, i.e., the directions   

and  . This concept is easily extended to GFEM approach replacing from 
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polynomial order “p” to level of enrichment “le”. 

 

 

 

Figure 3.7 – An example of the vertex and bubble shape functions for a 1D element,     

k = 2. 

 

So, starting by the 2D quadrilateral element vertex shape functions 

),(  vertex , we have 

 

)()(),( 00

1,  llvertex  , (3.32) 

)()(),( 01

2,  llvertex  , (3.33) 

)()(),( 11

3,  llvertex  , (3.34) 

 

and 

 

)()(),( 10

4,  llvertex  . (3.35) 
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Figure 3.8 – A 2D quadrilateral finite element with local coordinates ξ = [−1, 1] and     

η = [−1; 1]. 

 

Note that the previous functions generate conventional C0 bilinear shape 

functions for a 2D quadrilateral element (hat functions, as we can see in Figure 

3.9), i.e., jvertex , is equal to one at jv  (where j can assume the values 1, 2, 3 or 4) 

and it vanishes at all remaining vertices. 

In addition, the edge functions are expressed by 

 

)()(),( 0

1,  k

edge

k ll ,      2 ≤ k ≤ 1,edgep , (3.36) 

)()(),( 1

2,  k

edge

k ll ,      2 ≤ k ≤ 2,edgep , (3.37) 

)()(),( 1

3,  llk

edge

k  ,      2 ≤ k ≤ 3,edgep , (3.38) 

)()(),( 0

4,  llk

edge

k  ,      2 ≤ k ≤ 4,edgep  (3.39) 

 

and, the bubble functions that vanish everywhere on boundary (the edges) of the 

domain (2D quadrilateral element) are 

 

)()(),(
2121,  nn

bubble

nn ll ,      2 ≤ n1 ≤ ,1bubblep , 2 ≤ n2 ≤
,2bubblep  (3.40) 
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where n1 and n2, used in the context of bubble functions, represent indices k, for 

directions   and  . 

In Figure 3.9 it is possible to visualize an example of the vertex, edge and 

bubble shape functions for a 2D element used in this work with k = 2.  

As previously mentioned, in order to properly build a hierarchic higher-

order element for a regular function, e.g., an approximate displacement field 

),( e

hu  in an element, it is necessary to consider the developments of the 

projection-based interpolant that states the interpolant can be constructed as a 

sum of a vertex and bubble interpolants in a 1D element and a sum of a vertex, 

edge and bubble interpolants in a 2D element. We will consider a 2D case to 

elucidate this concept since it is used both for HFEM (polynomial order “p”) and 

GFEM (only replacing from polynomial order “p” to level of enrichment “le”) 

explored in this work. 

According to Šolín et al. (2004) the variables to be determined can be 

expressed as a sum of the standard shape functions (vertex shape functions) and 

enriched functions on edges and in interior of the element such that 

 

),(),(),(),(  bubble

h

edge

h

vertex

h

e

h uuuu  ; (3.41) 

 

where ),( e

hu  is the approximate solution of a displacement field ),( u  in 

element local coordinates; ),( vertex

hu  are nodal variables located at vertices (used 

both for 1D and 2D elements); ),( edge

hu  are variables situated on edges (used 

only for 2D element); and ),( bubble

hu  are variables located in interior of the 

element (used both for 1D and 2D elements). 

To be clear, the expression 3.41 for a 1D element contains the terms 

),( vertex

hu  + ),( bubble

hu  whereas for a 2D element it contains complete terms 

),( vertex

hu  + ),( edge

hu  + ),( bubble

hu . 
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Figure 3.9 – An example of the vertex, edge and bubble shape functions for a 2D 

element, k = 2. 
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In this way, ),( vertex

hu  can be determined knowing values of standard 

FEM bilinear shape functions whereas ),( edge

hu  and ),( bubble

hu  can be figured 

out in such way 

 





4

1

, ),(),(
j

jedge

h

edge

h uu  ,  

 

which in jedge

k

p

k

jedge

k

jedge

h

jedge

bu ,

2

,,

,

),(  


 , with j = 1, 2, 3 and 4  (3.42) 

 

and 

 

 
 



1,

1

21

2,

2

21

2
,

2
,

),(

bubble bubblep

n

bubble

nn

p

n

bubble

nn

bubble

h
bu   (3.43) 

 

where jedge

k

, are edge enriched functions, bubble

nn 21, are bubble enriched functions, 

jedge

kb ,  and bubble

nnb
21 ,  are field degrees of freedom generate by these enriched 

functions. The “b” variables associated with these enriched functions are 

calculated without any physical meaning. The determination of the displacement 

field for one-dimensional case is straightforward considering only the natural 

coordinate ξ of a 1D finite element and its development it will be omitted here. 

One point deserves to be highlighted here: all enriched degrees of freedom on 

boundary conditions are set null. 

Now, the MLGFM can be enriched once endowed with these concepts 

discussed in this chapter. But, before applying them, it is necessary to properly 

present the robust mathematical foundation of the MLGFM in order to further 

discuss its domain and boundary spaces’ enrichment. This is exactly the scope of 

the next chapter. 
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Chapter 4 

The Modified Local Green’s Function 

Method 

4.1 INTRODUCTION 

 

The Modified Local Green’s Function Method (MLGFM) was proposed by 

Barcellos and Silva (1987) as an alternative to extend the Boundary Element 

Method (BEM) methodologies to problems which have no known fundamental 

solution in its explicit form or are very intricate. One of the most important 

features of the MLGFM is the advantage of taking the Green's function adjoint 

operator properties without the knowledge of its explicit form, but by evaluating 

its projections on appropriate subspaces spanned by domain and boundary 

interpolation functions. This allows the solution of problems where the 

fundamental solution is unknown. These projections can be calculated with 

appropriate numerical techniques. The Finite Element Method (FEM) is an 

interesting technique to obtain discrete values for the “Green’s Function 

Projections” (GFp) because it does not use fundamental solutions and/or Green’s 

Functions. However, it is necessary to use an additional operator,  ' N  prescribed 

on boundary by the user in order to avoid the singularity of the final system of 

equations. To analyze a continuum mechanics problem through the MLGFM, two 

meshes are necessary: one for the domain and another one for the boundary. In 
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the domain elements, the method generates a set of domain equations, which are 

used to generate automatically the domain Green’s functions projections. Later 

on, a set of boundary equations are also generated and the boundary Green’s 

functions projections can be determined with the domain projections former 

developed. At the end, the system is solved only for boundary equations, where 

the main variables are calculated. Domain values may be obtained once the 

boundary values are known after the solution of the boundary equation system. 

The MLGFM, in a global approach, is known as “unicell-multielement”. 

This is the approach used in this work. It has been used by several authors in 

last decades and its implementation has been extensively studied. Some 

examples of this approach are: for membranes, Barcellos and Silva (1987); for 

Mindlin´s plate, Barbieri and Barcellos (1991b; 1993b); for singular potential, 

Barcellos and Barbieri (1991a); for h- and p- convergence, Filippin et al. (1992a); 

for semi-thick shell, Barbieri et al. (1993a), for non-homogenous potentials 

problems, Barbieri and Barcellos (1993a); for laminated plates with and without 

cracks, Machado et al. (1993; 2008; 2012); for 3D elasticity, Barcellos et al. (1995) 

and for details in mathematical formulation, Barbieri et al. (1998a; 1998b). 

This chapter is divided in three sections: the first one deals with the 

abstract formulation of the MLGFM where a robust mathematical foundation 

based on functional analysis is described. The second part is devoted to the 

variational formulation of the MLGFM where the concepts of variational 

boundary-value problems are employed (see Appendix “A”). The third and last 

part is dedicated to the formalism of MLGFM where the integral equations are 

postulated; the discretization, Green’s functions projections, the MLGFM’s 

matrices and system of equations are developed.  
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4.2 THE MLGFM: ABSTRACT ANALYSIS 

4.2.1 Notations and Preliminary Concepts 

 

One of the most important aspects for the definition of the mathematical 

basis of the MLGFM is the one related to the adopted bilinear form and the 

identification of the differential operator and its formal adjoint. These concepts 

are in the scope of the functional analysis whose will be not treated here. Some 

very basic concepts can be seen in appendix “A” but for a deeper description in 

functional analysis and boundary-value problems, see Reddy (1986) and/or Oden 

and Reddy (1976). 

In next developments, Ω is an open and bounded domain, in the n-

dimensional space ℝn and ∂Ω is a boundary, sufficiently regular, i.e., it allows the 

existence of a normal vector in almost every points (except by in sets of zero 

measures, possibly). 

Since the MLGFM is based on boundary formulation (SILVA, 1988), it is 

important to extend the sought functions space to the boundary. In other words, 

these extensions must possess the “trace property” (ODEN; REDDY, 1976). 

Therefore, let u(x) be a function defined on an arbitrary Hilbert space 

Hm(Ω) with order “m”, i.e. u(x) ∈ Hm(Ω). The normal derivatives of u(x) on 

boundary ∂Ω will be represented by:  

 

j

j xu
x

n




)(
)(ujD      for ∀ x ∈ Ω,     0  ≤  j  ≤  m–1 (4.1) 

 

where n is the normal to the boundary ∂Ω at x. The operator Dj is known as the 

“trace operator”. It is a linear and continuous mapping such that 

 

Dj : Hm(Ω) → Hm-j-1/2(∂Ω)  (4.2) 

 

wherein the exponent ‘‘m’’ may assume an integer or fraction value, without any 
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generality loss. Another property of this operator is 

 

Ker(D0, D1, D2, D3,…, Dm-1) ≡  mH0  (4.3) 

 

where Ker( ⋅ ) denotes the kernel of the collection of operators Dj. Still, Ker( ⋅ ) is 

dense in space L2(Ω). 

Let H, U and ∂H be Hilbert spaces such that 

 

D : H → ∂H (4.4) 

 

with D being the trace operator as former quoted. The space H has the trace 

property if it satisfies the following conditions: 

 

a) H is a subset of U, with U having a weaker topology than H. Here, 

“weak topology” is meant of the coarsest topology (the topology with the 

fewest open sets) under which any element x ∈ U corresponds to a 

continuous map on U′ (dual space);  (4.5) 

 

b) H is dense in U, with U being a pivotal space, i.e.,  

 

H ⊂ U ≡ U′ ⊂ H′ (4.6) 

 

where U′ and H′ are the topological dual spaces (spaces of the continuous 

and linear functionals) of U and H, respectively; 

 

c) The mapping D exists, so that its kernel, H0 is dense in U, such that 

 

Ker(D)  = H0 ⊂ H     and     H0 ⊂ U  ≡ U′ ⊂ H0′ (4.7) 

 

where the inclusions are dense and continuous. 

If two Hilbert space, H and K, have the trace property defined by 
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conditions 4.5 to 4.7, and associated with them there are the trace operators DH 

and DK respectively, such that 

 

DH : H → ∂H; 

DK : K → ∂K (4.8) 

 

then, the sought functions of the problem B(u, v) : H × K → ℝ, where u ∈ H and v 

∈ K, have images at ∂H and ∂K under the operators DH and DK, respectively. 

It can be observed from relation 4.8 that the sought functions of the 

problem are not all or any function in ∂H and ∂K but only those ones that are 

images of H and K under the operators DH and DK, respectively. 

Considering the trace property described by relations 4.5 to 4.7, one can 

define a continuous boundary bilinear form, b(⋅,⋅), that is: 

 

b(DH(u), DK(v)) : H × K → ℝ. (4.9) 

 

Taking the bilinear form from the variational boundary-value problem 

B(u, v) :  H × K → ℝ (Appendix “A”, expression A.21), for the case where u ∈ H is 

fixed and v ∈ K0, one can be expressed by the continuous linear operator ℓ(u), 

such as 

 

ℓ : H→ K0′ (4.10) 

 

Thus, if there exists such transformation, one can conclude 

 

   
K

vuvuB ,, ,     ∀ v ∈ K0 (4.11) 

 

where ℓ(u) is the operator associated to B and 
K

, is the duality pairing in         

K′  × K. In this way, the operator ℓ belongs to the space L(H, K0′), i.e., the linear 

operators space of H in K0′. 

The adjoint problem of (4.11) can be derived when v ∈ K is fixed and going 
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through u ∈ H0, now taking the formal adjoint operator ℓ* associated to a linear 

and continuous bilinear form B, we have 

 

   
H

uvvuB , , ,     ∀ u ∈ H0.  (4.12) 

 

Similarly, ℓ* belongs to the space L(K, H0′). 

We can see in Figure 4.1 the relation among the spaces H and K, the 

kernel spaces H0 and K0, and the pivotal spaces associated to them U = U′ and V 

= V′ as well as the mapping performed by the operators ℓ and ℓ* whereby the 

bilinear form B(u, v) depends on. 

 

 

Figure 4.1 – Spaces, differential operators and bilinear forms. SOURCE: Adapted from 

Machado (1992). 
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In order to establish a generalized reciprocity relation, it is important to 

observe that the bilinear forms 4.11 and 4.12 are only valid for u ∈ H0 and v ∈ K0, 

that is, they don’t take into account the boundary values. They are just included 

when u ∈ H and v ∈ K. Moreover, this procedure becomes more general with the 

introduction of the boundary bilinear forms as defined in expression 4.9 which 

spread out these boundary types to be analyzed. Taking into account that, it is 

necessary to define the following subsets 

 

Hℓ = { u ∈ H;  ℓ(u) ∈ V }; (4.13) 

 

Kℓ* = { v ∈ K;  ℓ*(v) ∈ U }. (4.14) 

 

considering H ⊂ U ≡ U′ ⊂ H′ and K ⊂ V ≡ V′ ⊂ K′. Observe that ℓ and ℓ* are the 

constraints of the operators appointed in 4.11 and 4.12 to the spaces Hℓ and Kℓ*. 

In the conditions described in 4.13 and 4.14, it is possible to identify the 

following univocal operators 

 

N   ∈ L(Hℓ, ∂K′)     and     N  
* ∈ L(Kℓ*, ∂H′), (4.15) 

 

and 

 

D  ∈ L(H, ∂H)     and     D* ∈ L(K, ∂K). (4.16) 

 

The operators shown in 4.15, N and N *, are the Neumann’s generalized 

operators likewise the ones shown in 4.16, D and D*, are the Dirichlet’s 

generalized operators (trace operators). They are associated to ℓ and ℓ*, 

respectively. 

Taking those operators defined in 4.15 and 4.16, the bilinear form (it can 

be seen in Appendix “A” – expression A.21) can be extended to the boundary such 

as (ODEN; REDDY, 1976): 
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     
KV vuuvvubvuB


 )(,)(,))(),(( ** DNDD ,  (4.17) 

 

where u ∈ Hℓ and v ∈ K.  

And, 

 

     
HU uvuvvubvu,B


 )(,),())(),(( *** DNDD    (4.18) 

 

where u ∈ H and v ∈ Kℓ*. 

The expressions previously presented for the bilinear form B(⋅,⋅) are 

known as “The Abstract Green’s Formulas”. 

So, those expressions 4.17 and 4.18 can be combined since u ∈ Hℓ and        

v ∈ Kℓ*, such that: 

 

       
HKVU uvvuuvuv


 )(,)(,)(,),( *** DNDN  (4.19) 

 

where u ∈ Hℓ and v ∈ Kℓ*.  

The expression 4.19 is known as “Generalized Green’s Form” for the 

operator ℓ and it expresses the generalized reciprocity relation between the 

conditions { u, D(u), N(u) } ∈ Hℓ × ∂H × ∂K′ and { v, D*(v), N *(v) } ∈ Kℓ* × ∂K × ∂H′ 

associated to the operators ℓ and ℓ*, respectively. The duality pairing in ∂K and 

∂H represents the term “Global Bilinear Concomitant” of the operator ℓ. 

 

4.2.2 The MLGFM Abstract Formulation 

 

The generalized reciprocity relations developed in previous section are 

used for the purpose of furnishing representations of the differential equation 

solution relative to the operator ℓ and to the boundary conditions defined by the 

operators D and N.  In order to do that, we can choose v as being the 

fundamental solution of the operator ℓ*. Here, it is important to clarify that the 

variables u and v employed in the bilinear form B(u,v) – Appendix “A”, expression 
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A.21 – usually are related to two different states: a real state, where the 

unknown variables are and an auxiliary state, properly chosen. But, other 

alternatives can be used as fundamental solution aiming to improve the 

characteristics of regularity of the system (MACHADO, 1992). For example, as 

mentioned before, choosing v as a suitable Green’s Function is the base of the 

Local Green’s Function Method proposed by Horak (1980). On the other hand, 

this function in MLGFM is set automatically, without its formal knowledge. 

An arbitrary boundary-value problem with the operator ℓ in domain and 

the operators D and N on boundary is solved by MLGFM in two interdependent 

and different steps. The first step is focused on to find a solution in domain 

whereas the second step is focused on boundary. But for computational 

implementation aspects, it is possible to work out firstly the solution on boundary 

and afterwards in domain. 

Furthermore, in both cases (STEP 1 and STEP 2) it is employed a “Dirac 

delta” distribution – δ(P, Q) – as an excitation. As consequence, one must specify 

a point Q where the solution of the problem (“field point”) is and a point P where 

the excitation occurs (“source point”) considering: Q, P ∈ Ω. The auxiliary state is 

defined by v = v(P, Q). When we consider the points on boundary ∂Ω, they are 

identified by the lowercases p and q. Both cases are shown in Figure 4.2. 

 

 

Figure 4.2 – Dirac Delta excitation: a) in domain; b) on boundary. SOURCE: Adapted 

from Machado (1992). 
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Thus, the two MLGFM steps of solution can be described, such that: 

 

1st STEP: Computation of the domain solution. An auxiliary state of the 

expression 4.19 is reached by applying the “Dirac delta” distribution in domain Ω, 

so that 

 

   QPQPv , ) ,(  where P, Q ∈ Ω, (4.20) 

  0 ),( QPvN  where p ∈ ∂Ω.  (4.21) 

 

To determine the solution in domain interior Ω, the expressions 4.20 and 

4.21 can be replaced in 4.19, resulting in 

 

   
KV Qp,vuuQPvQu


 )(,)(,)( (),( DN . (4.22) 

 

2nd STEP: Computation of the boundary solution. Another auxiliary state 

of the expression 4.19 is reached by applying the “Dirac delta” distribution on 

boundary ∂Ω, so that 

 

  0 )( qP,v  where P ∈ Ω and q ∈ ∂Ω, (4.23) 

   qpqp,v , )(N  where p, q ∈ ∂Ω.  (4.24) 

 

At this time, aiming to determine the solution on boundary interior ∂Ω, 

the expressions 4.23 and 4.24 can be replaced in 4.19, and identifying the trace 

operator D from 4.1, we have 

 

   
KV qp,vuuqP,vqu


 )(,)(,)( ()( DND  . (4.25) 

 

The equations 4.22 and 4.25 constitute a system of integral equations 

that may be used in the solution of problems governed by differential equations 

defined by operator ℓ and boundary operators D and N. 
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4.3 THE MLGFM VARIATIONAL FORMULATION 

 

One way of performing the discretization of the operators present in 

integral formulations is to use the variational formulation. It is possible to use 

other formulations, such as, collocation method or to figure out the Green’s 

functions analytically but using a variational one, the methodology becomes more 

general and efficient (SILVA, 1988). The variational formulation or “weak 

formulation” is a weaker one than the conventional formulation since it requires 

fewer derivatives of u to be in L2(Ω) (REDDY, 1986). 

Hence, going back to the system of integral equations seen in 4.22 and 

4.25, one realizes these representations are not suitable for numerical 

approximations due to the calculation of the generalized Neumann operator that 

encompass derivatives of u in trace sense. In order to work around this setback, 

one introduces a new variable F  defined by 

 

 uNF  ∈ ∂K′. (4.26) 

 

Replacing the representation 4.26 into 4.22 and 4.25 and identifying the 

variable v(P, Q) as the Green’s Function G(P, Q), we have  

 

   
KV QpuQPQu


 ),)(,)( ,(),( GG DF , (4.27) 

 

   
KV qpuqPqu


 ),)(,)( ,(),( GG DD F  (4.28) 

 

where u ∈ Hℓ ; G ∈ Kℓ*; P, Q ∈ Ω and p, q ∈ ∂Ω. 

Different types of boundary conditions are included into the formulation 

by the quantities )(quD  and F . In fact, the trace of u on boundary, i.e., )(quD  

takes in directly the Dirichlet (essential) boundary conditions whereas the 

quantity F  takes in the Neumann (natural) or Cauchy (mixed) boundary 

conditions. By Cauchy boundary conditions we mean mixed boundary condition: 

an essential boundary condition is applied on one boundary part and a natural 
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boundary condition on the other one. 

Here, it is important to point out the differences between two classic 

boundary-value problems for the operator ℓ (with A being a linear differential 

operator): 

 

1) Dirichlet problem: 

Given f ∈ V and r ∈ ∂H, the problem consists in finding u ∈ Hℓ such that: 

 

fAu       or     fu )( , 

r)(uD . (4.29) 

 

2) Neumann problem: 

Given f ∈ V and s ∈ ∂K′, the problem consists in finding u ∈ Hℓ such that: 

 

fAu       or     fu )( , 

s)(uN . (4.30) 

 

Both classic boundary-value problems can be expressed in a variational 

way as: 

 

3) Variational Dirichlet problem: 

Given f ∈ V and r ∈ ∂H, the problem consists in finding u ∈ H0 such that: 

 

)()( vvuB ,                           for v ∈ K0, 

  )),(( -1 vrBvfv V D ,)(      for v ∈ K0. (4.31) 

 

4) Variational Neumann problem: 

Given f ∈ V and s ∈ ∂K′, the problem consists in finding u ∈ H such that: 

 

)()( vvuB ,                             for v ∈ K, 

 
KV vsvfv


 )(,N,)(        for v ∈ K. (4.32) 
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According to Oden and Reddy (1976), if -1D  represents the inverse of trace 

operator D mapping, then the problems “1” and “3” as well as “2” and “4” are 

equivalents. In other words, if u is a solution for 4.29 than ( )(-1 r-u D ) is a solution 

for 4.31 too. That’s the same for 4.30 and 4.32. In addition, the opposite is true in 

both cases. 

The existence and uniqueness of a solution is addressed by “The 

Generalized Lax-Milgram Theorem” (REDDY, 1986) – it can also be seen in 

definitions A.14 to A.18, Appendix “A”. In a distributional approach, it can be 

noticed that the problem fu )(  is valid in “almost everywhere”, considering f ∈ 

V, so u ∈ Hℓ. 

Now, aiming to develop the MLGFM integral equations of the problem, it 

is necessary to define more two sets, where all boundary conditions can be 

represented. Thus, remembering that  

 

Hℓ =    { u ∈ H;   ℓ(u) ∈ V }, (4.33) 

∂Hr =  { u ∈ ∂H;   u = r   in ∂Ωr }, (4.34) 

∂Ks′ = { F ∈ ∂K′;    F  = s   in ∂Ωs } (4.35) 

 

where 

 

∂Ωr – boundary patch union of ∂Ω where uD is specified; 

∂Ωs – boundary patch union of ∂Ω where F is specified; 

∂Ω – boundary ∂Ω is completely defined by uD  and F . 

 

Finally, the MLGFM variational problem can be now written as: 

 

“Given f ∈ V, seek the answer in domain, u ∈ H, and on boundary, uD ∈ 

∂Hr and F ∈ ∂Ks′, considering valid the expressions 4.31 and 4.32, or 

equivalently, in such a way that expressions 4.27 and 4.28 are met”. 
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4.4 THE FORMALISM OF THE MLGFM 

4.4.1 Integral Equations 

 

The MLGFM is an integral method that is able to solve boundary-value 

problems expressed by a differential equation system and boundary conditions 

(as can be seen in Appendix “A” – A.19 and A.20). They can be written as 

 

fAu          or     fu )( , (4.36) 

ru )(D      on ∂Ωr, (4.37) 

su )(N     on ∂Ωs (4.38) 

 

where A is a linear differential operator; ℓ, D and N  are, respectively, the 

problem, Dirichlet and Neumann differential operators; Ω, ∂Ωr, ∂Ωs are the 

domain and boundary patches where are specified the Dirichlet and Neumann 

conditions; f, r and s are the domain Ω excitation and the functions that define 

the boundary conditions at ∂Ωr and ∂Ωs, respectively. 

There exists a unique solution if the problem expressed in 4.36, 4.37 and 

4.38 is “well-posed”, i.e., the boundary conditions are properly prescribed and the 

excitation function f is considered sufficiently “well behaved”. 

In order to determine a fundamental solution for the problem 4.36, it is 

necessary to solve its adjoint problem, considering as an auxiliary state, the 

Green’s function, G(P,Q), and as an excitation source, a Dirac Delta distribution, 

δ(P, Q), applied in domain. Note that ℓ* is the formal adjoint operator of ℓ, and 

defining I as the identity tensor, the adjoint problem can be expressed in the form 

 

I),(),(* QPδQP G  P,Q ∈ Ω.  (4.39) 

 

The Green’s function G(P,Q) can be understood as a generalized 

displacement of an arbitrary point Q in a “i” direction due to a generalized unit 

load applied upon a point P in a “j’ direction, wherein P and Q ∈ Ω. 
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Multiplying the expression in 4.36 by t),( QPG , results in 

 

)(),())((),( PfQPPuQP tt GG  . (4.40) 

 

Now, multiplying the expression 4.39 by u(P)t, results in 

 

),()(),()( * QPPuQPPu tt G . (4.41) 

 

Subtracting from 4.40 the transpose of 4.41, we have 

 

  ),()()(),()(),())((),( * QPPuPfQPPuQPPuQP  ttt GGG   (4.42) 

 

It is possible to re-arrange the previous expression as 

 

 )(),()(),()(),(),()( * PuQPPuQPPfQPQPPu  ttt GGG   (4.43) 

 

Placing the coordinates system at point P and integrating in domain Ω, 

we write 

 

     P

P

PuQPPuQPPfQPQu  


dttt )(),()(),()(),()( *  GGG  (4.44) 

 

Now, using the “Gauss Theorem”, i.e., integrating by parts successively, 

in last two terms of the above integrand, we have 

 

 




pp

pP puQpPfQPQu dd
tt )(),()(),()( *GG N  

  p

p

puQp  


dt )(),( NG  (4.45) 

 

where d∂ΩP represents an infinitesimal element of the boundary ∂Ω at point p 
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and N, *N are the Neumann operators associated to ℓ and ℓ*, respectively.  

As a matter of fact, the equation 4.45 expresses exactly the formulation of 

the “Direct Boundary Element Method” (DBEM) and G(P,Q) represents (so far) 

only a fundamental solution of equation 4.45. 

The numerical handling of the integrals in 4.45 is complicated again 

because of the Neumann operator that involves u derivate on boundary. In order 

to overcome this drawback, the MLGFM uses an auxiliary operator ' N that can 

be adopted as 

 

 nkkk ,...,, 21diag ' N  (4.46) 

 

where n is the degrees of freedom number in each nodal point and ki is a non-zero 

real constant, i = 1, 2, …, n. 

A physical interpretation of the additional operator ' N was presented by 

Barbieri (1992) as you can see in Figure 4.3. Mathematically speaking 

 

)( ii xxk ' N  (4.47) 

 

 

Figure 4.3 – Physical interpretation of the modified auxiliary problem. SOURCE: 

Adapted from Barbieri (1992). 

 

Again, here ki is a non-zero real constant and xi are points (finite element 

mesh nodes) belonging to the boundary where the homogeneous Dirichlet 

boundary conditions are imposed. 
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Adding and subtracting in equation 4.45 the following expression 

 

    )(),()(),( puQppuQp
tt GG ' N' N   (4.48) 

 

we write 

 

  




PP

PP puQpPfQPQu dd
tt )(),()(),()( * GG ' NN  

   P

P

puQp  


dt )(),( ' NNG  (4.49) 

 

Note that with the introduction of the auxiliary operator ' N , if the 

following boundary condition is satisfied 

 

   0),(*  tQpG' NN  (4.50) 

 

at this moment, by specifying the above boundary condition, the fundamental 

solution G(P,Q) will exactly correspond to the “Green’s Function” ! 

The expression 4.49 is not suitable for numerical approximations yet 

because it has derivatives of u in trace sense and its calculation is a really 

difficult task. In order to work around this setback, one uses the previous 

variable F  defined by 

 

  )()( pup ' NNF   (4.51) 

 

Replacing 4.50 and 4.51 in 4.49, one finds out the expression for the 

generalized displacement in domain 

 






PP

PP pQpPfQPQu dd tt )(),()(),()( FGG  (4.52) 

 

The last expression 4.52 represents the solution of 4.36 in domain Ω. Note 
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that the integral in last expression 4.52 behaves much better than the expression 

4.45 since there is not any derivative of the Green’s function G(⋅,⋅) or the variable 

F (⋅). As mentioned before, the equation 4.45 expresses exactly the direct 

formulation of the “Boundary Element Method” (DBEM) though, for this method, 

it is usual to develop the integral equations at “field” points Q whereas, for this 

work, the integral equations are developed at “source” points P. 

Concerning the solution on boundary ∂Ω, a similar process could be 

developed from 4.36 to 4.52 but, as the involved variables are assumed to belong 

to Hilbert spaces and these spaces are equipped with the trace property defined 

by 4.1 to 4.7, it is much simpler directly apply the trace operator to 4.52, 

resulting in 

 






PP

PP pqpPfqPqu dd tt )(),()(),()( FGG  (4.53) 

 

Our problem under study is completely defined by equations 4.52 and 

4.53. It is important to point out that any kind of approximation was considered 

which would lead to a reduction in the quality of the results. 

 

4.4.2 Integral Equations Approximation 

 

In this section we will use well-established numerical techniques, such as, 

FEM and BEM in order to discretize and approximate our problem. With the 

view to perform the numerical implementation of the MLGFM, two 

discretizations are needed: a domain one, based on finite elements and a 

boundary one, based on boundary elements (Figure 4.4). As a matter of fact, the 

boundary element mesh is taken as the trace of the finite element mesh. The 

numerical implementation is carried out as following: 
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Figure 4.4 – Approximation of a real domain: a) a real domain Ω; b) the finite elements 

mesh Ωk and c) the boundary elements mesh 𝜕Ωk. SOURCE: Adapted from 

Machado (1992). 

 

a) Domain Discretization: 

 

In a similar way as in FEM, the real problem domain Ω is constructed by 

an approximate domain Ωh, as close the real domain as possible. The 

approximate domain Ωh is divided in nef sub-domains, i.e., nef is the number of 

finite elements k , such that 

 


nef

k

k

h

1

 . (4.54) 

 

Each finite element corresponds to the closure of an open region Ωk, with 

its boundary 𝜕Ωk, i.e. 

 

kkk   with k = 1, 2,..., nef.  (4.55) 

 

such that 

 

Ø jk
 for k ≠ j.  (4.56) 
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b) Boundary Discretization: 

 

The boundary is approximated by 𝜕Ωh wherein it is divided in nec 

boundary intervals, i.e., nec is the number of boundary elements k . Similarly 

to the previous case a), we have 

 


nec

k

k

h

1

 . (4.57) 

 

kkk   with k = 1, 2,..., nec.  (4.58) 

 

Ø jk
 for k ≠ j.  (4.59) 

 

where k is the boundary of k . 

Any domain and boundary approximations can be created through the 

shape functions i  and i , respectively. These functions are defined at local level 

in each element and they generate the subsets of finite dimension hV  of V, Hh of 

H and 𝜕Hh of 𝜕H where Green’s function projections are generated. 

 

c) Variables Approximation: 

 

The variables encompassed in expressions 4.52 and 4.53 can be 

approximated using the shape functions matrices  Ψ  and  Φ , that is 

 

  DQ uΨQuh )(      CuΦ qquh )(  

 (4.60) 

 bΨ Pfh )(P     fΦ pph )(F  

 

where the variables Du , Cu , b and f depict the generalized vectors of nodal 

displacements in domain and on boundary, the body forces and nodal boundary 
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reactions, respectively;  Ψ  and  Φ  are the matrices of shape functions in a 

Green cell. Note that the  pΦ  is the trace of  PΨ  as well as )(quh  is the trace 

of )(Qhu . Taking this into account, the values of Du  corresponding to the nodes 

on boundary of the finite elements mesh overlap to the values of Cu  on boundary 

elements mesh. 

For each element in domain Ωh, the equation expressed in 4.52 can be 

rewritten as 

 

      fΦGbΨGuΨ 


 PP pQpPQPQ dd tt

D ),(),(  (4.61) 

 

In order to evaluate the nodal displacement values, one can employ the 

Galerkin Residual Method (the variational boundary-value problem solution 

method for finite dimensional sets), i.e., taking the projection of )(Qhu orthogonal 

to  QΨ . Considering that, the last equation can be expressed by 

 

        bΨGΨuΨΨ QP

tt

DQ

t
ddd

Q

  
 

PQPQQQ ),(

    fΦGΨ QP

tt
dd   

 

pQpQ ),(  (4.62) 

 

which may be better represented by 

 

bfu CBA D  (4.63) 

 

where 

 

    Q

t
d 



QQ ΨΨA  (4.64) 

  p

t

d d  


pp ΦG )(B  (4.65) 

  P

t

d d 


PP ΨG )(C  (4.66) 
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  Q

ttt

d d 


),()( QpQp GΨG  (4.67) 

  Q

ttt

d d 


),()( QPQP GΨG  (4.68) 

 

and where )(pdG and )(PdG  are the projections, at a point p on boundary and P 

in domain, of the Green’s function G(⋅,Q), in the space yielded by shape functions 

i , respectively.  

Now, for each element on boundary 𝜕Ωh, the equation expressed in 4.53 

can be rewritten as 

 

      fΦGbΨGuΦ 


 PP pqpPqPq dd tt

C ),(),(  (4.69) 

 

Similarly, employing the Galerkin Residual Method (the variational 

boundary-value problem solution method for finite dimensional sets), i.e., taking 

the projection of )(quh  orthogonal to  qΦ , the boundary equation system is 

determined, such that 

 

        bΨGΦuΦΦ qP

tt

Cq

t
ddd   

 

PqPqqq ),(  

    fΦGΦ qP

tt
dd   

 

pqpq ),(  (4.70) 

 

which may be better represented by 

 

bfu FED C  (4.71) 

 

where 

 

    q

t
d  



qq ΦΦD  (4.72) 
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  p

t

c d  


pp ΦG )(E  (4.73) 

  P

t

c d 


PP ΨG )(F  (4.74) 

  q

ttt

c d  


),()( qpqp GΦG  (4.75) 

  q

ttt

c d  


),()( qPqP GΦG  (4.76) 

 

and where )(pcG  and )(PcG  are the projections, at a point p on boundary and P 

in domain, of the Green’s function G(⋅,q), in the space yielded by the shape 

functions i , respectively.  

The problem is fully solved by expressions 4.63 and 4.71. Note that the 

matrices A and D are easily resolved since they only contain shape functions. 

The other matrices, B, C, E and F depend on Green’s function projections 

knowledge whose solution by the MLGFM will be dealt with in next section. 

Also, it is important to highlight that the expression 4.71 is similar to the 

final system obtained by the “Direct Boundary Element Method” (DBEM). 

Depending on the boundary condition, if the displacement is prescribed ( Cu ) or if 

the “generalized forces” are specified ( f ), it is possible to rearrange the equation 

system in 4.71 aiming to split the known terms from the unknown ones such that 

 

    b
f

u

u

f
FEDDE 



















C

C

  (4.77) 

 

4.4.3 The Green’s Function Projections Determination 

 

One of the most important steps in MLGFM is the determination of the 

Green’s function projections in sets generated by the interpolation functions i  

and i  whereby the matrices B, C, E and F can be implemented. The 

determination of the Green’s function projections were proposed by Barcellos and 
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Silva (1987) and it consists of obtaining these projections involving two distinct 

steps of solution through FEM such as: 

 

1st STEP: Determination of Green’s function projections Gd(P) and Gd(p) 

corresponding to Green’s function G(P,Q) and G(p,Q), respectively. 

 

In this step, as derived in section 4.2.2 (The MLGFM Abstract 

Formulation), applying the “Dirac delta” distribution δ(⋅,⋅) in domain Ω, with Q ∈ 

Ω, the expressions 4.20 and 4.21 are solved, considering that the auxiliary state v 

= v(⋅,Q) is now defined by the Green’s function G(⋅,Q) and introducing the 

additional operator 'N on boundary conditions, as in 4.50, we have 

 

 IG QPQP, , t)(  where P, Q ∈ Ω, (4.78) 

  0*  t)( Qp,G'NN  where p ∈ ∂Ω and Q ∈ Ω.  (4.79) 

 

Multiplying the expression 4.78 by  QΨ  and integrate it in domain  , 

we have 

 

    QQ

t dd 







 



QQPQQP ΨΨG ),(),(*  . (4.80) 

 

It can be recognized the projection Gd(P) in the left side of the equation 

4.80, that is 

 

 PP ΨG )(*

d . (4.81) 

 

Similarly, adopting the same procedure but now aiming to find out the 

projection Gd(p), we have 

 

    0),(*  


Q

t dQQp ΨG'NN  (4.82) 
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which is equivalent to 

 

  0)(*  pdG' NN . (4.83) 

 

2nd STEP: Determination of Green’s function projections Gc(p) and Gc(P) 

corresponding to Green’s function G(p,q) and G(P,q), respectively. 

 

Here, applying the “Dirac delta” distribution δ(⋅,⋅) on boundary 𝜕Ω, with q 

∈ 𝜕Ω, the expressions 4.23 and 4.24 are solved, considering that the auxiliary 

state v = v(⋅,q) is now defined by the Green’s function G(⋅,q) and introducing the 

additional operator 'N on boundary conditions, as in 4.50, we write 

 

0 t)( qP,G  where P ∈ Ω and q ∈ 𝜕Ω, (4.84) 

   IG qp,qp,  t)(' NN *
 where p, q ∈ 𝜕Ω.  (4.85) 

 

Now, multiplying the expression 4.84 by  qΦ  and integrating it on 

boundary  , such that 

 

  0)(* 

















q

t dqqP, ΦG . (4.86) 

 

Again, the projection Gc(P) can be recognized in the left side of the 

equation 4.86, that is 

 

0)(* PcG . (4.87) 

 

Similarly, adopting the same procedure but now aiming to find out the 

projection Gc(p), we have 

 

      qq

t dd  


qqpqqp ΦΦG ),(),(* ' NN  (4.88) 
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which is equivalent to 

 

   pp ΦG  )(*

c' NN . (4.89) 

 

A physical interpretation for both two distinct steps of solution through 

FEM can be seen in Figure 4.5. 

 

 

Figure 4.5 – Projections determination: physical interpretation of the solution in two 

distinct steps (by FEM). SOURCE: Adapted from Barbieri (1992). 

 

Note that the right side of expressions 4.81 and 4.89 are the shape 

functions in domain and on boundary, respectively. It is possible to use the 

conventional Lagrangian shape function with continuity C0(Ω) – space of 

continuous function up to order “0” (zero) in Ω – or any other continuity 
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depending on the order of the differential operator of the boundary-value problem 

to be solved. In conventional MLGFM, it is used Lagrangian shape functions but 

the scope of this work is exactly to enrich the space of shape functions either 

using a hierarchical approach (for instance, using Lobatto shape functions) or 

using different shape functions rather than the polynomial ones. 

It is also worth mentioning that the excitation used in both steps is a 

“Dirac Delta” one δ(∙,∙) wherein is much more singular, i.e., if x, y ∈ ℝn, then δ(x,y) 

∈  ΩmH  where m = −(n+𝜖)/2 and 𝜖 is a small positive constant. Also, note that 

   ΩΩ 0

mm HH  . As consequence, the Green’s function projections calculated in 

4.81, 4.83 and 4.87, 4.89 have a smoother and regular behavior than the Green’s 

function G(P,Q) itself. This simplifies the numerical handling and it is one of the 

most important reasons of the MLGFM’s excellent performance. 

The Green’s projections can be also expanded by the shape functions i  

and i  used previously, considering that these Green’s projections are smooth 

and continuous functions (MACHADO, 1992). Thus, we have 

 

  DP

d GΨG PP )( ,     Dp

d GΦG pp )( , 

 (4.90) 

  CP

c GΨG PP )( ,     Cp

c GΦG pp )(  

 

where DPG , DpG , CPG  and CpG  are the tensors obtained from nodal values of 

)(PdG , )(pdG , )(PcG  and )(pcG , respectively. 

For self-adjoint operators (ℓ = ℓ*) it is possible to define a functional               

F (Gd, Gc) whose extremization via Galerkin–FEM leads to the nodal values 

mentioned above. This functional may be written such that (BARBIERI, 1992)  

 

    ),(,,),()(  3c2d1cd , BBBB  ΦGΨGGGF  (4.91) 

 

where: 
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a)   and   are constants wherein 1  and 0  if Gd is the projection 

to be calculated minimizing 4.91 otherwise if Gc is the one to be figured 

out than 0  and 1 ; 

b)   corresponds to Gd or Gc depending on the case to be calculated; 

c) ),( B  is the bilinear form under study depending on the choice of      

(either Gd or Gc); 

d) B1, B2 and B3 are bilinear forms such as 

 

    Pdd1  


dPPB ΨGΨG )(, , (4.92) 

    pcc2 G  


dppB ΦΦG )(, , (4.93) 

    p3  


dppB )()(
2

1
,  ' N . (4.94) 

 

Then, minimizing the functional F , one finds out the equation system 

similar to 

 

   DAK  CPDP GG      or        DAK  CPDP GG  

 (4.95) 

 

where: 

 

'KKK
FEM

      or          'KKK
FEM

  (4.96) 

 

a)  
FEM

K : Finite Element Method standard stiffness matrix; 

b)  'K : matrix whose the boundary operator ' N coefficients are placed 

and can be represented as a diagonal matrix (as mentioned in 4.46), 

such that 
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 





















ik

k

k


2

1

'K  (4.97) 

 

c) A  and D : matrices resulting from the functional minimization       

F (Gd, Gc) process which correspond to the matrices of 4.64 and 4.72, 

respectively. 

 

The coefficients ki, i = 1, 2,..., n, are constants with nonzero values where 

n is the total number of degrees of freedom and with values that do not 

compromise the final conditioning of the equation system. These coefficients must 

be specified only where there are homogeneous Dirichlet boundary conditions       

( u = 0 ). This restriction can be better understood by observing that this MLGFM 

additional operator ' N  is included only in the bilinear form  ,3B  − expression 

4.94 − directly affecting the stiffness matrix (expression 4.96). The values of the 

nodal resultant vector   cuf ' NN   are calculated using the operator ' N : 

while the first part cuN  corresponds to the real reactions and loads, the second 

one cu' N  corresponds to "fictitious" values. The “fictitious” reactions and loads 

are not included into the equation system since the operator ' N  is only 

introduced on boundary patch wherein Dirichlet conditions are homogeneous ( u 

= 0 ). Otherwise, it would be necessary a post-processing to extract these 

“fictitious” quantities from the results. Barbieri (1992) tested the coefficients ki 

from   max

1110 K


 to  max

810 K , where  maxK  é the highest value of the standard 

stiffness matrix diagonal, and it hasn’t been found any disturbance in MLGFM. 

This is a little bit different when enriching the space of shape functions (using 

Lobatto shape functions – HFEM) or using non-polynomial ones (GFEM). It was 

tested, in this work, coefficients ki from  max

2510 K


 to  max

2510 K  and some 

disturbance was found out. This subject can affect the condition number of 

MLGFM matrices and will be better discussed in results chapter. 
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4.4.4 Matrices Implementation and Equation System Calculation 

 

In this section, it will be established a sequence of steps to figure out the 

matrices and calculate the unknown nodal values in MLGFM. Going back to the 

equation system defined by expressions 4.63 ( fbu CBA D  ) and 4.71               

( bfu FED C  ), we have: 

 

a) The matrices A (expression 4.64) and D (expression 4.72) are easily 

figured out because they only contain shape functions matrices; 

 

b) Once we know GDP and GCP nodal values in 4.95, we can automatically 

calculate GDp and GCp nodal values by trace property defined by 4.1 to 

4.7; 

 

c) With the Green’s tensor projections GCP and GDP figured out in last sub 

item b), the matrices B in 4.65 and C in 4.66 can be rewritten, using  

4.90, as 

 

    CP

P

t
d GΨΨ  



PPB , (4.98) 

 

    DP

P

t
d GΨΨ  



PPC . (4.99) 

 

We can readily recognize the matrix A (4.64) in last expressions 4.98 and 

4.99. So, those expressions yield 

 

CPGAB   (4.100) 

 

DPGAC   (4.101) 
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d) Similarly for the last sub item c) but now for the matrix E (4.73) we can 

rewritten, using 4.90, as 

  

    Cp

p

t
d GΦΦ  



ppE  (4.102) 

 

So now, recognizing the matrix D (4.72) in last expression 4.102 yields 

 

CpGDE   (4.103) 

 

e) Considering that the boundary shape functions matrix  Φ  correspond 

to the trace of the domain shape functions matrix  Ψ , one concludes 

observing 4.65 and 4.74 that 

   

t
BF   (4.104) 

 

f) Once we have the matrices D, E and F together with the body forces b, 

prescribed forces f  and prescribed displacements Cu , the equation 

system 4.77  can be solved and the boundary nodal values in 4.71           

( bfu FED C  ) can be calculated. Afterwards, with all nodal 

boundary reactions f calculated, it is possible to replace them in 4.63     

( fbu CBA D  ) – in order to determine the domain nodal values. 

This approach is very fruitful because, using the expressions 4.100 and 

4.101, the results in domain are obtained without knowing the inverse 

of matrix A, in other words, the domain system equation 4.63 simplifies 

to 

 

bGfGu DPCP

D   (4.105) 
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g) If the previous procedure to determine the domain nodal values is 

chosen – described in the sub item f) – it does not necessary to calculate 

the matrix C since we already know the GCP and GDP values but it is 

still necessary to determine the matrix B on account of to know F as 

described in sub item e). 

 

The Figure 4.6 shows a simplified flowchart describing the equation 

system calculation steps. The complete one can be seen in Appendix “C”. 

 

 

Figure 4.6 – MLGFM equation system: simplified calculation steps flowchart. 

 

Finally, we conclude this chapter pointing out in next parts of this work 

we will use all concepts described here for the MLGFM formulation and extend 

them when using enrichment approach. The enrichment techniques employed in 

MLGFM will be better detailed in next chapter. 

 



111 

 

Chapter 5 

Enriched Modified Local Green’s 

Function Methodology for Elasto 

Static 

5.1 INTRODUCTION 

 

In this chapter, the Enriched Modified Local Green’s Function Method 

(EMLGFM) is presented and its methodology is developed. The EMLGFM 

formalism for the Elasto Static is formulated from variational principles using 

the principle of minimum total potential energy in order to identify the problem’s 

differential operator and its formal adjoint. Once identified these differential 

operators, it is possible to develop a methodology to determine the Green’s 

function projections and their approximation using FEM. An important 

characteristic of this method is how the MLGFM’s matrices are affected for the 

enriched case and, afterwards, this is further discussed too. In the end, it is 

examined how to figure out the displacements, reaction forces and stresses using 

the Enriched Modified Local Green’s Function technique. 
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5.2 EMLGFM FORMALISM TO ELASTO STATIC 

 

In elasticity theory one of the greatest interests is the solution of called 

Lamé–Navier equations of elasticity (REDDY, 2008). This expression represents 

the equilibrium equations expressed in terms of the displacement field for 

homogeneous, isotropic and linear media. These equilibrium equations (they can 

be visualized in Appendix “B”), as applied to solid bodies, can also be formulated 

by means of variational principles. The principle of minimum total potential 

energy, for example, can be regarded as a substitute to the equations of 

equilibrium of elastic bodies. The use of variational principles makes it possible 

to concentrate in a single functional all of the intrinsic features of the problem at 

hand: the governing equations, the boundary conditions, initial conditions, 

constraint conditions, even jump conditions. So, by the principle of minimum 

total potential energy, the first variation of the total potential energy must be 

null such that 

 

0 WDSE VUΠ   (5.1) 

 

wherein Π is the total potential energy, SEU  is the strain energy and WDV  is the 

total work done by external forces. 

The total strain energy of a body occupying a domain Ω is given by 

 

 


dijijSEU 
2

1
 (5.2) 

 

in which ij and ij  are the components of the stress and strain tensors, 

respectively. 

The total work done by applied external forces is given by 

 














 



dd iiiiWD uTubV  (5.3) 
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in which ib  are the components of the body forces, iu  are the components of the 

displacement field and iT  are the components of the tractions (surface forces). 

If a body is in equilibrium, among all admissible displacement fields “u”, 

the one “u” that makes the total potential energy a minimum corresponds to the 

equilibrium solution, i.e., in Elasto Static, we seek the displacement field u(x) 

that minimizes the following functional F (u) that is 

 






12

,,
2

1
)( dddd iiiiiilkjiijkl uTuTubuuDuF      for Ω ⊂ ℝ3 (5.4) 

 

where it is possible to recognize the first term of the functional as the total strain 

energy and the remaining terms as the total work done by external forces with 

∂Ω1 being the boundary path where ii uu   is prescribed and ∂Ω2 being the 

boundary path where ii TT   is prescribed. Here, ijklD  are the elastic stiffness 

coefficients of the elasticity matrix D. 

The functional F (u) can be properly rewritten as 

 

)(),(
2

1
)( uuuBu F  (5.5) 

 

where B(∙,∙) is the bilinear form 

 

 


dlkjiijkl uuDuuB ,,),(  (5.6) 

 

and )(  is the functional 

 






12

)( ddd iiiiii uTuTubu  (5.7) 

 

Hence, minimizing F (u) with respect to the displacement field, one 
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obtains the elasto static equilibrium equations expressed by 

 

0,
21

, 


 jkjkkkj bu
G

uG


 (5.8) 

 

with the following boundary conditions 

 

  jijjiikki nuuGnu
ν

Gν
T ,,,

21

2



  in ∂Ω2     or     

ii uu   in ∂Ω1 (5.9) 

 

where ni is the normal vector components; iu , iT  are the prescribed values of the 

displacement and traction, respectively; G  is the shear modulus and ν  is the 

Poisson’s ratio. 

Observing the Equations 5.8 and 5.9, one can identify the differential 

operator A and the Neumann operator N (Figure 5.1) such that  

 

fuAu  )(      in Ω 

Tu )(N   on ∂Ω (5.10) 

 

 

Figure 5.1 – Boundary conditions for an arbitrary domain Ω. SOURCE: Adapted from 

Barbieri (1992). 

 

The sufficient conditions on the associated bilinear forms to guarantee 

the existence and uniqueness of a solution are addressed by “The Generalized 
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Lax-Milgram Theorem” (REDDY, 1986). The operator   is symmetric, continuous 

and self-adjoint, i.e., *  . Since   is a self-adjoint operator, the operators ℓ*and 

N * are also automatically identified (BARBIERI, 1992). Remember (from chapter 

4, Figure 4.5), it is necessary to know the adjoint operators from the auxiliary 

problem in order to determine the Green’s functions projections. 

Hence, now we know the differential operators, we are in place to figure 

out the Green’s function projections using the methodology described in     

chapter 4. 

 

5.3 GREEN’S FUNCTION PROJECTIONS DETERMINATION 

5.3.1 Green’s Matrices General Characteristics 

 

In order to facilitate the comprehension of this section, it is interesting to 

establish the following parameters: 

 

 ngln: number of degrees of freedom per node; 

 nnef: number of nodes in a finite element; 

 nnec: number of nodes in a boundary element; 

 ntn: total number of finite element nodes; 

 ntnc: total number of boundary element nodes. 

 

It is also important to distinguish the following displacement vectors: 

 

 d: the degrees of freedom per node vector (displacements “x” and 

“y” in one node); 

 ue: the nodal displacement vector of an element; 

 u: the nodal displacement vector of whole problem. 

 

Such vectors, considering the spaces generated by the finite element, can 

be expressed as 
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  t

21 jjj

e

j u,ud  , for an element node “j”,  

  t

21 jjjj u,ud  , for whole problem node “j”,  

 (5.11) 

  t

2111 ,,,
e

e

nnefngln

eee uuu )x(D u , for a domain element “e”, 

  t

21 ,,
j

e

nnef

ee, ddd  , or 

  t

2111 ,,,
e

e

nnecngln

eee uuu )x(B u  for a boundary element “e”, 

  t

21 ,,
j

e

nnec

ee, ddd  , 

 (5.12) 

 t

)(21 ,,, ntnnglnxD uuu u  for the domain whole problem, 

 t

21 ,, ntn, ddd  ,  or 

 t

)(21 ,,, ntncnglnxB uuu u , for the boundary whole problem, 

 t

21 ,, ntnc, ddd   . 

 (5.13) 

 

In this way, d, ue and u are vectors with dimensions: d[ngln x 1],                

e

Du [( nnef x ngln ) x 1] for a domain element or e

Bu [( nnec x ngln ) x 1] for a boundary element 

and Du [( ntn x ngln ) x 1] for a domain mesh or Bu [( ntnc x ngln ) x 1] for a boundary mesh, 

respectively. 

Since the 4-node bilinear quadrilateral element in domain and the 2-node 

linear element on boundary are utilized in this work, they are considered in next 

developments. 

Therefore, it is possible to approximate the displacement vector in 

domain e

Du  for an arbitrary 4-node 2D quadrilateral element such that 

 

 t

2414231322122111

4

4

0

0

0

0

0

0

0

0

3

3

2

2

1

1 eeeeeeee

e

e

e

e

e

e

e

e

e uuuuuuuu








































Du  

 (5.14) 
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where e

i  are components of the local shape function matrix eΨ  in domain and 

e

klu  is the displacement component of a “k” degree of freedom at a local node “l”. 

The last expression can be generically described as 

 

eee uΨu D
 (5.15) 

 

So, each shape function sub-matrix  

 











e

i

e

ie

i




0

0
Ψ  (5.16) 

 

related to a degree of freedom has a dimension of ngln x ngln and the matrix eΨ  

has a dimension of [ ngln x (ngln x nnef) ]. 

For whole domain, the displacement vector in domain Du  can be denoted 

by global shape functions as 

 

 t

)(321

2

2

1

1

0

0

0

0

0

0
ntnngln

ntn

ntn

xD uuuu 

































u  (5.17) 

 

or, generically 

 

Ψuu D  (5.18) 

 

with Ψ  has the dimension of  [ ngln x (ngln x ntn) ].  

In the case of the 2-node 1D element, the approximate displacement 

vector on boundary e

Bu  element can be expressed by 

 

 t

22122111

2

2

1

1

0

0

0

0
eeee

e

e

e

e

e uuuu
























Bu  (5.19) 

 

where e

i
  are components of the local shape function matrix eΦ  on boundary and 
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e

klu  is the displacement component of a “k” degree of freedom at a local node “l”. 

The last expression can be generically described as 

 

eee uΦu B
 (5.20) 

 

So, each shape function sub-matrix 

 











e

i

e

ie

i




0

0
Φ  (5.21) 

 

related to a degree of freedom has a dimension of ngln x ngln and the matrix eΦ  

has a dimension of [ ngln x (ngln x nnec) ]. 

For whole domain, the displacement vector on boundary Bu  can be 

denoted by global shape functions as 

 

 t

)(321

2

2

1

1

0

0

0

0

0

0
ntncngln

ntn

ntn

xB uuuu 

































u  (5.22) 

 

or, generically 

 

Φuu B  (5.23) 

 

with Φ  has the dimension of  [ ngln x (ngln x ntnc) ].  

Remember that the Green’s function projection in domain, Gd(P), is 

expressed by Equation 4.68, that is 

 

  Q

ttt

d d 


),()( QPQP GΨG  (5.24) 

 

and the Green’s tensor G(P,Q) has the dimension of (ngln x ngln).  

So, based on the shape function matrix form Ψ  in Equation 5.17, one 

concludes that the Gd(P) has the same pattern, i.e., 
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])()()()([)(
321

PPPPP
ntn

ddddd GGGGG   (5.25) 

 

Each sub-matrix  )(P
i

dG  of Equation (5.25) corresponds to a node in the 

finite element mesh and it has the dimension of (ngln x ngln). Consequently, the 

matrix Gd(P) has the dimension of [ ngln x (ngln x ntn) ]. 

Consider a sub-matrix from Gd(P) in expression (5.25) corresponding to a 

node “i”, i.e., )(P
i

dG . This sub-matrix can be simplified by 

 

 i

ngln

iii
P dddd GGGG 

21
)(   (5.26) 

 

where 
i

jdG  is a vector  i

jdG  corresponding to “j-th” column (or degree of freedom) 

of )(P
i

dG . It is necessary to go deep in details because the minimization of the 

functional F  uses the vectors  i

jdG . 

It is possible, by similarity, to ascertain the projection Gc(P) expressed by 

Equation 4.76 in the space generated by the boundary elements. Aiming doing 

that, it is necessary to replace from domain shape functions matrix Ψ  to 

boundary shape functions matrix Φ  and change the parameter from ntn to ntnc, 

consequently. 

Doing so, one concludes that Gc(P), has a dimension of [ ngln x (ngln x 

ntnc) ] and it is composed by ntnc sub-matrices with the dimension of (ngln x 

ngln), such that 

 

])()()()([)(
321

PPPPP
ntnc

ccccc GGGGG   (5.27) 

 

In the same way, a sub-matrix )(PcG  corresponding to a node “i” can be 

given by 

 i

ngln

iii
P cccc GGGG 

21
)(   (5.28) 
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where 
i

jcG  is a vector  i

jcG  correspond to “j-th” column (or degree of freedom) of 

)(P
i

cG  and these vectors are also utilized when minimizing the functional F. 

It will be seen in next section how the Green’s function projections can be 

approximated using the Finite Element Method (FEM). 

 

5.3.2 Green’s Function Projections Approximation 

 

Examining the proceedings developed in chapter 4 – section 4.4.3 – to 

obtain the projections Gd(P), Gd(p) and Gc(P), Gc(p), we have 

 

1) From the STEP 1, aiming to approximate Gd(P), we write 

 

 IG QPQP , t) ,(   where P, Q ∈ Ω, (5.29) 

 

0( *  t),( Qp)G' NN   where p ∈ ∂Ω and Q ∈ Ω.  (5.30) 

 

Multiplying the expression 5.29 by )(QΨ  and integrating it in domain   

 

)()(* PP ΨG d . (5.31) 

 

Similarly, but now for expression 5.30, we have 

 

  0)(*  pdG' NN . (5.32) 

 

Then, the Green’s function projection in domain, Gd(P), given by Equation 

4.68, can be expressed by 

 

Qd d















 

 ntn

ntn

G

G

G

G
P













0

0

0

0

0

0
)(

2

2

1

1

22

12

21

11

















G  (5.33) 
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which in the Green’s tensor G(P,Q) has the dimension of (ngln x ngln) and Ψ  

has the dimension of  [ ngln x (ngln x ntn) ]. Each Gij term depends on points “P, 

Q” and each i  component depends on the point “Q”. The last expression can be 

rewritten as seen in last section 

 

])()()()([)(
321

PPPPP
ntn

ddddd GGGGG   (5.34) 

 

where  

 

Qd d







 

 i

i

i

ii

G

G

G

G
P









22

12

21

11
)(




G  (5.35) 

 

and it represents the “i-th” component of the Green’s function projection in the 

finite element space.  Using the last expression (Equation 5.35) in Equation 5.31, 

we write 

 



















 i

i

i

i

i

i

G

G

G

G











 0

022

12

21

11*








 Qd  (5.36) 

 

or 

 











)(

0

0

)(
)(*

P

P
P

i

ii








 dG  where P, Q ∈ Ω. (5.37) 

 

Examining the last expression, one concludes the Green’s function 

projection also obey the adjoint problem differential equation with only the 

difference that the Dirac delta excitation  IQP,  is replaced by 

 










)(

0

0

)(

P

P

i

i








. (5.38) 
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This is why the regularity of the projection Gd(P) is superior when 

compared to the Green’s function G(P,Q)! 

The boundary conditions for the expression 5.37 are established from 

Equation 5.32 such that 

 

  0)(*  p
i

dG' NN  where p ∈ ∂Ω. (5.39) 

 

Finally, the last step now is to obtain from Equations 5.37 and 5.39 the 

finite element approximation without knowing the functional in its explicit form. 

In chapter 4, it was shown the projections Gd and Gc can be figured out through a 

functional minimization )( cd G,GF  – Equation 4.91 – with four different bilinear 

forms: ),( B ,  ΨG ,d1B ,  ΦG ,c2B  and ),( 3B . The bilinear form under study 

is ),( B  whose it can be developed for Gd or Gc depending on the case to be 

calculated. 

Firstly, one defines the differential operator L  as 

 















y

x

),(

0

0

),(




L  (5.40) 

 

which in x),( and y),( represent the partial derivatives of a function in “x” and 

“y”, respectively. For the projection Gd(P), the functional )(
i

jdGF  can be 

formulated as (BARBIERI, 1992) 

 

       


dd
t

dd

t

dd j

i

j

i

j

i

j

i

j
WGGGDG )()(

2

1
LLF  

   


dd

t

d

i

j

i

j
GG )(' N  (5.41) 

 

that will be minimized and solved by the Finite Element Method (FEM) to find 

out the sought Green’s function projection. The term 
i

jdG  represents the “j-th” 
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column of 
i

dG  and Wj, with j = 1 and j = 2 for ngln = 2, is given by 

 











0

)(
1

Pi
W      and     










)(

0
2

Pi
W . (5.42) 

 

Consider now the terms 
i

jdG . Expanding the components of )(P
i

dG  using 

the finite element technique, we have 

 

t

d 

















DP

ntnxng

DP
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ntn

ntni

g

g

g

g

g

g
P

)ln(2

)ln(1
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21

11
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1

0

0

0

0

0

0
)(

































G  

 (5.43) 

 

or 

 











2221

1211
)(

gdgd

gdgd
P

i

dG  (5.44)
 

 

Thus, 
i

jdG  can be expressed by 

 










j

ji

j gd

gd

2

1

dG  

 tDP

ntnxngj

DP

j

DP

j

ntn

ntn
ggg )ln(21

2

2

1

1
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0

0
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

































 

i

j
DP

GGΨ  (5.45) 

 

where 
i

j
DPG  is the vector    DP

jk

DP

j

DP

j

i

j

DP ggg  21G  and DP

jkg  

represents the value in the node “k” (considering k = 1, 2, …, (ngln x ntn) ) of the 

“j-th” column of the “i-th” component of the projection Gd(P). 

Taking the last expansion for the projection 
i

jdG  into the functional 

)(
i

jdGF  and minimizing it with respect to each component of 
i

dG  obtained by 
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FEM, one achieves the following equation system 

 

AK DPG      or         AK DPG  (5.46) 

 

where 

 

'KKK
FEM

      or          'KKK
FEM

  (5.47) 

 

and: 

a) 
FEM

K : the Finite Element Method standard matrix; 

b) 'K : matrix whose the boundary operator ' N coefficients are placed and 

can be represented as a diagonal matrix (as mentioned in Equation 

(4.46)), such that: 

 



























m

m

k

k

k

k

*2

)1*2(

2

1

' K  (5.48) 

 

which in the index “m” means the number of nodes on boundary whose 

the operator ' N  acts. 

 

c) A : matrix resulting from the functional minimization )(
i

jdGF  process 

which correspond to the matrix of Equation 4.64 and it can be 

expressed by 

 

















 


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ntn

ntn

t

ntn

ntn

























0

0

0

0

0

0

0

0

0

0

0

0

2

2

1

1

2

2

1

1


























A  

 (5.49) 
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d) The matrix (tensor) DPG  contain nodal values of the Green’s function 

projections, such as: 

 

 )12,( ij
DPG : nodal values [ j = 1,…, (2x ntn) ] of the projection 

i

dG components due to the load i  ( i = 1,…, ntn ) in the 

direction “1”; 

 )2,( ij
DPG : nodal values [ j = 1,…, (2x ntn) ] of the projection 

i

dG components due to the load i  ( i = 1,…, ntn ) in the 

direction “2”; 

 

2) Taking now the STEP 2, the same procedure can be done as described 

in last section but now aiming to find out the projection Gc(P), replacing the 

domain shape functions matrix Ψ  by the boundary shape functions matrix Φ . 

Starting by enumerating the Equations 4.84 and 4.85 with the aim to 

approximate Gc(P), we write 

 

0 t) ,( qPG  where P ∈ Ω and q ∈ ∂Ω, (5.50) 

 

   IG qpqp ,*  t),(' NN  where p, q ∈ ∂Ω . (5.51) 

 

Multiplying the expression 5.50 by  qΦ  and integrating it on boundary 

 , we have 

 

0)(* PcG . (5.52) 

 

Similarly, but now for expression 5.51, one results 

 

  )()(* pp ΦG  c' NN . (5.53) 

 

Then, the Green’s function projection in domain, Gc(P), given by Equation 
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4.67, can be expressed by that is 

 

qc d 















 

 ntnc

ntnc

G

G

G

G
P













0

0

0

0

0

0
)(

2

2

1

1

22

12

21

11

















G  (5.54) 

 

which in the Green’s tensor G(P,q) has the dimension of (ngln x ngln) and Φ  has 

the dimension of  [ ngln x (ngln x ntnc) ]. Each Gij term depends on points “p, Q” 

and i  component depends on the point “q”. The last expression can be rewritten 

as 

 

])()()()([)(
321

PPPPP
ntnc

cccc GGGGG c  (5.55) 

 

where 

 

qc d 







 

 p
i

i

i

ii

G

G

G

G
P









22

12

21

11
)(




G  (5.56) 

 

and it represents the “i-th” component of the Green’s function projection in the 

finite element space generated by the boundary shape functions.  Using the last 

expression (Equation 5.56) in Equation 5.52, we write 

 

0
22

12

21

11* 










qd
i

i

i

i

G

G

G

G












  (5.57) 

 

or 

 

0)(* P
i

cG  where P ∈ Ω. (5.58) 

 

Examining the last expression, one concludes the Green’s function 

projection also obey the adjoint problem differential equation with only the 

difference that the Dirac delta excitation  QP,  is replaced like that 
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 IQP,                by               0 (zero) (5.59) 

 

It is worth again highlighting that this is the reason why the regularity of 

the projections Gc(P) is superior when compared to the Green’s tensor G(P,q)! 

The boundary conditions for the expression (5.58) are established from 

Equation (5.53) such that 

 

  









)(

0

0

)(
)(*

p

p
p

i

ii








cG' NN . (5.60) 

 

In the same way as developed for Gd(P), it is possible to write the 

following functional )(
i

jcGF  to be minimized 

 

       


dd
t

cc

t

cc j

i

j

i

j

i

j

i

j
wGGGDG )()(

2

1
LLF  

    


dc

t

c

i

j

i

j
GG )(' N  (5.61) 

 

that will be solved by finite element method to find out the sought Green’s 

function projection. The term 
i

jcG  represents the “j-th” column of 
i

cG  and wj, 

with j = 1 and j = 2 for ngln = 2, is given by 

 











0

)(
1

pi
w      and     










)(

0
2

pi
w  (5.62) 

 

Consider now 
i

jcG . Expanding the components of )(P
i

cG  using the finite 

element technique, we have 
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G  

 (5.63) 
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or 

 











2221

1211
)(

gcgc

gcgc
P

i

cG . (5.64)
 

 

Thus, 
i

jcG  can be expressed by 

 


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CP

GGΨ  (5.65)

 
 

where 
i

j
CPG  is the vector    CP

jk

CP

j

CP

j

i

j

CP gggG  21  and CP

jkg  represents 

the value in the node “k” (considering k = 1, 2, …, ( ngln x ntn) ) of the “j-th” 

column of the “i-th” component of the projection Gc(P). 

Taking the last expansion for the projection 
i

jcG  into the functional 

)(
i

jcGF  and minimizing it with respect to each component of 
i

cG  obtained by 

FEM, one achieves the following equation system 

 

DK CPG      or         DK CPG  (5.66) 

 

where 

 

'KKK
FEM

      or          'KKK
FEM

  (5.67) 

 

and: 

 

a) 
FEM

K  and 'K  are the same matrices calculated previously for 
i

dG ; 
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b) D : matrix resulting from the functional minimization )(
i

jcGF  process 

which correspond to the matrix of Equation 4.72 and it can be 

expressed by 
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D  

 (5.68) 

 

c) The matrix CPG  contain nodal values of the Green’s function 

projections, such as: 

 

 )12,( ij
CPG : nodal values [ j = 1,…, (2x ntn) ] of the projection 

i

cG components due to the load i  ( i = 1,…, ntnc ) in the 

direction “1”; 

 )2(, ij
CPG : nodal values [ j = 1,…, (2x ntn) ] of the projection 

i

cG components due to the load i  ( i = 1,…, ntnc ) in the 

direction “2”; 

 

In the end, the Equations 5.46 and 5.66 can be solved simultaneously, 

such that 

 

   DAK  CPDP GG      or         DAK  CPDP GG  

 (5.69) 

 

The values of the projections Gd(p) and Gc(p) are traces of the values of 

the projections Gd(P) and Gc(P), respectively, and they can be calculated once the 

Equation 5.69 is solved. 
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5.4 MLGFM’s MATRICES FOR THE ENRICHED CASE 

 

All developments performed up to now in last sections are valid both for 

conventional MLGFM and for the enriched case. But, in the case of the 

enrichment, it is necessary to include in domain variables ( ngln x ntn ) and on 

boundary variables ( ngln x ntnc ) the corresponding new degrees of freedom due 

to the enrichment that it is named here as ngle, in domain and nglec, on 

boundary. 

For instance, consider an arbitrary problem discretized with only one 

element in domain, a 4-node 2D bilinear quadrilateral element with two nodal 

degrees of freedom and four elements on boundary, a 2-node 1D linear element 

with also two nodal degrees of freedom as seen in Figure 5.2.  

 

 

Figure 5.2 – A conventional and enriched MLGFM problem discretized with only 1 

finite element in domain and 4 boundary elements on boundary. 

 

It means that one has in domain: ngln = 2 and ntn = 4 (in this case, nnef 

= ntn) and on boundary: ngln = 2 and ntnc = 8 (in this case, nnec = 2). It is worth 

quoting each node and field degree of freedom have two degrees of freedom in this 

work (displacements in “x” and “y” directions). Also, note that if the same problem 
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was discretized with four finite elements in the domain mesh, the boundary mesh 

would have eight boundary elements as seen in Figure 5.3. Both discretized 

problems in Figure 5.2 and 5.3 possess double nodes at corners commonly used in 

Boundary Elements Method (BEM). For double nodes, the coordinates of both 

nodes are the same but the normal vectors differ. Also the type of boundary 

condition may be different at two nodes (GRILLI; SVENDSEN, 1990). 

 

 

Figure 5.3 – A conventional and enriched MLGFM problem discretized with 4 finite 

elements in domain and 8 boundary elements on boundary. 

 

But, we will focus on the example exposed here in Figure 5.2 where it is 

considered only 1 element in domain and 4 elements on boundary. Hence, the 

standard FEM stiffness matrix  
FEM

K has a dimension of [(ngln x ntn) x (ngln x 

ntn)], i.e., 8 x 8. That is the same dimension of the matrices  DPG  and  A . For 

 CPG , this matrix has the dimension of [(ngln x ntn) x (ngln x ntnc )], i.e., for this 

problem, 8 x 16 and the  D  matrix has the dimension of [( ngln x ntnc ) x ( ngln x 

ntnc )], i.e., 16 x 16. 

Considering only a first level of enrichment (p = 2 or le = 1), for example, 

the 4-node 2D bilinear quadrilateral element is enriched by 5 new field degrees of 

freedom (ngle) and the 2-node 1D linear element is enriched by 1 new field degree 

of freedom (nglec) as shown in Figure 5.2. Remembering: these nodes and field 

degrees of freedom must be multiplied by node degrees of freedom (in the case of 
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this work, it is equals two – displacements in “x” and “y” directions) to obtain the 

total number of degrees of freedom – DOF [ngln x (ntn+ngle)]. 

Thus, the enriched stiffness matrix (
ENR

K or  
ENR

K ) will have, for this 

case, a dimension of {[ngln x (ntn+ngle)] x [ngln x (ntn+ngle)]}, i.e., 18 x 18 

(remember that for this case nnef = ntn). And again, that is the same dimension 

of the matrices  DPG  and  A . For  CPG , this matrix has the dimension of {[ngln 

x (ntn+ngle)] x [ngln x 4x(nnec+nglec)]}, i.e., for this problem, 18 x 12 and the  D  

matrix has the dimension of {[ ngln x 4x(nnec+nglec) ] x [ ngln x 4x(nnec+nglec) ]}, 

i.e., 24 x 24. So, as shown in Figure 5.4, there is an enlargement of the stiffness 

matrix once the finite element mesh is enriched. For the example that we have 

been explored so far, the dimension is increased from 8 x 8 to 18 x 18. 

 

 

Figure 5.4 – Standard  
FEM

K  and enriched  
ENR

K  stiffness matrix. 

 

An important characteristic of this increase is that: the standard stiffness 

matrix is a part of the new enriched stiffness matrix, i.e., the enriched stiffness 

matrix  
ENR

K  is composed by the standard stiffness matrix  
FEM

K  plus new 
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rows and columns related to the enrichment level. This characteristic is not only 

inherent of the stiffness matrix but for all MLGFM system of matrices once the 

shape functions spaces are enriched both in domain and on boundary. This fact 

means that when calculating the Green’s functions projections using the finite 

element space, these projections will be “enriched” as soon as this space is 

enriched. As the MLGFM is known by precise flow variable values as well as by 

displacement nodal values, it is expected these values could be even better once 

enriched. Unfortunately, it is not always the case that this situation happens to 

the enriched approach and this aspect will be better discussed in results chapter. 

 

5.5 DISPLACEMENTS, REACTION FORCES AND STRESSES 

CALCULATION 

 

The Modified Local Green’s Function Method is able to determine, with 

high precision, the displacements and reaction forces values on boundary mesh 

nodal points as previously pointed out. These values can be figured out through 

the equation system (Equation 4.77) rewritten below 

 

    b
f

u

u

f
FEDDE 



















C

C

  (5.70) 

 

Once it is ascertained the boundary nodal unknown values, Cu  and f, the 

displacement values connected to the finite element mesh in domain are figured 

out by the Equation 4.105 rewritten below 

 

bGfGu DPCP

D   (5.71) 

 

The MLGFM demands the same treatment as FEM when aiming to 

determine the reaction forces in domain, i.e., it is necessary to calculate the nodal 

displacement derivatives and, by using the constitutive relationship, the internal 
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reaction forces can be found out. There is an unavoidable loss of precision when 

calculating the derivatives even for the MLGFM. But this loss of precision is 

substantial lower whereas the enriched approach is used. 

One important point that deserves to be highlighted is despite the high 

nodal precision values delivered by the MLGFM, the internal reaction forces can 

be improved using the sub-region technique suggested by Barbieri (1992). By 

means of this process, each sub-region corresponds to a “Green’s cell”, i.e., each 

boundary value of the Green’s cell are the result in domain of the original 

problem. Hence, the internal reaction forces can be calculated with the same 

precision as the boundary values of the problem (MENDONÇA, 1995). But, in 

this work, the sub-region approach is not used and the “Green’s cell” is applied to 

the whole domain. 

For the case of the stresses σx, σy and σxy, it is possible to utilize two 

alternatives. If the sought point is on boundary, the reaction forces are known 

with high precision. Inverting the elasticity matrix ijklDD , one calculates the 

strain values without loss of precision instead of calculating by the derivative 

operation. Once the values of the strain are known, the stress values can be 

figured out using the constitutive relationship. So, the MLGFM can determine 

stress values with high precision, without using derivative operation. 

On the other hand, if the sought point is in domain, it is necessary to use 

the nodal displacement derivatives in order to obtain strain values and by using 

the constitutive relationship, the stress values are determined. This is the same 

process utilized by FEM causing an unavoidable loss of precision as mentioned 

before. But these results are improved with the enrichment approach. 

Now, with all mathematical concepts and the EMLGFM methodology 

settled down, we are in place to apply it into some solid mechanics applications. 

This is exactly the topic of the next chapter. 
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Chapter 6 

Enriched Modified Local Green's 

Function Method Applications for 

Elasto Static Problems 

6.1 INTRODUCTION 

 

In this chapter, the first employment of the Enriched Modified Local 

Green’s Function Method (EMLGFM) is developed and implemented in several 

examples. It is introduced some general aspects in order to organize certain 

information like: the type of elements, number of degrees of freedom, Gauss 

points, specified constraints and numerical platforms (pre- and pos-processing) 

used in each example. Each application is individually presented and their 

results are exposed and discussed in its each section. The main objective here is 

to test and prove the efficiency of this new method. The MLGFM has been 

successfully used for a long time and the idea of enriching the domain and/or the 

boundary shape functions space has never been applied up to now. This is the 

novelty of this work! In order to test it, six different applications have been 

proposed: a straight cantilever beam, a curved cantilever beam, a thick-walled 

cylinder, a rectangular plate with a center hole, a rectangular plate with a center 

crack and an L-shaped domain with a singularity. In each section of the 
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application, the studied problem is better detailed: their numerical 

approximation, assumptions and different kind of results. In all applications are 

visualized excellent numerical results and the great potential of this new 

technique.  

 

6.2 APPLICATIONS, RESULTS AND DISCUSSIONS 

 

This section presents the first applications of the Enriched Modified Local 

Green’s Function Method (named in this work as “EMLGFM”) for a diversity of 

Elasto Static problems. The main goal of these problems is to verify the efficiency 

and accuracy of the EMLGFM. Again, it is important to highlight that all 

applications were held considering only one “Green’s cell” for the whole domain (a 

unicell-multielement approach). The number of finite elements and consequently 

the boundary elements varies according to the proposed study and play an 

essential role on the convergence process. In this work, it has been considered a 

4-node bilinear quadrilateral element in domain and a 2-node linear element on 

boundary applied to plane stress and strain problems, with 2 degrees of freedom 

(ngln = 2), i.e., degrees of freedom related to the displacement in “x” and “y” 

directions. A hierarchical enrichment methodology (HFEM) was adopted using 

Lobatto shape functions (ŠOLÍN et al., 2004) and its concept extended for GFEM 

(BABUŠKA; MELENK, 1997).  

It is used three different approaches for the first and second application: 

the domain/boundary enrichment, the domain only enrichment and the boundary 

only enrichment (3 ways of enriching the MLGFM). For the remaining ones, only 

one approach is used: the domain/boundary enrichment. There is not any 

selective process to define which element deserves to be enriched: all elements 

are enriched in every application. The loading types, boundary conditions, 

element meshing, geometries and properties are differently given in each 

application and they are described in each one of them. Double nodes are 

included into normal discontinuity points (mainly at corners for proposed 
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examples) and it is shown in each application. The same double-node technique 

was employed in Barbieri (1992) and Machado (1992) works.  

The results from the EMLGFM are compared to the conventional 

MLGFM using a 4-node bilinear quadrilateral element in domain and a 2-node 

linear element on boundary, the conventional MLGFM using a 9-node 

biquadratic quadrilateral element in domain and a 3-node quadratic element on 

boundary (Figure 6.1), the standard FEM and the analytical solutions. In the 

case of FEM, a 4-node 2D bilinear quadrilateral is considered.  The discretization, 

results pre- and post-processing are performed by Creo Simulate 2.0© in this case 

(for classic FEM). For MLGFM and EMLGFM, it is used the FORTRAN platform 

(Fortran PowerStation 4.0©). 

 

 

Figure 6.1 – Type of elements used in this work: 2D bilinear and biquadratic as well as 

1D linear and quadratic elements. 

 

The boundary conditions are specified in each degree of freedom for the 

EMLGFM where the value “0” means constraint and “1” means freedom. 

Remember that when specifying the boundary conditions, they can be prescribed 

displacement (essential boundary condition) or prescribed generalized forces 

(natural boundary conditions). For field degrees of freedom generated by 

enrichment process, they are automatically set null on boundary conditions. The 
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load distribution rules (applied nodal loads) are the same as described by 

MacNeal and Harder (1985). Note that the proper way to apply free end load 

depends on element type. Constraints definition, including their symbols, can be 

seen in Table 6.1. 

 

Table 6.1 – Boundary conditions: constraint symbols and degree of freedom definition. 

BOUNDARY CONDITION SYMBOL ux uy 
        

Completely constrained 

 

0 0 

Free displacement in the "x" direction 
 

1 0 

Free displacement in the "y" direction 
 

0 1 

 

The value of coefficients ki used in all applications is 1.0+10, remembering 

these coefficients are included into MLGFM matrix  'K  (boundary operator ' N ). 

The numerical integration is a very important aspect when using an 

enrichment approach specially when increasing the order or level of enrichment. 

In order to proper compare to the applications and eliminate the numerical 

integration variable in approximate results, all numerical solutions were 

calculated with 16 Gauss points in each coordinate direction except by the first 

straight and curved beam experiments with Lobatto shape functions up to p = 2 

polynomial order and selective reduced integration (SRI) approach 

(ZIENKIEWICZ et al., 1971) – better detailed in next two application sections. 

The minimum number of quadrature points for the Gauss quadrature over 

quadrilaterals was suggested by Šolín et al. (2004) and the minimum number 

would be 8 for p = 5. Here, this value was purposely duplicated. The choice in 

applying a higher Gauss quadrature is based on the difficulty of the enrichment 

approach to capture and approximate with accurate precision the shape function 

values when using lower Gauss point values (STROUBOULIS et al., 2000). This 

aspect is intensified for non-polynomial shape functions (BARROS, 2002) that is 

the case of the two last applications where GFEM approach is tested with 
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MLGFM. 

Summarizing then Gauss quadrature points: for the first tests performed 

in straight and curved beam with p = 2, the integration is carried out with 3 

Gauss points in each coordinate direction (SRI is an exception case that will be 

better discussed in next application section, as earlier mentioned). The choice of 

using only p = 2 for these first studies are based on to first check the differences 

among the following enrichment approaches: domain/boundary, only domain and 

only boundary. For all other results investigated in next sections, it is used 16 

Gauss points in each coordinate direction, i.e., 16 x 16 Gauss quadrature in 2D 

elements and 16 Gauss quadrature in 1D elements. Only for the last application, 

a Gauss quadrature points study was also performed, varying the number of 

points. It was used 3, 16, 48 and 96 Gauss quadrature points in each coordinate 

direction and concluded a great disturbance only for 3 points for polynomial order 

above p = 3 (and level of enrichment above le = 2). 

 

6.2.1 Straight Cantilever Beam 

 

The tensile and bending tests for beams proposed MacNeal and Harder 

(1985) are taken as reference here in this section. The main goal of these 

problems is to verify the efficiency of the 2D elements related to the distortion 

and aspect ratio. The straight cantilever beam is considered in a state of plane 

stress. The geometric properties are shown for both cases – extension and 

bending cases – in Figure 6.2.  

The solution to the simple case under axial loading (named here as case 

1: extension) is well-known and derived from the Hooke’s Law 

 

xx E  ,  (6.1) 

x

ux
x




 ,  (6.2) 

dx
Ex

x
u

L

x  0 )(

)(

A

P
  (6.3) 
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Figure 6.2 – The straight cantilever beam: geometric properties. 

 

For the case where the cross-sectional area and axial load are assumed to 

be constant, we can rewrite the last equation as 

 

E
ux

A

PL
   (6.4) 

 

where “P” is the load, “L” is the length of the bar, “A” is the cross-sectional area 

and “E” is the elastic modulus. 

The solution to the bending problem (named here as case 2: bending) is 

given in Timoshenko and Goodier (1951) based on use of a stress function 

solution. The solution for stresses is given by 

 

32

3

c

xy
x

P
 ,  (6.5) 
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0y ,  (6.6) 
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where “P” is the applied load and “c” the half-width (height) of the beam. 

The solution for displacements under boundary conditions 

0)0,()0,(  LL yx uu  and 0),(),(  cucu xx LL  are given by 
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In the above “E” and “ν” are the elastic modulus and Poisson ratio, “G” is 

the shear modulus given by E / [ 2(1 + ν) ] and “I” is the area moment of inertia 

which is equal to 2tc3 / 3 where “t” is a constant beam thickness. 

For this solution (case 2), the tractions on the boundaries become (forces 

on boundary condition) 
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For the numerical solutions, it is used two meshes: one in domain and 

another one on boundary, utilizing double node at normal discontinuity as we can 

see in Figure 6.3.  

For each problem, it is chosen the geometry, material properties, 

boundary conditions, loading, and element meshing shown in Figure 6.4 for FEM 

solutions. As seen in this figure, case 1 and case 2 are associated to tensile and 

shear loading, respectively. 
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Figure 6.3 – Domain and boundary meshes for straight cantilever beam. Double node 

considered at corners. 

 

Problem (a) utilizes a regular mesh and problems (b) and (c) use distorted 

meshes (a trapezoidal and a parallelogram one). In these results, it is used 

Lobatto shape functions with order p = 2 only and the integration is carried out 

with 3 Gauss points in each direction except by Selective Reduced Integration 

(SRI) that is better detailed further in this session. The choice of using only p = 2 

for these studies is based on to first check the differences among the following 

enrichment approaches: domain and boundary, domain only and boundary only. 

For all other results investigated in this section (with polynomial order up to p = 

5), it is used 16 Gauss points in each direction. Since the results are compared 

against the analytical and classic FEM solutions given by MacNeal and Harder 

(1985), displacements at point “O” (see Figure 6.2) are computed. 

 An important aspect of the results is the well-known locking behavior 

caused by the 2D quadrilateral element (ZIENKIEWICZ et al., 1971). This 

inherent deficiency of low-order, displacement-assumed plane stress elements 

was quickly noticed in late 1960s when applied to problems in which in-plane 

bending was dominant (DOHERTY et al., 1969). Those elements absorbed 

parasitic shear energy, resulting in over stiffness. The phenomenon was given 

the name “shear locking”. That effect is magnified when the element aspect ratio 



Enriched Modified Local Green’s Function Method Applied to Elasto Static Problems  

Enriched Modified Local Green's Function Method Applications for Elasto Static 

Problems 

 

 

143 

becomes larger. As a result, the computed deflections (and associated stresses) 

could be too small by orders of magnitude, leading to unsafe designs. 

 

 

Figure 6.4 – Straight cantilever beam: problem (a) - regular shape elements; problem 

(b) - trapezoidal shape elements; problem (c) - parallelogram shape 

elements. Length = 6.0; width (height) = 0.2; depth (thickness) = 0.1;            

E = 1.0x107; ν = 0.30; mesh = 6 x 1. Loading: unit forces at free end (tip). 

Constraint: fixed support. 

 

There are several approaches to alleviate shear locking found in 

literature but here it is used the modified gauss integration rules and, more 

specifically, the Selective Reduced Integration (SRI). In this approach, to prevent 

shear locking, the part of the stiffness matrix associated to shear strain energy 

has to be evaluated at a single Gauss point as the rest can be dealt with by a full 

integration scheme. Doing so, the rank (the maximum number of linearly 
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independent row or column of a matrix) of the stiffness tensor remains full, also 

preventing spurious zero-energy modes. 

So, splitting the plane stress elasticity matrix D into two parts: a normal 

strain part Dε and a shear strain part Dγ, we write 
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Thus, the stiffness matrix K  may also be split into a normal strain K  

and a shear strain part K : 

 

 KKK   
ddd TTT BDBBDBBDB  (6.13) 

 

where B is the strain-displacement matrix and D is the elasticity matrix. 

Spurious shear strain terms that appear in the stiffness matrix of the 

four-node quadrilateral are eliminated by integrating K using one Gauss point 

which is located at the element center, while the normal strain contribution is 

integrated by a 2 x 2 Gauss rule (full integration). 

The results displayed in Table 6.2 and Table 6.3 are taken at end of the 

beam where the maximum displacement occurs as shown in Figure 6.5. 

The normalized displacement is taken, for instance in case 2, as [ (uy)h / 

uy ] where “(uy)h” is the displacement of the approximate solution and “uy” is the 

displacement of the exact solution in “y” direction. 

As we can see in displacements results (Table 6.2) and normalized 

displacement results (Table 6.3), for straight beam at tensile load (extension – 

case 1), the results presented good approximation compared to the analytical 

solution even with irregular elements shape – problems (b) and (c). Anyway, it is 

important to highlight that there is no significant variation among the problems 

(a), (b) and (c) for all enriched approaches (domain/boundary, only domain and 
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only boundary). Another important point that deserves to be highlighted is the 

boundary condition used in MacNeal and Harder (1985) for this test: it is 

completely clamped in one end of the beam. This assumption avoids Poisson’s 

effect in “y” direction and it can be overcome constraining only one node in both 

directions and other nodes only in “x” direction. Doing so, the values for case 1 is 

100% precise, i.e., no error as seen in Zienkiewicz et al. (2005). 

 

 

Figure 6.5 – Maximum displacement for cases 1 and 2 due to forces at free end. 

 

On the other hand, for bending load problems (in-plane shear – case 2) 

applied for straight beam, the results presented a very low variation with 

domain/boundary enrichment among problems (a), (b) and (c). It is also 

interesting to notice that the boundary only enrichment approach showed results 

very close to the conventional 4-node MLGFM. When compared to the plate 

elements tested by MacNeal and Harder (1985), the results are much better 

despite the great disturbance visualized for the conventional 4-node MLGFM 

element (without using SRI). Therefore, the boundary only enrichment approach 

presents low accuracy for shear problems. Better results are provided by the 

domain only enrichment approach. However, the EMLGFM reaches the best 

performance when the domain and boundary enrichment approach is employed. 

This is an interesting conclusion since the Green’s function projections (GFp) are 
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calculated by FEM procedures, demonstrating it is not enough to enrich only the 

boundary mesh. 

 

Table 6.2 – Displacements results and analytical solution for straight cantilever beam. 

DISPLACEMENT IN DIRECTION OF LOAD FOR STRAIGHT BEAM 
       

PROBLEM AND  TYPE OF 

ELEMENT 

PROBLEM 

(a): 
REGULAR 

PROBLEM 

(b): 
TRAPEZOIDAL 

PROBLEM  

(c): 
PARALELLOGRAM 

CASE TYPE CASE 1 CASE 1 CASE 1 

TIP LOAD EXTENSION EXTENSION EXTENSION 

S
O

L
U

T
IO

N
 

ANALYTICAL* 3.00000E-05 

FEM (QUAD4)* 4-node p=1 2.98500E-05 2.98800E-05 2.98800E-05 

MLGFM 

4-node 

p=1 

2.98630E-05 2.99270E-05 2.99180E-05 

4-node 

SRI 
2.98640E-05 2.99780E-05 2.99800E-05 

9-node p=2 2.99430E-05 3.03380E-05 3.03130E-05 

HFEM 

EMLGFM 

4-node 

Domain/ 

Boundary 

p=2 

2.99250E-05 2.99170E-05 2.99250E-05 

Only 

Domain 
3.06140E-05 3.06380E-05 3.06140E-05 

Only 

Boundary 
2.98630E-05 2.98390E-05 2.98630E-05 

       

PROBLEM AND  TYPE OF 

ELEMENT 

PROBLEM 

(a): 
REGULAR 

PROBLEM 

(b): 
TRAPEZOIDAL 

PROBLEM  

(c): 
PARALELLOGRAM 

CASE TYPE CASE 2 CASE 2 CASE 2 

TIP LOAD 
 IN-PLANE 

SHEAR 

 IN-PLANE 

SHEAR 

 IN-PLANE 

SHEAR 

S
O

L
U

T
IO

N
 

ANALYTICAL* -1.08100E-01 

FEM (QUAD4)* 4-node p=1 -9.77220E-02 -7.67510E-03 -8.64800E-03 

MLGFM 

4-node 

p=1 

-1.00880E-02 -2.68600E-03 -3.42740E-03 

4-node 

SRI 
-9.76760E-02 -7.59160E-03 -8.60990E-03 

9-node p=2 -1.07030E-01 -1.06020E-01 -1.06040E-01 

HFEM 

EMLGFM 

4-node 

Domain/ 

Boundary 

p=2 

-1.07550E-01 -1.07470E-01 -1.07550E-01 

Only 

Domain 
-1.07550E-01 -1.07460E-01 -1.07550E-01 

Only 

Boundary 
-1.00880E-02 -9.40110E-03 -1.00880E-02 

* MacNeal and Harder, 1985. 
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Table 6.3 – Normalized tip displacements results in direction of load. 

NORMALIZED DISPLACEMENT FOR STRAIGHT BEAM 
       

PROBLEM AND  TYPE OF 

ELEMENT 

PROBLEM 

(a): 
REGULAR 

PROBLEM 

(b): 
TRAPEZOIDAL 

PROBLEM  

(c): 
PARALELLOGRAM 

CASE TYPE CASE 1 CASE 1 CASE 1 

TIP LOAD EXTENSION EXTENSION EXTENSION 

S
O

L
U

T
IO

N
 

FEM (QUAD4)* 4-node p=1 0.99500 0.99600 0.99600 

MLGFM 

4-node 

p=1 

0.99543 0.99757 0.99727 

4-node 

SRI 
0.99546 0.99926 0.99934 

9-node p=2 0.99810 1.01127 1.01043 

HFEM 

EMLGFM 

4-node 

Domain/ 

Boundary 

p=2 

0.99749 0.99724 0.99749 

Only 

Domain 
1.02048 1.02127 1.02048 

Only 

Boundary 
0.99543 0.99465 0.99543 

       

PROBLEM AND  TYPE OF 

ELEMENT 

PROBLEM 

(a): 
REGULAR 

PROBLEM 

(b): 
TRAPEZOIDAL 

PROBLEM  

(c): 
PARALELLOGRAM 

CASE TYPE CASE 2 CASE 2 CASE 2 

TIP LOAD 
 IN-PLANE 

SHEAR 

 IN-PLANE 

SHEAR 

 IN-PLANE 

SHEAR 

S
O

L
U

T
IO

N
 

FEM (QUAD4)* 4-node p=1 0.90400 0.07100 0.08000 

MLGFM 

4-node 

p=1 

0.09341 0.02487 0.03174 

4-node 

SRI 
0.90440 0.07027 0.07970 

9-node p=2 0.99102 0.98167 0.98185 

HFEM 

EMLGFM 

4-node 

Domain/ 

Boundary 

p=2 

0.99541 0.99413 0.99494 

Only 

Domain 
0.99488 0.99406 0.99488 

Only 

Boundary 
0.09332 0.08697 0.09332 

 

A series of analysis has been run with different length-to-height ratio 

(L/h) considering the loading case type 2 and regular mesh in order to test the 

shear locking effect due to the element aspect ratio (the ratio of the element 

longest to smallest dimension), mentioned earlier in this section. The L/h values 

tested in these analysis vary from L/h = 5 to L/h = 1000 and results are 
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expressed both for displacements and stresses in error percentage as shown in 

Table 6.4 and Table 6.5. 

The percentage error here is defined as ( ǀ(uy)h − uyǀ / uy )*100% where 

“(uy)h” is the displacement of the approximate solution and “uy” is the 

displacement of the analytical solution in “y” direction. The stress error 

measurement follows the same pattern just replacing the displacement variable 

by stress variable, such as: ( ǀσh − σǀ / σ )*100%. The model is discretized with 6 

elements and 16 Gauss points in each direction. The results are given for 

conventional MLGFM with 4 nodes and 9 nodes comparing to the EMLGFM with 

the polynomial order from p = 2 to p = 5. 

 

Table 6.4 – Displacement error (%) for different L/h aspect ratio. 

DISPLACEMENT (uy) ERROR (%) IN DIRECTION OF LOAD 
              

6 ELEM 
MLGFM ENRICHED MLGFM 

4-node 9-node 4-node 

L/h p=1 p=2 p=3 p=4 p=5 

5 26.97991% 1.20054% 0.32409% 3.22149% 4.08185% 5.91757% 

30 90.66735% 0.98396% 0.54545% 0.03923% 0.21407% 0.23628% 

100 99.07348% 1.18271% 0.71999% 0.05955% 0.02905% 0.00430% 

1000 99.99064% 1.26258% 0.75258% 0.07583% 0.06933% 0.03808% 

 

Table 6.5 – Stress error (%) for different L/h aspect ratio. 

NORMAL STRESS (σx) ERROR MEASURED ON BOUNDARY (%) 
  

6 ELEM 
MLGFM ENRICHED MLGFM 

4-node 9-node 4-node 

L/h p=1 p=2 p=3 p=4 p=5 

5 92.34207% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

30 90.23669% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

100 99.30848% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

1000 99.02098% 0.06000% 0.00500% 0.00500% 0.00500% 0.00500% 

 

It is observed the great accuracy of the EMLGFM both for displacement 

and even more for stress results. An important aspect to note here is that the 
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EMLGM inherits the excellent results for flux variables from MLGFM. In this 

case, the flux variable is the stress. 

Another important assessment of the overall quality of the approximate 

solution is the measure of the error in energy norm. When comparing alternative 

approaches in numerical methods, the error versus the number of degrees of 

freedom relationship is of interest (and consequently the computational cost), 

with the error measured in terms of displacements, stresses, stress resultants at 

specific points, or in terms of energy. It is usual to measure the error in energy 

norm versus the total number of degrees of freedom (NDOF) as basis for 

comparison and we shall be concerned with the rate of change of the error in 

energy with respects those NDOF. 

The NDOF can be increased in various ways: uniform mesh refinement 

(h-refinement), uniform change in polynomial order (p-refinement) or both 

refinements at the same time (hp-refinement). For the problem studied here, the 

straight cantilever beam is uniformly refined for the standard FEM and MLGFM 

characterizing an NDOF increase by an h-refinement (Figure 6.6) but the NDOF 

for EMLGFM is increased by increasing the hierarchical polynomial order using 

Lobatto shape functions. Performing such meshes, considering the loading case 

type 2, it is possible to plot the convergence path as is shown in Figure 6.7. The 

convergence path is plotted in log(er)E versus log(NDOF) curve. 

The relative error in energy norm (er)E is defined according to Szabó 

(1986) as follows 

 

)(

)()(
)

u

uu

U

UU
e h

Er


(   (6.14) 

 

where U(u) is the strain energy of the exact solution and U(uh) is the strain 

energy of the approximate solution. 

Numerical strain energy in a displacement formulation can be expressed 

by (ZIENKIEWICZ et al., 2005) 
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a
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aau uKu
2

1
)( U   (6.15)

 

 

where the exact value used in this work is found as U(u) = 2.000156. 

 

 

Figure 6.6 – Domain meshes and geometries for different number of elements. 

 

The rate of convergence for 4-node quadrilateral is so slow that is not 

feasible to control the error of the approximation for lower NDOF values. But 

using SRI in conventional MLGFM (Selective Reduced Integration) there’s 

clearly an improvement of the results. It is indeed interesting to observe the 

convergence rate for both 4-node (including the SRI) and 9-node in conventional 

MLGFM: they have nearly the same curve slope although the error is smaller for 
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9-node in higher NDOF values. Also note that the 9-node element has not been 

treated for shear locking. The EMLGFM presents a faster rate of convergence 

reaching smaller error in energy norm for lower NDOF values than the classic 

FEM and conventional MLGFM. The slopes of the curves are found as 0.20115 

for FEM, 0.20115 for MLGFM 4-node, 0.37268 for MLGFM 4-node using SRI, 

0.78242 for MLGFM 9-node and 2.06605 for enriched MLGFM (EMLGFM). The 

rate of convergence for EMLGFM is 10.27147 times faster than classic FEM. 

 

 

Figure 6.7 – Error in energy norm (er)E for different Degrees of Freedom - DOF 

(logarithmic scale). 

 

When it comes to the computational cost aspects, the EMLGFM and its 

predecessor the MLGFM need to figure out firstly Green’s function projections in 

order to compute displacement’s solution. So, the computational cost might be 

increased if this process is singly considered when comparing to other methods, 

e.g., FEM and BEM. But, the EMLGFM is deemed to be a coarse mesh method, 

reaching high value precision with relative low degrees of freedom. Anyway, as 

shown in Table 6.6, the conventional MLGFM, solved with 4-node element, 
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presents a lower computational cost compared to FEM and same level of solution 

error. But this is different for the solution by MLGFM 9-node and EMLGFM 4-

node where there is an increase of elapsed calculation time but in contrast the 

precision is significantly higher. 

 

Table 6.6 – Computational cost evaluation versus displacement uy error. 

ELAPSED CALCULATION TIME (seconds) versus DISPLACEMENT uy ERROR (%) 
       

Solution Type Number of Elements: 6 ELEM 12 ELEM 24 ELEM 60 ELEM 

FEM 4-node 
Elapsed 

Time (s) 
0.330 0.340 0.340 0.350 

MLGFM 

4-node 
Elapsed 

Time (s) 
0.094 0.109 0.218 0.349 

9-node 
Elapsed 

Time (s) 
0.250 0.640 5.160 45.000 

HFEM 

EMLGFM 

4-node 

p=2 
Elapsed 

Time (s) 
0.156 0.250 0.874 13.000 

p=2 

without GDP 

Elapsed 

Time (s) 
0.156 0.218 0.577 8.471 

Time Reduction 

without GDP (%) 
0,000% 12.800% 33.982% 34.838% 

              

FEM 4-node 
Displacement 

Error (%) 
99.074% 96.404% 87.140% 53.859% 

MLGFM 

4-node 
Displacement 

Error (%)  
99.073% 96.404% 87.140% 53.860% 

9-node 
Displacement 

Error (%)  
1.183% 0.415% 0.175% 0.078% 

HFEM 

EMLGFM 

4-node 

p=2 
Displacement 

Error (%)  
0.720% 0.166% 0.032% 0.003% 

 

If we disregard Green’s function projections (GFp) figured out in domain 

(GDP), the computational cost sharply decreases. In this example, it is possible to 

do that due to the absence of body forces. Comparing the EMLGFM p = 2 without 

GDP (Green’s projections calculated in domain) against the EMLGFM p = 2 with 

GDP (in this example, projections related to body forces are zero as previously 
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mentioned), we have a reduction of computational cost of 12.800% for 12 

elements, 33.982% for 24 elements and 34.839% for 60 elements. And we have 

0.000% for 6 elements. 

A very important property of a numerical solution that measures an ill-

conditioning of a matrix  K  is known as the “condition number”, denoted here by 

 Kcond . The condition number of a matrix measures the sensitivity of the 

solution of a system of linear equations to errors in the data. It gives an 

indication of the accuracy of the results from matrix inversion and the linear 

equation solution. Values of  Kcond  near 1 indicate a well-conditioned matrix. A 

large condition number warns that a numerical solution may contain appreciable 

error. Bazán (2003) describes the number 1
KK  as the condition number 

 Kcond and in the case of 2-norm condition number, it is given by the ratio of the 

largest singular value of K  to the smallest. 

This is exactly the values calculated by Matlab (MATHWORKS, 2012) 

and used in this work shown in Table 6.7. The values of the condition number are 

taken from the stiffness matrix  K . There is an increase on the condition 

number once raising the polynomial order. But the numerical results as 

discussed in this section are not substantially affected by that. This aspect may 

not be so significant in the example explored here but it gains relevant 

importance in the last application especially for GFEM combined with MLGFM.  

 

Table 6.7 – Condition number study for straight cantilever beam 

CONDITION NUMBER: cond(K) 
 

Application: Straight Beam 

Problem: Regular 

Case type: Case 2 

Number of elements: 6 elements 

S
O

L
U

T
IO

N
 MLGFM 4-node p=1 1.35850E+05 

HFEM 

EMLGFM 
4-node 

p=2 2.85130E+05 

p=3 2.99340E+05 

p=4 4.04610E+05 

p=5 4.04710E+05 
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Concluding this section, it is also important to highlight another aspect 

quite cited by Barbieri (1992) and Machado (1992) and further reinforced by 

Maldaner (1993): values of ki, the components of the diagonal matrix  K'  whose 

the boundary operator 'N coefficients are placed, were firstly tested from ±10-6 to 

±106 and they demonstrated an insensitive characteristics for the analysis 

results. But the value of ki can tightly contribute to the condition number. 

This condition is exacerbated for the enriched approach as we can see on 

Table 6.7. Some tests changing the value of ki from ±10-25 to ±10+25 were 

performed for EMLGFM with different polynomial orders (from p = 2 to p = 5) 

and the analysis results are not as insensitive as pointed out by Barbieri (1998a). 

The disturbance noted here may be assigned to the fact that all elements are 

equally enriched in the mesh both in domain and on boundary. There is no 

especial treatment for Dirichlet boundary condition when domain is enriched 

coupled to boundary conditions applied to boundary mesh or even an element 

selective enrichment. Only on boundary mesh, Dirichlet boundary conditions for 

enriched degrees of freedom are set null. Also, none preconditioner, such as the 

incomplete Cholesky-Conjugate Gradient Method (KERSHAW, 1978) was used in 

studied examples. This subject is not deeper investigated in this work and 

deserves to be better explored in future developments. The enrichment on the 

Dirichlet boundary condition can affect the EMLGFM matrices conditioning as 

well as the inappropriate ki values. This subject is not deeper investigated in this 

work and deserves to be better explored in future developments. 

 

6.2.2 Curved Cantilever Beam 

 

MacNeal and Harder (1985) also proposed a curved cantilever beam 

application where combinations of the principal deformation modes are evoked by 

a single in-plane shear load at the tip. This circular beam is modeled in a state of 

plane stress as for straight beam. The geometric properties are shown in Figure 
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6.8. The solution to the problem is also given in Timoshenko and Goodier (1951) 

based on use of a stress function. The solution for stresses is given by 
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where N = a2 − b2 + (a2 + b2)logb/a. The solution for displacements is given by 

 

   sincossin KLJ
NE

P
ru , (6.19) 

   cossincos KNM
NE

P
u  (6.20) 

 

where 
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and where for ur(a, π/2) = 0 we have 
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As previously described in this text, “E” and “ν” are the elastic modulus 

and Poisson ratio; “a” and “b” are the inner and outer radii, respectively (see 

Figure 6.8). 

 

 

Figure 6.8 – The curved beam: geometric properties. 

 

The radial displacement ur for θ = 0 for this solution is given by 

 

 22)0,( ba
EN

rur 
P

  (6.23) 

 

As in straight beam application, it is used two meshes: one in domain and 

another one on boundary, utilizing double node at normal discontinuity as we can 

see in Figure 6.9.  

For this application, the geometry, material properties, boundary 

conditions, loading, and element meshing are given as in Figure 6.10. Again, it is 

used Lobatto shape functions with order p = 2 only, 3 Gauss points in each 

direction (except by SRI, as previous described) and the results are given in 

terms of displacement values in order to compare to the analytical and FEM 

solutions given by MacNeal and Harder (1985). The bending load is applied at 

end of the beam where the maximum displacement occurs (Figure 6.11).  
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Figure 6.9 – Domain and boundary meshes for curved beam. Double node considered at 

corners. 

 

 

Figure 6.10 – Curved beam: inner radius = 4.12; outer radius = 4.32; arc = 90°; depth 

(thickness) = 0.1; E = 1.0x107; ν = 0.25; mesh = 6 x 1. Loading: unit forces at 

free end (tip). Constraint: fixed support. 
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Figure 6.11 – Maximum displacement for case 2 due to forces at free end. 

 

The results for curved beam in-plane shear are shown in Table 6.8 

(displacement results) and Table 6.9 (normalized displacement results).  

Note also that the element shape is not quite rectangular for this 

application, which will test the effect of slight irregularity too. It can be seen that 

the EMLGFM with domain/boundary enrichment demonstrates high accuracy as 

well as the enrichment in domain only. Boundary enrichment only gives poor 

result. For classic FEM, the displacement error percentage is below 10% (in this 

case, 6.466%) with an elapsed time calculation of 1.150 seconds only with 1704 

degrees of freedom (DOF). On the other hand, the EMLGFM reaches best 

displacement value for domain/boundary approach presenting only 1.532% of 

error with an elapsed time calculation of 0.202 seconds. It represents an error 

improvement of 4.220 times in displacement value compared to classic FEM 

using only 78 DOF in EMLGFM against 1702 DOF in classic FEM. 
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Table 6.8 – Displacements results, error (%) and elapsed time (s) for curved beam. 

DISPLACEMENT IN DIRECTION OF LOAD FOR CURVED BEAM 
        

S
O

L
U

T
IO

N
 

TIP LOAD:  IN-PLANE SHEAR 
DOF 

(Domain) 
uy Error (%) 

Elapsed 

Time (s) 

ANALYTICAL* - -8.73400E-02    - - 

FEM 
(QUAD4)* 

4-node p=1 

28* -6.41380E-03 92.65651% 0.280 

76 -1.46957E-02 83.17417% 0.360 

222 -5.42841E-02 37.84742% 0.360 

576 -6.69930E-02 23.29627% 0.390 

1704 -8.16925E-02 6.46609% 1.150 

MLGFM 

4-node p=1 28 -6.41373E-03 92.65659% 0.156 

4-node SRI 
p=2 

28 -1.85100E-02 78.80696% 0.218 

9-node 78 -7.72510E-02 11.55141% 0.250 

HFEM 

EMLGFM 

4-node 

Domain/ 

Boundary 

p=2 

78 -8.86784E-02 1.53240% 0.202 

Only Domain 78 -8.86877E-02 1.54305% 0.203 

Only Boundary 28 -6.41323E-03 92.65717% 0.190 

* MacNeal and Harder, 1985. 

 

Table 6.9 – Normalized tip displacements results in direction of load. 

NORMALIZED DISPLACEMENT FOR CURVED BEAM 
      

S
O

L
U

T
IO

N
 

TIP LOAD:  IN-PLANE SHEAR 
DOF 

(Domain) 
(uy)h/uy  

FEM 
(QUAD4)* 

4-node p=1 

28* 0.07344 

76 0.16825 

222 0.62153 

576 0.76704 

1704 0.93534 

MLGFM 

4-node p=1 28 0.07343 

4-node SRI 
p=2 

28 0.21193 

9-node 78 0.88449 

HFEM 

EMLGFM 

4-node 

Domain/ 

Boundary 

p=2 

78 1.01532 

Only Domain 78 1.01543 

Only Boundary 28 0.07343 

* MacNeal and Harder, 1985. 
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6.2.3 Thick-Walled Cylinder 

 

In this section, the thick-walled cylinder problem is used to test the 

EMLGFM. This application is also proposed by MacNeal and Harder (1985). The 

geometric properties are shown in Figure 6.12. The analytical solution to the 

problem is also given in Timoshenko and Goodier (1951). The solution for stresses 

is given by 
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Figure 6.12 – The thick-walled cylinder: geometric properties. 

 

and the radial displacement ur is given by 
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where “pa” is the internal pressure. 
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Note that a plane strain condition is assumed here which, along with the 

radial symmetry, confines the material in all but the radial direction and 

intensifies the numerical difficulty caused by near incompressibility (Poisson’s 

ratio increasing next to 0.5). For this example and all other ones from now on, it 

is only used the enrichment approach domain/boundary. Four levels of 

enrichment (polynomial order) are used here (from p = 2 to p = 5) and 16 Gauss 

points in each direction. Its geometry, mesh and properties are showed in Figure 

6.13. Only a quarter of the model is discretized with symmetry considered at 

vertical and horizontal axis, similarly as suggested by Barbieri (1992). 

 

 

Figure 6.13 – Thick-walled cylinder. Inner radius = 3.0; outer radius = 9.0; thickness = 

1.0; E = 1000; ν = 0.49, 0.499, 0.4999; plane strain condition; mesh = 5 x 6. 

Loading: unit pressure at inner radius. 

 

As for all discretized problems of MLGFM employed in this work, two 

meshes are considered: one in domain and another one on boundary, utilizing 

double node at normal discontinuity as we can see in Figure 6.14. 
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Figure 6.14 – Domain and boundary meshes for thick-walled cylinder. Double node 

considered at corners. 

 

The displacement results displayed in Table 6.10 are taken at the inner 

radius maximum displacement as seen in Figure 6.15. 

In Table 6.10 (displacements results) and Table 6.11 (normal stress 

results), it is clearly verified that the classic FEM 4-node element p = 1 cannot 

represent well both displacements and stresses without a good mesh refinement 

and integration treatment due to locking. Locking behavior was also observed by 

MacNeal and Harder (1985) when using classic FEM. The 9-node MLGFM 

element shows good results for displacements, but such results degrade as the 

Poisson’s ratio approaches 0.5. Percent errors are 0.13095%, 1.30430% and 

11.60342% for 0.49, 0.499 and 0.4999, respectively.  On the other hand, the 

EMLGFM presents better results, and they improve with increasing polynomial 

order as expected. Percent errors for p = 5 are 0.72938%, 0.74938% and 0.75341% 

for 0.49, 0.499 and 0.4999, respectively. 
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Figure 6.15 – Thick-walled cylinder: undeformed and deformed geometry with the 

maximum displacement representation. 

 

Table 6.10 – Thick-walled cylinder displacement results for different Poisson’s ratio 

values. 

RADIAL DISPLACEMENT for r = 3.0 
                

Poisson's Ratio ν = 0.49 ν = 0.499 ν = 0.4999 

S
O

L
U

T
IO

N
 

ANALYTICAL* 0.00503993 0.00506025 0.00506227 

FEM 4-node p=1 

DOF = 84 0.00428952 0.00182865 0.00027089 

DOF = 608 0.00494317 0.00420622 0.00166638 

DOF = 2300 0.00502180 0.00481745 0.00335309 

MLGFM 

4-node 
p=1 DOF = 84 

0.00423479 0.00180640 0.00026766 

4-node SRI 0.00425165 0.00181331 0.00026860 

9-node p=2 DOF = 286 0.00503330 0.00499420 0.00447490 

HFEM 

EMLGFM 
4-node 

p=2 DOF = 286 0.00496845 0.00494931 0.00484208 

p=3 DOF = 608 0.00498654 0.00500047 0.00499993 

p=4 DOF = 1050 0.00499756 0.00501670 0.00501851 

p=5 DOF = 1612 0.00500314 0.00502228 0.00502416 

* MacNeal and Harder, 1985. 
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Table 6.11 – Thick-walled cylinder normal stress results for different radial positions. 

NORMAL STRESS σr for ν = 0.49 
           

Radius Value 9.000 6.750 5.200 4.200 3.500 3.000 

S
O

L
U

T
IO

N
 

ANALYTICAL 0.250 0.347 0.499 0.699 0.952 1.250 

FEM 4-node p=1 

DOF = 84 0.318 0.560 0.566 0.850 1.236 2.623 

DOF = 608 0.113 0.433 0.647 0.580 1.111 1.998 

DOF = 2300 0.184 0.396 0.584 0.783 1.053 1.617 

MLGFM 

4-node 

p=1 DOF = 84 

0.282 0.515 0.515 0.737 0.601 2.681 

4-node 

SRI 
0.272 0.512 0.517 0.735 0.624 2.605 

9-node p=2 DOF = 286 0.255 0.355 0.508 0.710 0.969 1.316 

HFEM 

EMLGFM 
4-node 

p=2 DOF = 286 0.213 0.346 0.485 0.685 0.915 1.316 

p=3 DOF = 608 0.223 0.344 0.484 0.685 0.905 1.362 

p=4 DOF = 1050 0.235 0.347 0.483 0.685 0.929 1.324 

p=5 DOF = 1612 0.238 0.348 0.482 0.683 0.933 1.315 

 

Results for normal stresses at different radial positions for ν = 0.49 are 

poor when the problem is modeled by classic FEM 4-node p = 1 and by MLGFM 

4-node as values in Table 6.11 demonstrate. Note that MLGFM 9-node presents 

excellent stress results accuracy that are continuously improved for the 

EMLGFM 4-node from p = 2 to p = 5. Better results are obtained when the 

polynomial order is 5 as expected. Percent errors for this last model are nearly 

2.999% in average against 2.449% for MLGFM 9-node. 

 

6.2.4 Rectangular Plate with a Center Hole 

 

In this section, a rectangular plate with a center hole and thickness “t” is 

used to test the EMLGFM. The geometric properties are shown in Figure 6.16.  

The plate is modeled by a finite quarter plate and treated as plane stress 

(Figure 6.17). The analytical solution to the problem is again provided by 

Timoshenko and Goodier (1951) to solve two-dimensional problems by means of 

polar coordinates.  

The solution for stresses is given by 
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Figure 6.16 – Tension plate with a center hole application: geometric properties. 

 

These equations can be expressed in Cartesian coordinates such that 

 

  cossin2sincos 22

rrx  , (6.30) 

  cossin2cossin 22

rry  , (6.31) 

    
22 sincos2cossin  rrxy  (6.32) 
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where r and θ are defined in Figure 6.17. 

The nominal stress (gross cross sectional area: cross section far from the 

circular hole as the reference stress) is defined by 

 

nom
t

 
H

P
 (6.33) 

 

as well as the net stress (net cross sectional area: on the cross section at the hole, 

which is formed by removing the circular hole from the gross cross section) is 

expressed by 

 

 td
n




H

P
 , (6.34) 

O max . (6.35) 

 

Usually, the stress concentration factor is “Ktg”, for which the reference 

stress is based on gross cross-sectional area, or “Ktn”, for which the reference 

stress is based on net cross-sectional area. For a two-dimensional plate with a 

single hole (Figure 6.16), we have 

 



 maxtgK   (6.36) 

 

where “Ktg” is the stress concentration factor based on gross stress, “σmax” is the 

maximum stress, at the edge of the hole, “σ” is the stress on gross section far from 

the hole, and 

 

n

tn


maxK   (6.37) 
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where “Ktn” is the stress concentration factor based on net (nominal) stress and 

“σn” is the net stress [ σ / (1 – d/H) ], with “d” the hole diameter and “H” the width 

of plate as in Figure 6.16. 

 

 

 

Figure 6.17 – The rectangular plate with a center hole boundary condition, geometry 

and properties: a =1; W = H/2 = 4; L = 28; E = 1.0x105; ν = 0.3; σ = 10. 

 

From the foregoing,  

 

n

tgtgtn
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
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For the tension case of a finite-width thin plate with a circular hole, 

according to Pilkey and Pilkey (2008) values of “Ktn” for d/H ≤ 0.5 can be 

expressed by 

 

32

132.11600.01284.02 



















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



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HHH
K

ddd
tn  (6.39) 

 

This is exactly the analytical expression used here to compare the stress 

concentration factor Ktn against numerical values (Ktn)h. The maximum stress 

“σmax” extracted from the numerical solution in order to calculate the stress 

concentration factor (Ktn)h using Equation 6.37 is shown in Figure 6.18 for a 

coarse mesh. The employed value is pointed out in the figure as “stress 

concentration”. 

 

 

Figure 6.18 – The rectangular plate with a center hole: stress field representation for 

coarse mesh. 

 

It is employed here two FEM meshes: a coarse one with 12 elements and 

a refined one with 672 elements as seen in Figure 6.19. A mesh refinement is 

necessary in this application since the numerical model was not able to 

accurately capture the stress values in a very coarse mesh when using classic 

FEM. 

For the EMLGFM, the model’s discretization utilizes double node at 

normal discontinuity as displayed in Figure 6.20. 

The error percentage shown in Table 6.12 is again figured out by the 

expression [ ǀ(Ktn)h − Ktnǀ / Ktn ]*100%, where (Ktn)h is the approximate stress 
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concentration factor and Ktn is the analytical stress concentration factor. 

 

 

Figure 6.19 – FEM meshes: a) coarse and b) refined. 

 

 

Figure 6.20 – Domain and boundary meshes for the rectangular plate with a center hole. 

Coarse mesh: a quarter of the domain. Double node considered at corners. 

 

The results in Table 6.12 demonstrate high precision values once 

EMLGM increases the polynomial order. It reaches the best for polynomial order 

p = 5 as expected. Once again, note that the EMLGFM needs to calculate Green’s 

function projections (GFp) and this requires a certain amount of time (seen in 

Table 6.12 as well). If we again disregard Green’s function projections (GFp) 

figured out in domain (GDP), the computational cost sharply decreases. In this 

example, we also can neglect them due to the absence of body forces. Comparing 

EMLGFM from p = 2 to p = 5, the elapsed calculation time strongly reduces 
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reaching 74.128% of reduction for p = 5 with a Ktn error of 0.061%. 

 

Table 6.12 – Stress Concentration Factor Comparison for Lobatto Shape Functions. 

STRESS CONCENTRATION FACTOR: Ktn 
         

Solution 
FEM 

4-node 

MLGFM 

9-node 

HFEM EMLGFM 

4-node 

Number of 

Domain's 

Elements 

12 672 12 12 

Number of  

Domain's  

DOF 

42 1458 130 42 130 266 450 682 

Polynomial 

Order 
p=1 p=2 p=1 p=2 p=3 p=4 p=5 

Analytical  

Ktn 
2.432 2.432 2.432 

Numerical  

Ktn: (Ktn)h 
1.629 2.463 2.508 3.238 2.734 2.718 2.562 2.431 

Error (%) 33.013% 1.243% 3.093% 33.106% 12.409% 11.725% 5.337% 0.061% 

                  

Elapsed 

Time (s) 
0.250 0.670 0.967 0.125 0.265 0.874 3.323 13.447 

Elapsed 

Time 

without GDP 

- - - - 0.187 0.452 1.045 3.479 

Time 

Reduction 

(%) 

- - - - 29.434% 48.284% 68.553% 74.128% 

 

None selective enrichment in elements near the stress concentration was 

taken into account in this application. All elements were regularly enriched. A 

selective approach and special domain Dirichlet boundary condition can be better 

investigated in future works. 

 

6.2.5 Rectangular Plate with a Center Crack 

 

In this application, the goal is to calculate the stress intensity factor (SIF) 

– KI for center-cracked plate with thickness “t”. It is considered the plane strain 
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state and geometry is modeled as a quarter of the domain (Figure 6.21). 

 
 

 

 

Figure 6.21 – The rectangular plate with a center crack: geometric properties a = 7 and 

W = 14. 

 

Here, a geometric progression close to the crack tip is taken similar to the 

Szabó (1986) work for graded mesh applied for L-shaped elastic body example. 

The mesh is composed by 62 elements with symmetric boundary 

conditions. The mesh geometry and properties are also shown in Figure 6.22. 
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Figure 6.22 – The rectangular plate with a center crack boundary conditions, geometry 

and properties: l = 1.4; E = 1.0x105; ν = 0.3; state of plane strain; graded 

mesh = 62 elements. Loading: σ = 10. 

 

Two meshes are considered in the discretized model: one in domain and 

another one on boundary, utilizing double node at normal discontinuity as we can 

see in Figure 6.23. 
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Figure 6.23 – Domain and boundary meshes for the rectangular plate with a center 

crack. Mesh: a quarter of the domain with graded mesh at the crack tip. 

Double node considered at corners. 

 

The stress field ahead of a crack tip for mode I is given by Anderson 

(2005) as following 
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where r and θ are defined in Figure 6.24. 
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Figure 6.24 – Definition of the coordinate axis ahead of a crack tip. 

 

Now, considering the mode I singular field on the crack plane, with θ = 0. 

Then, the stresses in “x” and “y” directions can be expressed by 

 

r
yx




2

IK
  (6.43) 

 

or for KI 

 

rr yx  22 IK . (6.44) 

 

Observe in Figure 6.25 both undeformed and deformed geometry after 

loading as well as the stress distribution close to the stress singularity. Stresses 

values are extracted to nodes at θ = 0 near to the singularity shown in Figure 

6.25. With plot of KI as a function of r expressed in Equation 6.44, stress 

intensity factor (SIF) KI at the crack tip (r = 0) can be determined by 

extrapolating. This numerical method used for SIF calculation is known in 

literature as “Stress Extrapolation Method” (HAN et al., 2015). One way of using 

the extrapolation method to numerically determine stress intensity factor KI 

from stresses is presented by Zafošnik and Fajdiga (2016). This is the approach 

adopted in this work. 
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Figure 6.25 – The rectangular plate with a center crack: stress field representation. 

 

Numerical results (KI)h as well as analytical solution KI can be seen on 

Tables 6.13 and 6.14. The analytical solution is also given by Anderson (2005) 
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which in “a” and “W” are the crack radius and half of plate width, respectively. 
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Table 6.13 – Stress Intensity Factor Comparison. 

 STRESS INTENSITY FACTOR (SIF) – KI 
 

     

S
O

L
U

T
IO

N
 

 ANALYTICAL* 78.67004 

 FEM 4-node p=1 72.46553 

 MLGFM 
4-node 

p=1 
80.42065 

9-node 79.62214 

Type of enrichment   HFEM GFEM 

 EMLGFM 4-node 

p=2 or le=1 77.58708 80.34232 

p=3 or le=2 78.07879 77.81671 

p=4 or le=3 78.23411 78.18159 

p=5 or le=4 78.31137 78.29197 

 *Anderson, 2005 

 

Table 6.14 – Stress Intensity Factor Comparison: error (%). 

STRESS INTENSITY FACTOR (SIF) – KI: ERROR (%) 
 

     

S
O

L
U

T
IO

N
 

FEM 4-node p=1 7.88675% 

MLGFM 
4-node 

p=1 
2.22526% 

9-node 1.21025% 

Type of enrichment HFEM GFEM 

EMLGFM 4-node 

p=2 or le=1 1.37658% 2.12570% 

p=3 or le=2 0.75156% 1.08469% 

p=4 or le=3 0.55412% 0.62087% 

p=5 or le=4 0.45592% 0.48058% 

 

The results present an excellent conformity both using Lobatto shape 

functions (HFEM) and trigonometric shape functions (GFEM) once polynomial 

order and level of enrichment are incremented. It is interesting to observe that, 

at lower levels of enrichment, HFEM approach shows a slightly better response 

compared to GFEM approach but the difference is not so significant under higher 

levels of enrichment. The error percentage shown in Table 6.14 is also worked out 

by the expression [ ǀ(KI)h – KIǀ / KI ]*100%, where (KI)h is the approximate stress 

intensity factor and KI is the analytical stress intensity factor. The stress σy 

behavior against distance r from crack tip is plotted in Figure 6.26. 
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Figure 6.26 – Stress distribution along singular side: Stress σy versus distance r from 

Crack tip. 
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The lower picture is a zoom of the upper one in. As we can see, all 

approaches present the same behavior with higher stresses moving towards to 

stress singularity (r = 0). Stresses values for conventional MLGFM and 

EMLGFM present conservative behavior next to the singularity but it is softened 

as long as the distance from crack tip gets longer. For classic FEM, the values are 

even conservatives for all measures of r. There are some variations of classic 

FEM, conventional MLGFM 4-node and 9-node compared to analytical values but 

not so evidenced in EMLGFM approach. For all EMLGFM polynomial order and 

level of enrichment, they present exactly same curve pattern. 

 

6.2.6 L-Shaped Domain with a Singularity 

 

It is considered the problem of an L-shaped plane elastic body of 

thickness “t” loaded by the tractions associated with the following stress field 

(SZABÓ, 1986) 
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where (r, θ) is the polar coordinate system shown in Figure 6.27, “KI” is a 

generalized stress-intensity factor (considered here in this section as IK = 1),    

I = 0.544483737 and IQ = 0.543075579. 

The stress field in the last equation corresponds to the first term of the 

symmetric part of the expansion of the elasticity solution in the neighborhood of 

the corner “O” shown in Figure 6.27, in other words, the Mode-I term of the 

asymptotic expansion of displacement “u” about the re-entrant corner. Therefore, 

the analytical solution is known.  
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Figure 6.27 – The L-shaped domain geometric and boundary condition definition: a = 1. 

 

Specifically, the components of “u” in the coordinate system shown in 

Figure 6.27 are 
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where “G” is the modulus of rigidity (shear modulus), and “κ” depends on 

Poisson’s ration “ν” only. For plane strain, the following relation is valid:              
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κ = 3 − 4ν (SZABÓ, 1986). We have assumed plane strain condition and ν = 0.3 

therefore κ = 1.8. 

Once computed the tractions (ΓN) from the stress field expressed by the 

Equations 6.46, 6.47 and 6.48 which exactly satisfies the equilibrium and 

compatibility equations and the stress-free conditions along the re-entrant corner 

(ΓD), it is expected the stress singularity seen in Figure 6.28. 

 

 

Figure 6.28 – The L-shaped domain: stress field representation with the stress 

singularity at the re-entrant corner. 

 

Two meshes are considered in the discretized model: one in domain and 

another one on boundary, utilizing double node at normal discontinuity as we can 

see in Figure 6.29 and 6.30. It is used a uniform mesh (Figure 6.29) and a graded 

mesh (Figure 6.30) for this application. The meshes boundary conditions, 

properties and graded geometry are shown in Figures 6.31 and 6.32. 
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Figure 6.29 – Domain and boundary meshes for the L-shaped domain: uniform mesh. 

Double node considered at corners including the re-entrant corner. 

 

 

Figure 6.30 – Domain and boundary meshes for the L-shaped domain: graded mesh. 

Double node considered at corners including the re-entrant corner. 
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Figure 6.31 – The L-shaped domain: boundary condition, E = 1.0x105; ν = 0.3; plane 

strain condition; uniform mesh = 12 elements. Loading: tractions computed 

from Equations 6.46 to 6.48 applied on boundary mesh nodes. 

 

There are a series of values computed from Table 6.15 to 6.20. They are 

divided in the following way: from Table 6.15 to 6.18 we have a displacement “u” 

comparison and from Table 6.19 to 6.20 a stress comparison (σx, σy or σxy). The 

values shown in these tables are chosen in domain mesh and on boundary mesh 

in order to express values both near and far from the stress singularity.  

The values of the polar coordinates (r, θ) are seen in each table as well as 

the type of mesh: uniform or graded. The resultant displacement is given by  

 

   22

yx uu u  (6.51) 

 

and the analytical displacement components “x” and “y” are calculated by 

Equations 6.49 and 6.50.  

The analytical stress values are computed by Equations 6.46, 6.47 and 

6.48. Due to the intrinsic characteristic of the graded mesh, there are nearest 

nodes from the re-entrant corner and these values are shown on the tables but 

there are not correspondent uniform mesh values in order to compare to and 
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because of that the uniform mesh values are omitted in these cases.  

 

 

 

Figure 6.32 – The L-shaped domain: boundary condition, a = 1.0; E = 1.0x105; ν = 0.3; 

plane strain condition; graded mesh = 24 elements. Loading: tractions 

computed from Equations 6.46 to 6.48 applied on boundary mesh nodes. 
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Table 6.15 – Resultant displacement results for uniform and graded meshes in domain. 

RESULTANT DISPLACEMENT u IN DOMAIN 
 

Radius r 0.70711 0.02250 0.03182 

Angle θ -90° 45° -90° 

Type of Mesh # UNIFORM GRADED GRADED GRADED 

S
O

L
U

T
IO

N
 

ANALYTICAL     2.00640E-05 1.45445E-06 3.70777E-06 

FEM 4-node p=1 2.77620E-05 3.79414E-05 5.01866E-06 8.20539E-06 

MLGFM 
4-node p=1 2.77620E-05 1.70006E-05 9.89720E-07 3.08319E-06 

9-node p=2 1.71670E-05 − 1.17096E-06 3.38650E-06 

HFEM 

EMLGFM 
4-node 

p=2 1.72812E-05 1.98414E-05 1.21579E-06 3.40211E-06 

p=3 1.85336E-05 2.02973E-05 1.30106E-06 3.59869E-06 

p=4 1.90739E-05 2.03888E-05 1.35539E-06 3.66377E-06 

p=5 1.93844E-05 2.04344E-05 1.38701E-06 3.70534E-06 

GFEM 

EMLGFM 
4-node 

le=1 1.74455E-05 1.91330E-05 1.36960E-06 3.54420E-06 

le=2 1.83252E-05 2.02182E-05 1.29167E-06 3.57530E-06 

le=3 1.91198E-05 2.03447E-05 1.36781E-06 3.62261E-06 

le=4 1.77219E-05 2.04293E-05 1.38290E-06 3.70002E-06 

 

Table 6.16 – Resultant displacement results for uniform and graded meshes on 

boundary. 

RESULTANT DISPLACEMENT u ON BOUNDARY 
 

Radius r 0.50000 0.02250 

Angle θ 135° 135° 

Type of Mesh # UNIFORM GRADED GRADED 

  ANALYTICAL 
  

2.49572E-05 4.61202E-06 

S
O

L
U

T
IO

N
 

MLGFM 
4-node p=1 1.83592E-05 2.14746E-05 4.09230E-06 

9-node p=2 2.20168E-05 − 4.46178E-06 

HFEM 

EMLGFM 
4-node 

p=2 2.20593E-05 2.46434E-05 4.37781E-06 

p=3 2.36629E-05 2.51583E-05 4.57764E-06 

p=4 2.40073E-05 2.52272E-05 4.61881E-06 

p=5 2.43317E-05 2.52699E-05 4.65904E-06 

GFEM 

EMLGFM 
4-node 

le=1 2.29243E-05 2.40844E-05 4.55954E-06 

le=2 2.34408E-05 2.50784E-05 4.56082E-06 

le=3 2.40692E-05 2.52414E-05 4.63344E-06 

le=4 3.06029E-05 2.52665E-05 4.65523E-06 

 

The error percentage shown in Tables 6.17 and 6.18 is worked out by the 
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expression   [ ǀ(u)h – uǀ / u ]*100%.  

 

Table 6.17 – Resultant displacement results for uniform and graded meshes in domain: 

error (%). 

RESULTANT DISPLACEMENT u ERROR (%) IN DOMAIN 
 

Radius r 0.70711 0.02250 0.03182 

Angle θ -90° 45° -90° 

Type of Mesh # UNIFORM GRADED GRADED GRADED 

S
O

L
U

T
IO

N
 

FEM 4-node p=1 38.36749% 89.10251% 245.05614% 121.30264% 

MLGFM 
4-node p=1 38.36749% 15.26804% 31.95215% 16.84514% 

9-node p=2 14.43857% − 19.49112% 8.66488% 

HFEM 

EMLGFM 
4-node 

p=2 13.86919% 1.10926% 16.40865% 8.24384% 

p=3 7.62744% 1.16286% 10.54622% 2.94177% 

p=4 4.93461% 1.61925% 6.81063% 1.18678% 

p=5 3.38701% 1.84633% 4.63651% 0.06550% 

GFEM 

EMLGFM 
4-node 

le=1 13.05054% 4.63993% 5.83379% 4.41151% 

le=2 8.66630% 0.76858% 11.19199% 3.57269% 

le=3 4.70572% 1.39937% 5.95651% 2.29674% 

le=4 11.67309% 1.82106% 4.91917% 0.20896% 

 

Table 6.18 – Resultant displacement results for uniform and graded meshes on 

boundary: error (%). 

RESULTANT DISPLACEMENT u ERROR (%) ON BOUNDARY 
 

Radius r 0.50000 0.02250 

Angle θ 135° 135° 

Type of Mesh # UNIFORM GRADED GRADED 

S
O

L
U

T
IO

N
 

MLGFM 
4-node p=1 26.43736% 13.95422% 11.26884% 

9-node p=2 11.78165% − 3.25767% 

HFEM 

EMLGFM 
4-node 

p=2 11.61130% 1.25714% 5.07830% 

p=3 5.18587% 0.80605% 0.74549% 

p=4 3.80584% 1.08215% 0.14705% 

p=5 2.50631% 1.25287% 1.01941% 

GFEM 

EMLGFM 
4-node 

le=1 8.14559% 3.49723% 1.13795% 

le=2 6.07589% 0.48554% 1.11027% 

le=3 3.55807% 1.13878% 0.46445% 

le=4 12.84989% 1.23929% 0.93675% 
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Table 6.19 – Stress values for uniform and graded meshes in domain. 

STRESS VALUES IN DOMAIN 
 

Radius r 0.70711 

Angle θ -90° 

Type of Mesh # UNIFORM GRADED 

    Stress σ σx σy σxy σx σy σxy 

S
O

L
U

T
IO

N
 

ANALYTICAL   0.33961 1.58530 0.54136 0.33961 1.58530 0.54136 

FEM 4-node p=1 0.50000 2.80870 1.07169 0.64832 3.65266 1.20105 

MLGFM 
4-node p=1 0.53400 1.87100 0.41360 0.31550 1.71500 0.22710 

9-node p=2 0.75720 0.93960 0.65400 − − − 

HFEM 

EMLGFM 
4-node 

p=2 0.41390 1.83700 0.49690 0.34100 1.80600 0.55070 

p=3 0.32390 1.52500 0.59600 0.27470 1.58700 0.50630 

p=4 0.38990 1.64400 0.51230 0.35260 1.53600 0.51500 

p=5 0.35970 1.78000 0.52970 0.30850 1.54900 0.51890 

GFEM 

EMLGFM 
4-node 

le=1 0.34010 1.40600 0.51700 0.32270 1.48400 0.49620 

le=2 0.34840 1.38300 0.60530 0.40490 1.65500 0.57240 

le=3 0.39590 1.66400 0.50860 0.35100 1.59200 0.51850 

le=4 0.36680 1.80200 0.52810 0.37480 1.59700 0.54100 
 

STRESS VALUES IN DOMAIN 
 

Radius r 0.02250 0.03182 

Angle θ 45° -90° 

Type of Mesh # GRADED GRADED 

    Stress σ σx σy σxy σx σy σxy 

S
O

L
U

T
IO

N
 

ANALYTICAL   2.84597 8.64205 0.40766 1.39464 6.51021 2.22317 

FEM 4-node p=1 1.87498 12.71200 2.96095 2.03775 11.28030 4.81076 

MLGFM 
4-node p=1 2.01000 8.61300 1.04100 2.07100 4.00600 3.31000 

9-node p=2 − − − 2.18600 0.24140 2.41400 

HFEM 

EMLGFM 
4-node 

p=2 1.99900 8.89600 0.14060 0.29470 4.99400 2.60700 

p=3 2.23100 8.62000 0.54630 1.20700 6.11500 2.15500 

p=4 2.60200 9.13800 0.43490 1.25900 6.47400 2.43700 

p=5 3.06400 9.20500 0.39280 1.21100 6.58800 2.39700 

GFEM 

EMLGFM 
4-node 

le=1 1.86100 7.34300 0.35670 1.03300 5.19100 2.71100 

le=2 2.80200 8.44000 0.36120 1.29800 5.68300 2.49200 

le=3 2.60200 8.83600 0.43170 1.24600 6.12100 2.48600 

le=4 2.57600 8.86000 0.54380 1.20100 6.53600 2.08000 

 

The error percentage shown in Table 6.20 is figured out by the expression 
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[ ǀ(σ)h – σǀ / σ ]*100% (σx, σy or σxy, depending on the case) where (∙)h means the 

approximate solution. 

 

Table 6.20 – Stress error (%) for uniform and graded meshes in domain. 

STRESS ERROR (%) IN DOMAIN 
 

Radius r 0.70711 

Angle θ -90° 

Type of Mesh # UNIFORM GRADED 

    Stress σ σx σy σxy σx σy σxy 

S
O

L
U

T
IO

N
 

FEM 4-node p=1 47.23% 77.17% 97.96% 90.90% 130.41% 121.86% 

MLGFM 
4-node p=1 57.24% 18.02% 23.60% 7.10% 8.18% 58.05% 

9-node p=2 122.96% 40.73% 20.81% − − − 

HFEM 

EMLGFM 
4-node 

p=2 21.88% 15.88% 8.21% 0.41% 13.92% 1.73% 

p=3 4.63% 3.80% 10.09% 19.11% 0.11% 6.48% 

p=4 14.81% 3.70% 5.37% 3.83% 3.11% 4.87% 

p=5 5.92% 12.28% 2.16% 9.16% 2.29% 4.15% 

GFEM 

EMLGFM 
4-node 

le=1 0.15% 11.31% 4.50% 4.98% 6.39% 8.34% 

le=2 2.59% 12.76% 11.81% 19.23% 4.40% 5.73% 

le=3 16.58% 4.96% 6.05% 3.36% 0.42% 4.22% 

le=4 8.01% 13.67% 2.45% 10.36% 0.74% 0.07% 
 

STRESS ERROR IN DOMAIN 
 

Radius r 0.02250 0.03182 

Angle θ 45° -90° 

Type of Mesh # GRADED GRADED 

    Stress σ σx σy σxy σx σy σxy 

S
O

L
U

T
IO

N
 

FEM 4-node p=1 34.12% 47.10% 626.33% 46.11% 73.27% 116.39% 

MLGFM 
4-node p=1 29.37% 0.34% 155.36% 48.50% 38.47% 48.89% 

9-node p=2 − − − 56.74% 96.29% 8.58% 

HFEM 

EMLGFM 
4-node 

p=2 29.76% 2.94% 65.51% 78.87% 23.29% 17.27% 

p=3 21.61% 0.26% 34.01% 13.45% 6.07% 3.07% 

p=4 8.57% 5.74% 6.68% 9.73% 0.56% 9.62% 

p=5 7.66% 6.51% 3.66% 13.17% 1.20% 7.82% 

GFEM 

EMLGFM 
4-node 

le=1 34.61% 15.03% 12.50% 25.94% 20.27% 21.94% 

le=2 1.55% 2.34% 11.40% 6.93% 12.71% 12.09% 

le=3 8.57% 2.24% 5.90% 10.66% 5.98% 11.82% 

le=4 9.49% 2.52% 33.40% 13.88% 0.40% 6.44% 
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The results for displacement present good conformity both using Lobatto 

shape functions (HFEM) and trigonometric shape functions (GFEM). It is 

visualized in this application some disturbance in values for GFEM approach. 

This aspect is attenuated in the graded mesh but, anyhow, it evidences when 

dealing with trigonometric shape functions, it is really important to observe how 

the EMLGFM matrices conditioning and integration treatment are affected. A 

Gauss quadrature points study was performed for this application. It was used 3, 

16, 48 and 96 Gauss points in each coordinate direction. From 16 Gauss points 

on, there are no differences. But for 3 Gauss points, it is not possible to compute 

reasonable values from p = 3 or le = 2 on. 

Another attribute that should be pointed out is the fact of GFEM 

employed here is different compared to Arndt (2009) applied in his study: each 

level of enrichment is not added “in group” with the enriched shape functions for 

left and right covering being added at the same time. Here, each enriched shape 

function corresponds to a level of enrichment and it doesn’t matter if this 

enriched function measures up a left or right covering of the element. The 

enrichment “in groups” is not the object of study in this work but it should be 

better investigated in future ones. 

Concerning stress values, the first part of the Tables 6.19 and 6.20 

compares to uniform mesh values against graded mesh values (decimal digits has 

been restricted in order to better accommodate the tables). It is interesting to 

note that the values are slightly better for the graded mesh in both cases HFEM 

and GFEM approaches. Observing only the graded mesh and the closest node to 

the stress singularity, HFEM approach is slightly better than GFEM approach 

applied to the MLGFM. The same observation about this phenomenon can be 

enumerated here as discussed previously for the displacement case. It is worth 

remembering how the condition number can affect an equation system (see Table 

6.22). 

When it comes to stresses plotted against distance of the singularity, the 

values shown in Figures 6.33 and 6.34 are extracted from mesh domain nodes at 

θ = 0.  
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Figure 6.33 – Stress curve: stress σx versus distance r from stress singularity for 

uniform and graded meshes. 



Enriched Modified Local Green’s Function Method Applied to Elasto Static Problems  

Enriched Modified Local Green's Function Method Applications for Elasto Static 

Problems 

 

 

190 

 

 

Figure 6.34 – Stress curve: stress σy versus distance r from stress singularity for 

uniform and graded meshes. 
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It is clearly seen how poor is the uniform mesh for this kind of problem 

using only 12 elements. There is a significant improvement using graded mesh 

but, for GFEM approach at le = 4, the values are a little bit degraded. Remember 

those values are calculated by FEM procedures and they present similar accuracy 

as classic FEM. This situation may be overcome when using the “multi-cell – 

multi-element” MLGFM approach, i.e., the division of the problem into several 

“Green’s cells", allowing the results of very precise stresses inside the mesh. 

Anyhow, for graded mesh, all curves show same decaying pattern. 

Now, observe the numerical error values of the generalized stress-

intensity factor KI exposed in Table 6.21. Note those values are calculated by 

Equations 6.49 and 6.50 and extrapolated to r = 0 using “Displacement 

Extrapolation Method” (HAN et al., 2015). Again, the extrapolation method to 

numerically determine stress intensity factor KI presented by Zafošnik and 

Fajdiga (2016) is adopted here. The displacements are extracted from boundary 

nodes of the graded mesh.  

 

Table 6.21 – KI error (%) calculated from displacements on boundary: graded mesh. 

NUMERICAL (KI)h ERROR (%) 
   

Displacement direction ux uy 

S
O

L
U

T
IO

N
 

MLGFM 
4-node 

p=1 
35.09952% 10.19168% 

9-node 25.61469% 1.59704% 

HFEM 

EMLGFM 
4-node 

p=2 22.77459% 2.96872% 

p=3 12.73410% 0.55346% 

p=4 9.49882% 1.16566% 

p=5 6.29349% 1.68135% 

GFEM 

EMLGFM 
4-node 

le=1 30.41035% 5.01159% 

le=2 14.07152% 0.27070% 

le=3 10.31149% 0.97377% 

le=4 6.58542% 1.63098% 

 

The error percentage displayed in Table 6.21 is also worked out by the 

expression [ ǀ(KI)h – KIǀ / KI ]*100%, where (KI)h is the approximate stress intensity 

factor and KI is the analytical stress intensity factor, in the case here, KI = 1. 
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Interesting to observe both HFEM and GFEM approaches produce lesser error 

once the polynomial order or level of enrichment are increased as expected. The 

conventional MLGFM 9-node presents excellent results when calculating (KI)h by 

displacement uy as well as EMLGFM in both approaches: HFEM and GFEM. 

Wrapping up the application section, it is intriguing to note how GFEM 

approach is affected by the condition number expressed in Table 6.22. There is a 

substantial difference between the uniform and graded meshes but even more 

relevant comparing the differences in higher orders for GFEM approach. 

Considering that the selected enriched shape function is appropriated and 

representative for the studied problem, alternatives to improve the matrix 

conditioning such as the incomplete Cholesky-Conjugate Gradient Method 

(KERSHAW, 1978) may upgrade the numerical results in both cases: HFEM and 

GFEM approaches applied to the MLGFM. This subject is not studied and it is 

suggested to be better detailed in future works. 

 

Table 6.22 – Condition number for K matrix. 

CONDITION NUMBER: cond(K) 
 

Problem: L-shaped domain 

Case type: UNIFORM GRADED 

Number of elements: 12 elements 24 elements 

S
O

L
U

T
IO

N
 

MLGFM 4-node p=1 2.89780E+04 2.27140E+03 

HFEM 

EMLGFM 
4-node 

p=2 3.50650E+04 2.50430E+05 

p=3 3.51420E+04 2.54000E+05 

p=4 3.51500E+04 2.54480E+05 

p=5 3.51530E+04 2.54650E+05 

GFEM 

EMLGFM 
4-node 

le=1 3.26960E+04 2.31630E+05 

le=2 3.67980E+04 2.69250E+05 

le=3 2.71390E+06 1.38390E+08 

le=4 1.31090E+07 1.03190E+08 
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Chapter 7 

Conclusions and Recommendations 

for Future Work 

7.1 SUMMARY 

 

This work presented the first attempt to enrich the Modified Local 

Green’s Function Method using a Hierarchical Finite Element Method (HFEM) 

approach as well as a Generalized Finite Element (GFEM) approach. In order to 

do so, for the Hierarchical Finite Element approach, it is employed the Lobatto 

shape functions whereas for the Generalized Finite Element is exploited 

trigonometric functions suggested firstly by Arndt (2009) and improved by Torii 

(2012). These trigonometric shape functions are also related to the analytical 

solution. Also, it is imperative to highlight all EMLGFM applications used only 

one “green cell”, i.e., one cell for the whole domain (unicell-multielement 

approach). 

It has been exposed a deep literature review focusing on FEM and its 

extensions in HFEM and GFEM concepts as well as in MLGFM. It has also been 

dedicated a particular chapter for the enriched methods exploring the 

Hierarchical Finite Element (HFEM) and the Generalized Finite Element 

Method (GFEM) as well as a dedicated chapter for the Modified Local Green’s 

Function Method (MLGFM). In there, the mathematical formulation for each 
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approach has been showed focusing afterwards in how to enrich MLGFM shape 

functions space. 

When it concerns the applications employed in this work aiming to 

investigate EMLGFM, it is firstly important to mention the words expressed by 

Prof. Roberto Dalledone Machado (MACHADO, 1992): “When Barcellos and Silva 

(1987) idealized the Modified Local Green’s Function Method (MLGFM), they 

realized that they were dealing with a powerful computational analysis tool to 

solve mechanical problems. This new instrument, however, needed to be better 

investigated in order to prove its potential”. After 30 years of their proposal, it is 

possible and secure to say that this tool was successfully investigated and tested 

in a wide range of engineering problems, such that already quoted in this text but 

again referred to: potential problems, 2D and 3D elasticity problems, fracture 

mechanics problems, composite laminate problems, damage and its evolution 

problems and others. And now, its formulation has been improved with the new 

advances in Finite Element techniques.  

It has been chosen a very simple 2D plane stress elasto static problem to 

start with: the straight cantilever beam. Starting with that, a wide investigation 

for this first example was applied. Firstly, a study was performed considering a 

Hierarchical Finite Element approach using Lobatto shape functions with order  

p = 2 only. The main objective was to test the differences among enriching only 

the domain, only the boundary and both at the same time without changing the 

polynomial order. It has been proved that “the complete enrichment”, i.e., 

enriching both shape function spaces in domain and on boundary, provided the 

best results. Also, for problem primarily dominated by shear, EMLGFM 

demonstrated its superiority. In other studies performed for this application, it 

was employed polynomial order from p = 2 to p = 5. So, when it comes to the 

aspect ratio (L/h), EMLGFM could keep good values for different displacement 

values of L/h but the best performance was achieved for stress values, as 

expected. It is worth mentioning that MLGFM had already presented excellent 

results for flow variables as stresses but it seems that this characteristic was 

accentuated for EMLGFM. Also, in this application, a convergence rate study was 

executed demonstrating good performance and faster convergence than the other 
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compared methods. A computational cost analysis was presented for this 

application with polynomial order p = 2, focusing on the time reduction when 

disregarding GDP since this example does not present body forces. And, 

concluding the study of this application, it was verified how the matrix 

conditioning is affected when the polynomial order is increased. 

For the second application, it has been chosen the curved cantilever beam 

in plane stress state. It is an interesting study since the element shape is slightly 

irregular. In this analysis, it was only considered Lobatto shape functions of 

order   p = 2. Again, EMLGFM showed excellent results. 

For the third application, an impressive case of near incompressibility 

was investigated using the thick-walled cylinder study in a plane strain 

condition, using Lobatto shape functions of polynomial order from p = 2 to p = 5. 

In this study, EMLGFM really proved to be remarkable, keeping excellent 

displacement results for different Poisson’s ratio, showing again high accuracy 

for stress values and improving its results when increasing the polynomial order. 

For the fourth application, a rectangular plate with a center hole loaded 

by tractions was modeled in plane stress state, using Lobatto shape functions of 

polynomial order from p = 2 to p = 5. This specific case produces a stress 

concentration in the end border of the hole. It was also performed a 

computational cost analysis but here varying the polynomial order from p = 2 to p 

= 5. There was a strong reduction in calculation elapsed time when GDP was not 

calculated, being really accentually for p = 5. In this case, EMLGFM could 

extract the stress concentration factor “Ktn” with better precision when compared 

to the other studied methods. 

For the fifth application, a rectangular plate with a center crack loaded 

by tractions was discretized in plane strain condition, using Lobatto shape 

functions of polynomial order from p = 2 to p = 5 and trigonometric enriched 

functions of level le = 1 to le = 4. This is also a tough example to be studied since 

the singularity at the tip crack is more accentuated. But EMLGFM presented 

excellent results both for Hierarchical Finite Element and for Generalized Finite 

Element approaches. It has been possible to predict the stress intensity factor 

(KI) with a small error percentage. 
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And for the sixth and last application, a L-shaped domain with 

singularity loaded by tractions was tested in plane strain state, using Lobatto 

shape functions of polynomial order from p = 2 to p = 5 and trigonometric 

enriched functions of level le = 1 to le = 4. A Gauss quadrature points study was 

performed, varying the number of points from 3 to 96 Gauss points in each 

coordinate direction and concluded a great disturbance only for 3 Gauss points. 

This example showed good results but evidenced one more time the situation 

about the condition number. It is interesting to observe that the condition 

number is worse when using a graded mesh and even worse for trigonometric 

functions in higher levels of enrichment.  

Observing the examples used in this work, naturally some conclusions 

and recommendations can be mentioned. One of them is the Modified Local 

Green’s Function Method (MLGFM) can be considered as a "coarse mesh 

method", since, with few elements in the discretization, a high degree of results 

accuracy is reached and it also presents high rates of convergence. This 

characteristic is intensified in the Enriched Modified Local Green’s Function 

Method (EMLGFM). So, it is natural to think of using it in adaptive procedures 

in future works. 

Another point that could be better studied is the “sub-regions” or “Green’s 

cells” subject. Throughout this work, a single "cell" (unicell-multielement 

approach) was used to discretize the problem, consisting of a finite element mesh 

in domain, and another one associated with the boundary, by means of boundary 

elements. This approach may limit the studies of MLGFM and EMLGFM to 

linear problems with coarse meshes, extracting precise flow variables only on 

boundary. The division of the problem into several "cells", with well-established 

boundary conditions among them, will allow the results of very precise stresses in 

a sub-region boundary, corresponding to the domain interior of the problem. The 

original Silva’s model (SILVA, 1988) for MLGFM and the sub-regional treatment 

studied by Mendonça (1995), Barbieri and Machado (2015) represent alternatives 

that deserve to be implemented. 

Allied to the “multicell” approach and adaptive procedures, it would be 

interesting to test singular problems using GFEMgl like exposed by Gupta et al. 
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(2012). Or even test GFEM with “multiscale” approach (MS-GFEM) suggested by 

Friderikos et al. (2017) in fracture mechanics problems. Even more it has been 

employed the Ck formulation proposed by Duarte et al. (2006) and this might be 

tested in MLGFM too. 

An important point to consider here is this work explored only 1D linear 

(2-node) and 2D bilinear (4-node quadrilateral) elements with Lagrange shape 

functions as PoU. The concepts exposed here can be applied to other kind of 

elements, such that, 1D quadratic (3-node) and 2D quadratic (9-node) elements, 

serendipity, cubic, and so on as well as other kind of elements, e.g., a triangular 

type. Also, different types of PoU can be explored, e.g., Shepard and 

trigonometric functions, among others. 

There is a huge lane for EMLGFM when it concerns its enrichment 

process. The concepts used in this text are based on the formulation proposed by 

Šolín et al. (2004) but other formulation can be adapted to MLGFM. Also, it has 

been exploited the enrichment by Lobatto shape functions and trigonometric 

shape functions. There are a lot of other possible shape functions both using as 

partition of unity and enrichment functions to be explored and tested in 

EMLGFM. And an abundant levels of enrichment to be employed too. 

Having mentioned that, it is relevant to emphasize how important is the 

condition number and computational cost for MLGFM and even more for 

EMLGFM. There is a considerable computational cost in calculating the Green’s 

function projections. Since these functions are figured out using extensions of the 

stiffness matrix, it is imperative to keep the condition number as lower as 

possible. One way of doing that would be using the stable GFEM – SGFEM 

treatment in EMLGFM (BABUŠKA et al., 2017). Also, MLGFM and EMLGFM 

are implemented in the FORTRAN platform. New methods, programming 

languages could be exploited now here, improving EMLGFM algorithm. 

And, finally wrapping up this conclusion, this is just the beginning for the 

Enriched Modified Local Green’s Function Method. All above comments can be 

extended to other important and vital applications in solid mechanics, such as, 

Midlin’s plate, laminate composite, free-vibration problems, dynamic problem 

using transient analysis, buckling, nonlinear problems, and damages and so on. 
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Appendix A 
 

A.1 SOME TOPICS IN FUNCTIONAL ANALYSIS 

 

A set is any well-defined collection of objects. For example, the set of real 

numbers ℝ consists of all rational as well as irrational numbers. It is convenient 

to think of ℝ as represented by an infinitely long line, each point on the line 

being a real number. We define ℝn to be the set of all ordered n-tuples of real 

numbers, such that 

 

ℝn = { x = (x1, x2, …, xn): xi ∈ ℝ, i = 1, 2,…, n }. (A.1) 

 

When working in two dimensions, for instance, we can use an alternative 

notation like x = (x, y) or x = (x1, x2) in ℝ2. 

A subset Ω of ℝn is an open set if every point of Ω is an interior point and 

connected if every pair of points in Ω can be connected by a curve entirely in Ω. 

We define the closure Ω  of a set Ω ⊂ ℝ to be the union of Ω and all its limit 

points. 

A function f(x) on an interval I of the real line is continuous at a point x0 ∈ 

I  if, given any positive number 𝛼, no matter how small, it is possible to find a 

positive number β such that 

 

|f(x) − f(x0)| < 𝛼      whenever      |x − x0| < β.  (A.2) 

 

An arbitrary space U is called a vector space (or linear space) if it has an 

operation + called addition, an operation of multiplication by a scalar, and 

satisfies the following axioms 

 

VS1. for all u, v ∈ U, and scalars 𝛼, β, 𝛼u + βv is also a member of U; 
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VS2. u + v = v + u and u + (v + w) = (u + v) + w for all u, v, w ∈ U; 

VS3. there is an element 0 of U called the zero element that has the 

property u + 0 = u for all u ∈ U; 

VS4. for every u ∈ U there is an element −u that satisfies u + (−u) = 0; 

then by the difference u − v we understand u + (−v); 

VS5. (𝛼β)u = 𝛼(βu) for all scalars 𝛼, β and for all u ∈ U; 

VS6. (𝛼 + β)u = 𝛼u + βu, and 𝛼(u + v) = 𝛼u + 𝛼v for all scalars 𝛼, β and for 

all u, v ∈ U; 

VS7. 1· u = u. 

 

A subspace H of a vector space U is a subset of U that is also a vector 

space. 

If the space U is a vector space then the inner product (u, v) of u, v ∈ U is 

an operation that satisfies the following axioms, for all u, v, w ∈ U and 𝛼, β ∈ ℝ, 

such as 

 

IP1. (u, v) ∈ ℝ; 

IP2. (v, u) = (u, v) (the operation is symmetric); 

IP3. (𝛼u + βv, w) = 𝛼(u, w) + β(v, w) (linearity); 

IP4. (u, u) ≥ 0 and (u, u) = 0 if u = 0 (positive-definiteness). 

 

Two members u, v of an inner product space U are said to be orthogonal if 

(u, v) = 0. 

Given a vector space U, a norm ∥⋅∥ on U is an operation that satisfies the 

following axioms for any members u, v of U, and scalars α: 

 

N1. u  ∈ ℝ; 

N2. 0u  and  0u  if u = 0 (positive-definiteness); 

N3. uu αα   (positive homogeneity); 

N4. vuvu   (triangle inequality). 
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A vector space U with a norm ∥⋅∥ defined on it is called a normed space. 

An inner product generates a norm according to ∥⋅∥ = (u, u) 1/2. 

A sequence {un} in a subset H of a normed space U is convergent if there 

is a member u ∈ H for which, given any 𝛼 > 0, a number N can be found such that 

 

uun      for all n > N.  (A.3) 

 

We write 0lim  uunn   or uunn lim , the limit of the sequence. 

A sequence {un} in a subset H of a normed space U is called a Cauchy 

sequence if 

 

0lim ,  nmnm uu   (A.4) 

 

or, more formally, if for any given 𝛼 > 0 there exists a number N such that 

 

 nm uu      whenever m, n > N.   (A.5) 

 

A subset H of a normed space U is complete if every Cauchy sequence in 

H converges to an element of U. A subset H of a normed space U is said to be 

dense in U if the closure of H is U, that is, UH  . We define the closure H of an 

open set H to be the union of H and all of its limit points, as previously described. 

A complete normed space is called a Banach space; a complete inner 

product space is called a Hilbert space. Since every inner product defines a norm, 

every Hilbert space is a Banach space. 

An operator or map T from a set H to a set K is a rule whereby an 

element u of H is mapped or transformed to an element v of K. It is possible to 

write 

 

T : H → K,     Tu = v (or T(u) = v)     for u ∈ H and v ∈ K.  (A.6) 

 

In this case, H is called the domain of T, written D(T) and R(T), the range 
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of T, consists of all those elements of K that are images of members of H, i.e. 

 

R(T) = { v : v ∈ K, Tu = v for some u ∈ H }. (A.7) 

 

An operator T is injective (one-to-one) if every element of the range of T is 

mapped to by at most one element of the domain. It is surjective (onto) if every 

element of the range of T is mapped to by at least one element of the domain, i.e., 

R(T) = K, and T is said to map H onto K. It is bijective (one-to-one and onto or 

one-to-one correspondence) if every element of the range of T is mapped to by 

exactly one element of the domain. 

A linear operator T is an operator whose domain H is a vector space, and 

for which 

 

T(𝛼u + βv) = 𝛼T(u) + βT(v)     for all u, v ∈ H and 𝛼, β ∈ ℝ. (A.8) 

 

A linear operator T : H → K where H and K are normed spaces is bounded 

if 

 

uTu M       for all u in H and for some M > 0. (A.9) 

 

The set of all linear operators from H to K forms a linear space, which we 

denote by L(H, K). 

A linear functional ℓ on a vector space H is defined to be any linear 

operator that maps elements of H to ℝ. The space of bounded linear functionals 

on H is called the dual space of H, and is denoted by H′. That is:  H′ = L(H, ℝ). 

For any ℓ ∈ H′, we have 

 

    uu Mu        for all u ∈ H and for some M > 0. (A.10) 

 

This expression states that ℓ is bounded and hence continuous. 

We often write u,  instead of the usual ℓ(u) where ,  denotes duality 

pairing. 
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The Riesz Representation Theorem states that considering a Hilbert 

space H and a bounded linear functional ℓ on H, then there exists a unique 

element u in H such that 

 

 〈ℓ, v〉 = (v, u)     for all v ∈ H, with ∥ℓ∥ = ∥u∥. (A.11) 

 

Considering that H and K are vector spaces, a bilinear form                      

B : H × K → ℝ is defined to be an operator with the properties: 

 

B(𝛼u + βw, v) = 𝛼B(u, v) + βB(w, v)      for u, w ∈ H and v ∈ K,  (A.12) 

B(u, 𝛼v + βw) = 𝛼B(u, v) + βB(u, w)      for u ∈ H and v, w ∈ K (A.13) 

 

where α and β are real numbers. 

Suppose that we are given a bilinear form B : H × K → ℝ, where now H 

and K are normed linear spaces. If there is a positive number M > 0 such that: 

 

 
KH

vuvuB M,       for all u ∈ H, v ∈ K.  (A.14) 

 

then B is called a continuous bilinear form. This is an important conclusion for 

problems to be “well-posed” or “well-conditioned”. 

Given a bilinear form B : H × H → ℝ, where H is an inner product space, 

we say that B is H-elliptic (or coercive) if there exists a constant 𝛼 > 0 such that 

 

 
2

,
H

uuuB       for all u ∈ H.  (A.15) 

 

The relation A.15 presented above is known as “strongly coercive”.  

As quoted by Oden & Reddy (1976): “Important extensions of the theory 

of variational boundary-value problems can be made by introducing a notion of 

coerciveness more general than those defined by strongly coercive”. Then, by 

“weakly coercive” we mean: 
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Hu
inf

Kv

sup   0, vuB , (A.16) 

 

1
H

u ,     1
K

v , (A.17) 

 

Hu

sup   0, vuB      para ∀ v ∈ K e v ≠ 0.  (A.18) 

 

Naturally, a strongly coercive is a particular case of a weakly coercive. 

Now, we have enough mathematical definitions to inquire whether or not 

solutions to a given variational problem exist and if, so, whether it is unique. 

What are the conditions on the associated bilinear forms sufficient to guarantee 

the existence and uniqueness of a solution? “The Generalized Lax-Milgram 

Theorem” addresses and answers this question, using the propositions A.14 – 

continuity – and propositions A.15 to A.18 – coercivity.  

And what is a variational boundary-value problem? And, before that, 

what is a boundary-value problem? Why are these concepts so important in this 

work? This is the scope of next sections. 

 

A.2 BOUNDARY-VALUE PROBLEMS (BVP) 

 

Several physical phenomena can be modeled by differential equations 

involving unknown functions and their derivatives. A boundary-value problem 

(BVP) for a given differential equation consists of finding a solution of the given 

differential equation subject to a given set of boundary conditions (BCs). A 

boundary condition is a prescription some combinations of values of the unknown 

solution and its derivatives at more than one point. So, a typical problem involves 

finding a function u which satisfies a partial differential equation (PDE) of order 

2m in a domain Ω such that:  

 

PDE:     fAu         in Ω ⊂ ℝn,  (A.19) 

BCs:     kk guB       on ∂Ω with 0 ≤ k ≤ m – 1  (A.20) 
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where A is a linear differential operator of order 2m,   1

0





m

kkB  are the linear 

differential operators on boundary whereas f and kg , the “nonhomogeneous” part 

of (A.19) and (A.20), are prescribed functions. The domain Ω is an open bounded 

set where the problem is defined with a smooth boundary such that 

m 21  (REDDY, 1986). 

A central question of the theory of elliptic boundary-value problems 

relates to the conditions under which one may expect a unique solution of the 

Equation A.19 to exist. This question is addressed by “The Generalized Lax-

Milgram Theorem” as previously quoted in last section. But if a solution exists 

then it is equally important to know something about the regularity or 

smoothness of this solution. In other words, if the Equation A.19 has a solution u 

that belongs to a Hilbert space )(2  msH , “s” being an integer greater than or 

equal to 2m, a good idea of how smooth the solution is will be given when 

establishing the largest value of “s+2m” for which u ∈ )(2  msH . Note that if u 

∈ )(2  msH , the Au or f term is in )(sH  since A is a differential operator of 

order 2m. Remember that )(mH  is the Sobolev space of functions with 

derivatives up to order “m” and square integrable in Lebesgue sense L2(Ω). 

However, the Sobolev space like )(mH  are spaces with infinite 

dimension which makes the search of an analytical solution u for the problem of 

Equation A.19 rather laborious, and in some cases impossible. It is precisely in 

this context that the proposal of replacing the space where the solution of the 

problem is being sought by a subspace of approximation of finite dimension 

becomes evident. In this context, it should be good to re-written the expressions 

A.19 and A.20 in such way we could “weaken” this search and “broaden” this 

concept. This is exactly the essence of the “variational boundary-value problems” 

to be explored in next section. 
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A.3 VARIATIONAL BOUNDARY-VALUE PROBLEMS (VBVP) 

 

The concept of a boundary-value problem can be broadened by 

introducing the idea of variational boundary-value problem. The variational 

formulation is a weaker one than the conventional formulation since it requires 

fewer derivatives of u to be in L2(Ω). 

A boundary-value problem, as former described, can be re-written as a 

variational boundary-value problem (VBVP) such as: find a function u which 

belongs to a Hilbert space H and which satisfies the equation: 

 

   vvuΒ ,      ∀ v ∈ K.  (A.21) 

 

Here B is a bilinear form and ℓ a linear functional: 

 

B : H × K → ℝ     and     ℓ : K → ℝ (A.22) 

 

as previously described in functional analysis section. 

The space K is called “space of admissible functions” and it is defined as 

(REDDY, 1986) 

 

K = { v ∈ )(mH : v satisfies all essential boundary conditions} (A.23) 

 

and 2m being the order of a boundary-value problem differential operator with 

the following conditions 

 

a. Essential (or Dirichlet) boundary conditions are given by order < m; 

b. Natural (or Neumann) boundary conditions are given by order ≥ m. 

 

To fix this idea, consider the simple second-order differential equation in 

two dimensions: 
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(x, y) ∈ Ω ⊂ ℝ2     and     u(x, y) = 0 for (x, y) ∈ ∂Ω.  (A.24) 

 

Suppose that the coefficients a11, a22, a0 are in  C  and that they are 

such in Equation A.24 is a regularly elliptic boundary-value problem of order 2. 

Consider the case in which   0Hf . Then, there exists a solution u of Equation 

A.24 and that it is in  2H  or, more specifically, a subspace of  2H  

containing functions v such that   0HAv . 

Next, consider an alternate boundary-value problem that closely 

resembles the expression A.24: find u such that  
1

0Hv : 

 

 
















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


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x
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x

u
a dddd02211  (A.25) 

 

The expression A.25 is referred to a variational boundary-value problem. 

Obviously, it suggests that weaker conditions may be required of the solution 

than that suggested by Equation A.24; second derivatives in A.24, whereas only 

integrals of first derivatives appear in A.25. This leads us to the following 

observations: 

a.  Every solution of Equation A.24 is also a solution of A.25. This can 

be seen by multiplying both sides of the expression A.24 by a test 

function w and integrating by parts; 

b.  Judging from the smoothness of u needed in order that Equation 

A.25 make sense, the solution of A.25 need be only in  1

0H . 

However,  2H  is densely embedded in  1H , so it is possible 

that these two solutions, one to A.24 and one to A.25, are the same. 

Actually, the expressions A.24 and A.25 are equivalent, and it 

makes sense to say that the solution to A.24 is an element 

   
1

0

2 HHu  (ODEN; REDDY, 1976); 
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c. The term “variational boundary-value problem” arises from the fact 

that the Equation A.25 is precisely the condition for the vanishing 

of the first variation of a quadratic functional which corresponds to 

the Equation A.24 in sense of the classical calculus of variations. 

Thus, the variational formulation contains all the information found in 

the conventional formulation and more: it is able to work in a larger space 

(         2

012 LHHH ) and also to consider very irregular data, e.g., 

distributional differential equations. 

There are a plenty of methods to solve a boundary-value problems and 

find approximate solutions, such as, Finite Difference Method (FDM), Finite 

Volume Method (FVM), Finite Element Method (FEM), Boundary Element 

Method (BEM) and others. Regardless of the importance of the Finite Difference 

Method (FDM) and Finite Volume Method (FVM) for the solution of physics 

problems, this text will confine itself to briefly commenting only the Finite 

Element Method (FEM), the Boundary Element Method (BEM) and the Modified 

Local Green’s Function Method (MLGFM) on items that follow and discussing 

some mathematical details when necessary for the understandings of future 

topics in later chapters. 

 

A.4 APPROXIMATED METHODS FOR BOUNDARY-VALUE 

PROBLEMS 

 

Except for a few problems involving very simple partial derivative 

equations and geometries, it is quite impossible (as far as is known) to obtain 

exact solutions to most boundary-value problems in either the conventional or 

variational formulations. But, do not despair ourselves! There are available many 

goods methods for finding approximate solutions. Some of these are based on the 

conventional formulation, for example, finite difference methods, while others, 

such as Galerkin method, can be also conceived on a variational formulation 

(Weighted Residual). 

A Variational Method approximation is based on the minimization of a 
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functional, as previously mentioned in last sections. The process of finding 

stationarity with respect to trial function parameters is an old one and is 

associated with the names of Rayleigh and Ritz (ZIENKIEWICZ et al., 2005). 

Another methods developed to obtain approximate solution to the 

differential equations are the Weighted Residual Methods where it starts with an 

estimate of the solution and demand that its weighted average error is 

minimized. One of the most widely employed method of this kind is “The 

Galerkin Method”.  

The basic idea behind the Galerkin Method is an extremely simple one. 

Consider the variational boundary-value problem (VBVP) as in expression A.21 

of finding u ∈ K, where K is a subspace of a Hilbert space H. The difficulty in 

trying to solve the last mentioned expression lies with the fact that K is a very 

large space (infinite-dimensional), with the result that it is impossible (as far as 

is known) to set up a logical procedure for finding the solution. But if the space K 

from the VBVP is replaced by an approximate space hK  with the following 

properties 

 

KKh  ,   h

N

ii K
1

span  (A.26) 

 

where ϕi are few linearly independent functions (basis functions) that define hK  

and N = dimVh. 

The index h is a parameter that lies between 0 and 1, and whose 

magnitude gives some indication of how close hK  is to K; h is related to the 

dimension of hK , and as the number N of basis functions chosen gets larger, h 

gets smaller. In the limit, as N , 0h  and we would like to choose {ϕi} in 

such a way that hK  will approach K. 

Having defined the space hK , one poses the VBVP in hK  instead of in K. 

That is, find a function hh Ku   that satisfies 

 

   hhh vvuΒ ,      ∀ hv  ∈ hK . (A.27) 
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This is the essence of the Galerkin Method. In order to solve for hu , one 

simply note that both hu  and hv  must be linear combination of the basis 

functions of hK , so that 

 





N

i

iih au
1

 ,     



N

j

jjh bv
1

  (A.28) 

 

Of course, since hv  is arbitrary, so are the coefficients bk. Substituting the 

Equation A.28 in A.27 and using the fact that B is bilinear and   is linear then 

 

    j

N

j

jji

N

i

N

j

ji bbaB 
 


11 1

,    (A.29) 

 

or, more concisely, 

 

0
1 1









 

 

N

j

N

i

jiijj FaKb  (A.30) 

 

where 

 

 jiij BK  ,      and      jjF   (A.31) 

 

are, respectively an N x N matrix and an N-tuple (vector). Note that Kij and Fj 

can be evaluated in practice since ϕi are known functions and the forms of B and 

  are also known. 

Since the coefficients bj are arbitrary, it follows that the Equation A.30 

will only hold if the term in brackets in zero. The problem has been reduced to 

one of solving the set of simultaneous linear equations 

 





N

i

jiij FaK
1

,     for j = 1, 2,…, N.  (A.32) 
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Once the last equations are solved, the approximate solution hu  can be 

found from the first of Equations A.28. 

In practical situations the determination of suitable basis functions for 

use in the Galerkin method can be extremely difficult, especially in cases for with 

the domain does not have a simple shape. The finite element method overcomes 

this difficulty by providing a systematic means for generating basis functions on 

domains of fairly arbitrary shape. 

 

A.4.1 The Finite Element Method 

 

Idealized during the 1950s, the Finite Element Method (FEM) can be 

understood as a general technique of constructing approximate solutions to 

boundary-value problems. The method involves dividing the solution domain into 

a finite number of simple subdomains, the "finite elements", connected to each 

other by the nodal points, and employs variational concepts to approximate the 

solution over all elements, for arbitrary boundary conditions. The overall solution 

is obtained by adding up the local contributions of each element. For linear 

elliptic problems the method leads to a system of linear equations, generally 

symmetrical, in the form of a band, and which can be well exploited by several 

numerical techniques. The combination of all these factors has led to its 

application in almost all areas of physics, and today, undoubtedly, is the most 

widespread and used method (ODEN; REDDY, 1976; ODEN; CAREY, 1983). 

According to Ciarlet (1991) and Šolín et al. (2004), a finite element in ℝn 

is a triad K =  ;; PK e

h , where 

 e

hK  is a closed subset of ℝn with a nonempty interior and a Lipschitz-

continuous boundary; 

 Pp is a finite-dimensional space of real-valued functions defined over 

the set e

hK  of dimension N = dim(Pp); 

 Σ is a set of Np linear forms ζi, 1 ≤ i ≤ Np, defined over the space Pp and, 

by definition, it is assumed that the set Σ is Pp-unisolvent, in the following sense: 
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given any real scalars i , 1 ≤ i ≤ Np, there exists a unique function l ∈ Pp that 

satisfies 

 

ii l  )(  for 1 ≤ i ≤ Np, (A.33) 

 

in particular 

 

ijij l  )(  for 1 ≤ j ≤ Np, (A.34) 

 

and the following identity holds 

 

i

N

i

i lll
p





1

)(  for all l ∈ Pp. (A.35) 

 

Here δij is the standard “Kronecker delta” (for discrete cases), δij = 1 if i = j 

and δij = 0 otherwise. 

The linear forms ζi, 1 ≤ i ≤ Np, are called the degrees of freedom of the 

finite element, and the functions li, 1 ≤ i ≤ Np, are called the basis functions of the 

finite element. 

The basis functions are also called the shape functions in engineering 

literature. The set e

hK  itself is often called a finite element. What makes the 

method especially attractive is the fact that these basis functions are piecewise 

polynomials that are non-zero only a relatively small part of the domain Ω. 

Once the finite element space hK  is constructed, it can be used in the 

Galerkin Method to obtain an approximate solution. In this context, FEM clearly 

appears as a methodology to generate approximation spaces, and the 

approximate solution is effectively obtained using the Galerkin Method. Other 

methods besides the Galerkin Method may be used to obtain the approximate 

solution once the approximate space has been built. Some examples of 

alternatives are the Least Square Method and the Collocation Method 

(ZIENKIEWICZ et al., 2005). 
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A.4.2 The Boundary Element Method 

 

The Boundary Element Method (BEM) is an integral technique that has 

been employed in several applications. Although integral methods were known 

since the end of the 19th century, BEM has been boosted only after the 

introduction of Finite Element Method discretization techniques in late 1960s. In 

this method, only the boundary is discretized through pieces called "boundary 

elements", connected together by the nodal points. The solution in domain is due 

to a process of integration on boundary, being this one of the advantages of the 

BEM compared to FEM, since the dimension of the problem is reduced, 

decreasing the data volume and the size of the matrices. Thus, the BEM becomes 

highly recommended in problems where the domain discretization is complex, for 

example, in three-dimensional analyzes. In contrast, their matrices are not 

generally sparse, which does not favor the use of techniques usually employed in 

FEM, such as "band" or "sky-line" storage. 

The Boundary Element Method is also efficient in solving singular 

problems, e.g., fracture mechanics, in treatment of infinite domains, and, unlike 

FEM, allows the use of discontinuous elements, which, in many problems, is 

interesting. Its major disadvantage is that it depends on the explicit knowledge of 

a fundamental solution appropriate to the problem, which restricts it only to 

cases where such solution is available, or where it can be determined by dual 

reciprocal techniques (BREBBIA, 1992). For this reason, some mechanical 

problems have not yet been adequately solved by the BEM, such as shells with 

any curvature and some problems involving non-homogeneous media, such as 

laminate composite materials. In addition, some integrals in the process are 

singular, requiring special numerical techniques (MACHADO, 1992). 

 

A.4.3 The Modified Local Green’s Function Method 

 

The Modified Local Green’s Function Method (MLGFM) is an integral 
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method that brings together three different techniques: the Finite Element 

Method (FEM), the Boundary Element Method (BEM) and the Green’s Function 

Method (GFM). Idealized at the end of the 1980s by Barcellos e Silva (1987), 

MLGFM uses FEM as a residual process to locally approximate the “Green’s 

Function projections" on the space generated by the finite elements, and then 

employs the values of these projections, equivalent to a "fundamental solution", 

in a boundary integral system, solved by the “Direct Boundary Element Method” 

(DBEM). The resulting system of equations, in domain and on boundary, involves 

sufficiently regular integrals, which can be solved by conventional numerical 

integration techniques. 

Several applications have already been performed through MLGFM and 

there is a reserved chapter – chapter 4 – to discuss it. The MLGFM is a very 

accurate method, even with coarse meshes, which allows small volume of data 

supplied to a computer program. By using established techniques of Finite 

Elements and Boundary Elements, the discretization of the problem is quite 

simple. Analogously to a hybrid method, both the primary variables, such as the 

displacements and temperatures, and dual variables, such as flow and stresses, 

are equally precise. It is also observed a nodal super convergence of the results, 

which makes this method endorsed to adaptive processes. Among all the 

properties of the MLGFM, the most significant is the automatic determination of 

the fundamental solution of the problem, even in cases where it is not explicitly 

known. It really represents an excellent alternative for the Boundary Element 

Method to be extended to new fields of application (BARBIERI, 1992; 

MACHADO, 1992). This is exactly what this work does! 
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Appendix B 
 

B.1 ELASTO STATIC CLASSIC RELATIONS 

 

In elasticity theory one of the greatest interests is the solution of called 

Lamé–Navier equations of elasticity (REDDY, 2008). This expression represents 

the equilibrium equations expressed in terms of the displacement field for 

homogeneous, isotropic and linear media such that 

 

    02  buu GG  (B.36) 

 

or in index notation 

 

  0,,  ijjijij buGuG  (B.37) 

 

where u is the displacement vector 
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and b is the body force vector 
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whereas   is the differential operator nabla or del,   and G  are the classic Lamé 

constants related to the Young’s Modulus, E and Poisson’s ratio, ν  given by 
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  νν

Eν

211 
   (B.40) 

 

and 

 

 ν

E
G




12
. (B.41) 

 

In order to have a “well-posed” problem it is necessary to set out the 

domain and its geometry and also to prescribe the boundary conditions in a 

proper way. 

The boundary value problems of elasticity can be classified into three 

types on the basis of the nature of specified boundary conditions, such as 

 

 TYPE I. Boundary value problems in which if all specified boundary 

conditions are of the prescribed displacement type like 

 

)(xuu        on ∂Ω (B.42) 

 

where ∂Ω is the boundary of the domain Ω. 

 

 TYPE II. Boundary value problems in which if all specified boundary 

conditions are of the prescribed traction type like 

 

)(xTT        on ∂Ω  (B.43) 

 

where T is the traction vector in a point x ∊ ∂Ω and possess a normal vector n in 

almost every points. 

 TYPE III. Boundary value problems in which if all specified boundary 

conditions are of the mixed type 

 

)(xuu       on ∂ΩD     and     )(xTT       on ∂ΩN (B.44) 
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where ∂ΩD ∪ ∂ΩN = ∂Ω. Most practical problems fall into the category of boundary 

value problems of Type III. 

The traction vector is related to the stress tensor by 

 

nT )(x  (B.45) 

 

wherein is defined by the generalized Hooke’s law (in index notation) 

 

ijijmmij G 2  (B.46) 

 

which in 

 

 ijjiij uu ,,
2
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  (B.47) 
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where   j,  denotes partial derivative with respect to the “j” coordinate of the 

reference coordinate system, ij  is the components of the strain tensor and ij  is 

the components of the stress tensor. 

The Equation B.46 can be properly rewritten as 

 

klijklij D    (B.49) 

 

which in 

 

 jkiljlikklijijkl G
G
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21
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 (B.50) 

 

and ijklD  are called elastic stiffness coefficients or, in matrix representation, the 

elasticity matrix D. 

There exists a class of problems in elasticity, due to geometry, boundary 
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conditions, and external applied loads, has their solutions (i.e., displacements 

and stresses) not dependent on one of the coordinates. Such problems are called 

plane elasticity problems (plane strain and plane stress problems). The discussion 

here is limited to isotropic materials. 

 

B.1.1 Plane Strain Problems 

 

The plane strain problems are characterized by the displacement field 

 

 ux = ux(x, y),      uy = uy(x, y),      uz = 0 (B.51) 

 

where (ux, uy, uz) denote the components of the displacement vector u in the       

(x, y, z) coordinate system.  

The displacement field from expression B.51 results in the following 

strain field: 

 

0 zyzxz  , (B.52) 
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Clearly, the body is in a state of plane strain. For an isotropic material, 

the stress components and stress-strain relations are given by 

 

0 yzxz  ,      yxz   , (B.54) 
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The equations of equilibrium of three-dimensional linear elasticity, with 

the body-force components 
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0zb ,     ),( yxbb xx  ,     ),( yxbb yy   (B.56) 

 

reduce to the following two plane-strain equations 
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The boundary conditions are either the stress type 
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     on ∂ΩN  (B.59) 

 

or the displacement type 

 

xx uu  ,     
yy uu         on ∂ΩD . (B.60) 

 

Here (nx, ny) denote the components (or direction cosines) of the unit 

normal vector n on boundary ∂Ω, xT  and yT  are the components of the specified 

traction vector, and xu  and yu  are the components of specified displacement 

vector. Only one element of each pair, (ux, Tx) and (uy, Ty), may be specified 

(prescribed) at a boundary point. 

 

B.1.2 Plane Stress Problems 

 

A state of plane stress is defined as one in which the following stress field 

exists 

 

0 zyzxz  ,     0zu , 
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 yxxx ,  ,      yxyy ,  ,      yxxyxy ,  . (B.61) 

 

The stress-strain relations of a plane stress state are 

 

  




















































xy

y

x

xy

y

x
E



















2
2

1
00

01

01

1 2
 (B.62) 

 

The equations of equilibrium as well as boundary conditions of a plane 

stress problem are the same as those listed in Strain State Problem section – 

from Equations B.57 to B.58. 
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Appendix C 
 

C.1 THE EMLGFM ALGORITHM FLOWCHART 

 

Figure C.1 – EMLGFM approximate solution implementation. 


