
 

 
 

PONTIFICAL CATHOLIC UNIVERSITY OF PARANÁ 
POLYTECHNIC SCHOOL 

INDUSTRIAL AND SYSTEMS ENGINEERING GRADUATE PROGRAM 

 
 
 
 
 
 
 
 
 

RICARDO LUHM SILVA 
 
 
 
 
 
 
 
 
 

TOWARDS COGNITIVE MACHINE VISION FOR 2D IMAGE BASED 
INDUSTRIAL INSPECTIONS: AN IMPLEMENTATION GUIDELINE 

MODEL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
CURITIBA 

2019 



2 
 

 
 

RICARDO LUHM SILVA 
 
 
 
 
 
 
 
 
 
 

TOWARDS COGNITIVE MACHINE VISION FOR 2D IMAGE BASED 
INDUSTRIAL INSPECTIONS: AN IMPLEMENTATION GUIDELINE 

MODEL 
 
 
 
 
 
 
 
 
 
 

Dissertation document presented to the 
Industrial and Systems Engineering Graduate 
Program, from Pontifical Catholic University of 
Paraná, as partial requirement for the Master’s 
degree in Industrial and Systems Engineering. 
 
Advisor: Marcelo Rudek 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
CURITIBA 

2019  



3 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

 
Dados da Catalogação na Publicação 

Pontifícia Universidade Católica do Paraná 
Sistema Integrado de Bibliotecas – SIBI/PUCPR 

Biblioteca Central 
Edilene de Oliveira dos Santos CRB/9 1636 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

  
 Silva, Ricardo Luhm 
S586t Towards cognitive machine vision for 2D image based industrial inspections :  
2019 an implementation guideline model /  ; orientador, Marcelo Rudek. -- 2019 
     122 f. : il. ; 30 cm 
  
     Dissertação (mestrado) – Pontifícia Universidade Católica do Paraná, Curitiba,  
 2019. 
 Bibliografia: f. 116-122 
  
     1. Engenharia da produção. 2. Inteligência artificial. 3. Indústrias - Inovações 
 tecnológicas. I. Rudek, Marcelo.  II. Pontifícia Universidade Católica do Paraná.   
 Programa de Pós-Graduação em Engenharia de Produção e Sistemas.  
 III. Título.  
  
                                                                      CDD 20. ed. –  670 
  



4 
 

 
 

  



5 
 

 
 

ACKNOWLEDGMENT 
 

First of all, I would like to thank my wife Aline Bardini, for the everlasting patience 

and friendship. She helped in the moments of despair, where I could not believe in 

myself. I also would like to thank my mom Karin and my dad Nelson for the good 

conversation time about science, politics and any other different subjects that helped 

me to refresh my energies when I was depleted from the immersion in the dissertation. 

I would like to thank my thesis advisor prof. Marcelo Rudek for his guidance and 

patience. He steered me in the right the direction whenever I was in the wrong 

direction. I also would like to thank prof. Osiris Canciglieri for our first talks about the 

master degree and for the initial opportunity in this research. 

I would like to thank all my colleagues, Cassiano Beller, Guinther Kowalski, 

Muriel Mazzeto, Matheus Maziero, Ricardo Massao, and Weverton Estalk which 

participated directly or indirectly in my master degree daily activities, through 

discussions, ideas and small talks.  

 

 

  



6 
 

 
 

ABSTRACT 
 

Machine Vision Systems (MVS) is widely used for industrial quality control. 
Artificial Intelligence (AI) solutions integrated with MVS has the potential to improve 
the existing solution and create newer solutions which computer vision techniques 
alone could not achieve. Contributions to AI applied for computer vision have been 
increasing over the years, but the knowledge and skills required to implement them 
are not easily available for industries. Industries must know which the main requisites 
of an AI MVS solution are to avoid an incorrect implementation. This research 
evaluates the current status of MVS and which can are their current limitations. It can 
be highlighted that the contribution of this document A systematic review and content 
analysis potential is performed to identify which are the main contribution and 
limitations of the current AI technologies to MVS, which are the newer technologies still 
to be implemented and what are the requirements needed to implement in real cases. 
An implementation model for AI MVS for industrial inspection is proposed considering 
the best practices found in the literature and from practical experiments performed 
during the validation of the model. The proposed implementation model alongside with 
the extraction of the state of the art techniques  of AI MVS are the main contribution of 
this document. The proposed model can be used by industries as a first step to 
structure their AI MVS technologies up to the moment, and for researchers to develop 
newer solution considering some industrial requirements allowing them to evolve into 
cognitive inspection systems. 
 
Keywords:  Industrial Inspection, Artificial Intelligence Machine Vision System, Deep 
Learning, Implementation Model. 
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RESUMO 
 

Sistemas de Visão de Máquina (MVS) são amplamente utilizados no controle 
de qualidade industrial. As soluções de Inteligência Artificial (AI) integradas à MVS têm 
o potencial de melhorar as soluções existentes e criar novas aplicações onde as 
técnicas de visão computacional sozinhas não conseguiam. As contribuições 
acadêmicas para AI aplicada à visão computacional têm aumentado ao longo dos 
anos, entretanto o conhecimento e as habilidades necessárias para implementá-las 
não são facilmente disponibilizados para as indústrias. As indústrias precisam saber 
quais são os principais requisitos de uma solução do AI MVS para evitar uma 
implementação incorreta. Esta pesquisa avaliou o status atual de MVS e quais são as 
suas limitações atuais. Foi realizado, por meio de uma revisão sistemática e um de 
análise de conteúdo, a identificação de quais são as principais contribuições e 
limitações atuais das tecnologias de IA para MVS, quais são as tecnologias mais 
recentes ainda a serem validadas e quais são os requisitos necessários para que 
estas sejam implementadas em casos reais. Um modelo de implementação de AI MVS 
para inspeção industrial foi proposto considerando as melhores práticas encontradas 
na literatura, e a partir de experimentos práticos realizados durante a validação do 
modelo. O modelo de implementação em conjunto com a extração das informações 
mais relevantes sobre AI MVS são as principais contribuições desse documento.O 
modelo proposto pode ser usado pelas indústrias como um primeiro passo para 
estruturar suas tecnologias de IA existentes para MVS até o momento, e também para 
que pesquisadores possam desenvolver novas soluções, considerando requisitos 
industriais e permitindo que elas evoluam para sistemas mais completos de inspeção 
cognitiva. 
 
Palavras-chave:  Industrial Inspection, Inteligência Artificial,  
Sistemas de Visão de Máquina, Deep Learning, Implementation Model. 

  



8 
 

 
 

LIST OF FIGURES 

Figure 1 - Simplified workflow for visual quality inspections. ..................................... 17 

Figure 2 - A block diagram for a typical vision system operation and applicable AI 
techniques. ................................................................................................................ 20 

Figure 3 - Conventional MVS types and detection modes. ........................................ 21 

Figure 4 - MVS integrated with a simplified 4.0 Industry diagram. ............................. 24 

Figure 5 - Complexity examples of AI models: Simple reflex agent and the utility-
based agent. .............................................................................................................. 25 

Figure 6 - Comparison of machine learning and deep learning. ................................ 26 

Figure 7 - A simplified neural network with a single hidden layer. .............................. 27 

Figure 8 - Example of mathematical operations between the input layer and the 
hidden layer. .............................................................................................................. 28 

Figure 9 - Example of mathematical operations between the hidden layer and the 
output layer. ............................................................................................................... 28 

Figure 10 - Research methodology steps performed in this study. ............................ 31 

Figure 11 - Proposed field groups correlation. ........................................................... 32 

Figure 12 - The number of publications between 2006 and 2018 distributed into the 
research group combinations. ................................................................................... 36 

Figure 13 - Filtering criteria for title reading. .............................................................. 36 

Figure 14 - Number of publications according to each technique group. ................... 38 

Figure 15 - Review and Survey number of publications divided by M/M-F-A (a) and 
divided by technology (b) .......................................................................................... 38 

Figure 16 - The proposed evaluation model for complete title reading divided by 
subgroups.................................................................................................................. 40 

Figure 17 - AI contribution (a) and MVS solution type (b) results. ............................. 43 

Figure 18 - Supervision Type and data source results. ............................................. 43 

Figure 19 - Dataset improvement results. ................................................................. 44 

Figure 20 - Classification (a) and Localization (b) metrics. ........................................ 44 

Figure 21 - Time to train (a) and deployed solution performance (b) metrics results. 45 

Figure 22 - Presence of Workflow (a) and Layer Parameters (b) results. .................. 45 

Figure 23 - Presence of training hardware (a) and embedded hardware (b). ............ 46 

Figure 24 - The proposed AI MVS implementation model divided into the main group 
and its subcategories. ............................................................................................... 53 

Figure 25 - IIR group with its main activities and simplified descriptions. .................. 54 

Figure 26 - ASA group with its main activities and simplified descriptions. ................ 60 

Figure 27 - Correlation between the main components for AI programming. ............ 69 

Figure 28 - Confusion Matrix Example. ..................................................................... 71 



9 
 

 
 

Figure 29 - Relationship between the model output value and the confusion matrix 
given a threshold value. ............................................................................................ 71 

Figure 30 - The four types of possibilities of a confusion matrix given threshold value.
 .................................................................................................................................. 72 

Figure 31 - Intersect of Union localization metric. ...................................................... 74 

Figure 32 - CNN specific details group with its main activities and simplified 
descriptions. .............................................................................................................. 76 

Figure 33 - Dataset division smaller parts for training and model evaluation. ........... 79 

Figure 34 - Example of a generic kernel applied over an image input and its 
respective feature map. ............................................................................................. 80 

Figure 35 - Example the mathematical operation of the kernel over the input and the 
first resulting value. ................................................................................................... 81 

Figure 36 - Example the mathematical operation of the kernel over the input given a 
stride of one and the next, resulting value. ................................................................ 81 

Figure 37 - Example the complete mathematical operation of the kernel over the 
input and all the resulting values. .............................................................................. 82 

Figure 38 - Example of Valid Padding with different stride values. ............................ 83 

Figure 39 - Example of Same Padding with stride value equals two. ........................ 84 

Figure 40 - Example of stacked feature maps gives an image input and a pack of 
convolution filters. ...................................................................................................... 85 

Figure 41 - Example of max and average pooling. .................................................... 88 

Figure 42 - Localization of the pooling layer and its relationship with the stacked 
feature maps. Source: The Author ............................................................................. 89 

Figure 43 - Feature maps being fed into the input layer and their relationship with a 
single neuron in the hidden layer. .............................................................................. 90 

Figure 44 - Relationship of the fully connected layer output and the classifier layer. . 91 

 Figure 45 - Transformation of the label input into a one-hot encoding form. ............ 92 

Figure 46 - Relationship of the label input and the classification output and its one hot 
encoding vector. ........................................................................................................ 93 

Figure 47 - Example of stochastic learning on CNN. ................................................. 94 

Figure 48 - Differences between stochastic learning and batch learning regarding 
memory consumption. ............................................................................................... 94 

Figure 49 - Example of full batch learning in CNN. .................................................... 95 

Figure 50 - Example of mini-batch learning on CNN. ................................................ 95 

Figure 51 - Error vs. Epoch curve for full batch and mini-batch behavior comparison.
 .................................................................................................................................. 96 

Figure 52 - Error vs. Epoch graph with a model that already achieved convergence.
 .................................................................................................................................. 96 

Figure 53 - Example of the effects of different learning rate values. .......................... 97 



10 
 

 
 

Figure 54 - Example of different learning rate values in the loss/error vs. epoch curve.
 .................................................................................................................................. 97 

Figure 55 - AI-MNGT group with its main activities and simplified descriptions. ........ 99 

Figure 56 - Example of the extraction of relevant data in the proposed transfer 
learning technique. .................................................................................................. 105 

Figure 57 - AI MVS Management Platform main workflow and its functionalities. ... 106 

  
  



11 
 

 
 

LIST OF TABLES 
 

Table 1 - Keywords used as the inclusion filter divided into the research groups. ..... 32 

Table 2 - Inclusion and Exclusion criteria for the first step of the systematic review. . 34 

Table 3 - Output datasheet format and relevant columns used in the next steps. ..... 35 

Table 4 - AI techniques divided by group. .................................................................. 37 

Table 5 - Selection and Exclusion Criteria ................................................................. 39 

Table 6 - Filtering steps between title selection to abstract reading resume. ............. 39 

Table 7 - Detailed criteria for each subgroup in the proposed evaluation model. ...... 40 

Table 8 - Detailed fields of how the papers were evaluated. ..................................... 42 

Table 9 - Content Analysis Resume. .......................................................................... 47 

Table 10 - Example of commonly activation function for image-based solutions. ...... 86 

Table 11- Summary of the implementation steps of the Robotic Inspection MVS .... 109 

Table 12- Summary of the implementation steps of the Non-AI MVS Prototype...... 111 

Table 13 - Summary of the implementation steps of the First AI MVS Prototype..... 113 

Table 14 - Summary of the implementation steps of the Final AI MVS Prototype .... 115 

 

  



12 
 

 
 

LIST OF ACRONYMS 
1D    One Dimensional 

2D    Two Dimensional 

3D    Three Dimensional 

ACU    Active Convolution Unit 

AdaBoost    Adaptive Boosting 

AFRS    Automatic Fault Recognition System 

AI Artificial Intelligence 

ANN Artificial Neural Networks 

ASIC Application-specific integrated circuit  

BLAS    Basic Linear Algebra Subprograms 

CM Confusion Matrix  

CNN Convolutional Neural Network  

CPS Cyber-Physical Systems  

CPU Computer Processing Units  

DBN Deep Belief Neural Network 

DL Deep Learning 

DSL Deep Super Learner 

ELM Extreme Machine Learning 

FN False Negative 

FP False Positive 

FPS Frames per Second 

GPU Graphic Processing Units 

HMI Human-Machine Interface  

HOG Histogram of Gradients  

ILSVRC    ImageNet Large Scale Visual Recognition Competition 

IoT Internet of Things 

IQC Industrial Quality Control 

ISSN International Standard Serial Number 

KPI Key Performance Indicator 

LDA Linear discriminant analysis 

ML Machine Learning 

MLP Multi-Layer Perceptron 

MV Machine Vision 



13 
 

 
 

MVS Machine Vision System 

NAS Neural Architecture Search 

NN Neural Network  

ORB Orientated fast and Rotated Brief  

PCA    Principal Component Analysis 

PHOG     Pyramid Histogram of Gradients 

P-TELU    Parametric Tan Hyperbolic Linear Unit  

PU Processing Units 

RBM Restricted Boltzmann Machine 

R-CNN    Region Based Convolutional Neural Network 

ReLU    Rectified Linear Unit  

RGB Red, Green and Blue Color channels 

RIS Research Information Systems 

ROC Receiver operating characteristics  

RorS Review or Survey 

RPN Region Proposal Network 

SAE Sparse Autoencoder  

SIFT Scale Invariant Feature Transform 

SPP Spatial Pyramid Pooling 

SSD Single Shot MultiBox Detector  

SURF    Speeded Up Robust Features  

SVM    Support Vector Machine 

TN True Negative 

TP True Positive 

TPU Tensor processing units 

UOI Union of Intersects 

VAE    Variational autoencoders 

YOLO    You only look once 

 
  



14 
 

 
 

 

SUMMARY 
 

1 INTRODUCTION ...................................................................................... 16 

1.1 Problem .................................................................................................... 18 

1.2 Objective .................................................................................................. 19 

1.2.1 Specific Objectives ................................................................................. 19 

2 BACKGROUND ........................................................................................ 19 

2.1 IQC ........................................................................................................... 19 

2.2 Machine Vision System (MVS) ............................................................... 20 

2.2.1 MVS core functions ................................................................................ 20 

2.2.2 1D and 2D MVS industrial applications ................................................. 21 

2.2.3 3D MVS industrial applications .............................................................. 22 

2.2.4 MVS industrial evaluation ...................................................................... 23 

2.2.5 MVS applications to Industry 4.0 ........................................................... 23 

2.3 AI techniques. ......................................................................................... 24 

2.3.1 Traditional ML and Deep Neural Networks for MVS ............................. 25 

2.3.2 Simplified AI learning concepts. ............................................................ 27 

3 RESEARCH METHODOLOGY ................................................................ 30 

3.1 Systematic Review .................................................................................. 31 

3.2 Content Analysis ..................................................................................... 39 

3.3 Content Analysis Contributions ............................................................ 46 

4 PROPOSED MODEL ................................................................................ 52 

4.1 AI MVS Implementation Model ............................................................... 52 

4.1.1 Industrial inspection requirements (IIR). .............................................. 53 

IIR-1.   Quality Control Assessment ....................................................................... 54 

IIR-2.   Scene Constraints Assessment ................................................................. 55 

IIR-3.   Technical Constraints Assessment............................................................ 57 

4.1.2 Artificial Intelligence Assessment (ASA). ............................................. 59 

ASA-4.   Solution type selection ............................................................................ 61 

ASA-5.   AI technique for MVS ................................................................................ 62 

ASA-6.   AI training requisites ................................................................................ 64 

ASA-7.   AI Hyperparameters .................................................................................. 66 

ASA-8.   Hardware/Software for AI ......................................................................... 66 



15 
 

 
 

ASA-9.   Validation Metrics ..................................................................................... 70 

4.1.3 CNN specific details (CNN) .................................................................... 75 

CNN-10.   Dataset .................................................................................................... 77 

CNN-11.   Convolution Operation ........................................................................... 80 

CNN-12.   Activation Function and Normalization ................................................ 86 

CNN-13.   Pooling Operation .................................................................................. 87 

CNN-14.   Fully Connected Layer ........................................................................... 89 

CNN-15.    Classifier. ............................................................................................... 91 

CNN-16.    AI Learning Method ............................................................................... 93 

4.1.4 AI MVS Management (AI-MNGT) ............................................................ 98 

AI-MNGT 17.    User Profiles ................................................................................. 100 

AI-MNGT 18.    AI Frameworks.............................................................................. 102 

AI-MNGT 19.    AI Trained Models ......................................................................... 103 

AI-MNGT 20.    AI MVS Management Platform..................................................... 106 

5 IMPLEMENTATION EXAMPLE OF THE PROPOSED FRAMEWORK 

MODEL 108 

5.1 First Implementation Scenario – Non-AI-MVS Robotic Arm. ............. 108 

5.2 Second Implementation Scenario – Non-AI – MVS. ........................... 110 

5.3 Third Implementation Scenario – First AI MVS Prototype ................. 112 

5.4 Fourth Implementation Scenario – Final AI MVS Prototype. ............. 114 

6 CONCLUSION ........................................................................................ 116 

REFERENCES ........................................................................................................ 118 



16 
 

 
 

1 INTRODUCTION 

The intense competition in the global market creates an environment in which 

companies must be able to develop new products quickly with lower production costs 

and meet customer expectations. Resources must be invested in quality management 

to achieve customer expectations. Quality investment starts during the product 

development phase go through the product manufacturing and end with the perceived 

quality by the client. In a production line, it is possible to monitor quality during the 

execution of each process or at the end of it. According to Montgomery (2005), a 

process consists in transforming an input, which can be raw materials, components, or 

subassemblies into an intermediary or the final product. To perform process changes 

in the assembly line after the project of the product and the installed machinery are 

complete, it is usually a costly operation. Any process may be subject to quality 

problems, so a quality inspector or inspection equipment can be placed right after an 

operation is finished. 

Visual inspection is an essential process in an industry to recognize defective 

parts, to assure quality conformity of a product and fulfill customer demands (Vergara-

Villegas et al., 2014), (Satorres Martínez et al., 2012). Human inspectors can perform 

product and process inspection in assembly and manufacturing activities, but due to 

several factors (e.g., fatigue, small parts, small details, hazardous inspection 

conditions, process complexity), this task may not assure quality output. In this case, 

a machine vision solution is recommended (Vergara-Villegas et al., 2014), (Szkilnyk, 

2012), (Golnabi; Asadpour, 2007).  

Automated visual inspections, also known as Machine Vision System (MVS) 

consist in applying computer vision to industrial solutions. It can operate with high-

resolution cameras or sensors that can detect a broader range of light spectrum along 

with a special lens that amplifies the detection of small parts or defects. Most of 

automated MVS relies on controlled lighting environment with pre-built algorithms to 

detect specific types of defects (Pérez et al., 2016). MVS must be adaptable to 

scenarios that have a wide variety of product features, high production speed assembly 

lines, and other complex environment variables (Labudzki et al., 2014), (Lerones et al., 

2005).  
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Traditional MVS or trained quality inspectors can perform the quality inspection 

without Artificial Intelligence (AI). Figure 1 is an example of a Simplified workflow for 

visual quality inspections considering traditional machine vision systems and human 

inspector.  

Figure 1 - Simplified workflow for visual quality inspections. 

 
Source: The Author 

A quality inspector must receive proper training to allow him to extract and 

interpret the inspection data. If a non-conformity is detected, the specialist can look for 

additional sources of knowledge to analyze the root cause of the problem. He can also 

search for related quality indicators to perform a more complex evaluation (Guo et al., 

2015). Besides human limitations such as fatigue, it is also required a considerable 

amount of time to train a specialized staff. The experience acquired by quality 

inspectors may be lost if any event displaces the employee from its current inspection 

activities, without a proper knowledge transfer. When a quality inspector does not meet 

the inspection requirements, an MVS is an alternative. 

MVS requires a computer vision expert to identify the inspection requirements 

and perform its configuration. Existing MVS might not work correctly when 

manufacturing process parameters are submitted to process changes. System 

recalibration or to include a new inspection functionality requires well-trained staff, 

despite improvements of MVS user interface applications. This specialized worker 

must understand what is happening and perform the most appropriate fine-tuning task. 

The computer vision expert alone may require the assistance of a qualified expert to 

validate its reliability. Another drawback of traditional MVS is that it does not learn with 
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previous inspections data. Artificial Intelligence (AI) can improve MVS and add learning 

features. 

AI can be used to enhance existing quality management tools and methods 

through state-of-the-art technologies. It may be applied to improve detection, provide 

data analysis with potential insights problem analysis, and create predictive models to 

avoid future quality problems. These improvements allow factories to walk toward the 

Smart Factories and Cyber-Physical System concepts, which belongs to the core 

concepts of the fourth industrial revolution or industry 4.0 (Foidl; Felderer, 2016). 

Although AI solutions can provide relevant improvements to product quality, its 

implementation may be challenging for several companies. They must face an 

adaptative process which requires technological and financial resources to integrate 

these new features. Workers must have minimum skills to be able to interact with these 

technologies to allow the transformation process that comes with it. 

Recent advances on computer vision techniques combined with AI techniques, 

such as Machine Learning (ML) and Deep Learning (DL), shows potential applications 

to improve existing MVS to be less sensitive to external factors, increasing the capacity 

to detect image features and allows machines to learn from existing data. 

1.1 Problem 

AI applied to MVS, and Industrial Quality Control (IQC) shows promising 

improvements, but there are technical constraints that must be understood in order to 

allow a correct implementation in an industrial scenario. Current AI MVS applications 

are commonly tailor-made. Each solution has specific detection needs with variable 

image input parameters making it difficult to provide a standard Key Performance 

Indicator (KPI) to evaluate the system performance or its replicability in any other 

industrial scenario. An increased number of publications considering MVS and 

Machine Learning (ML) and Deep Learning (DL) solutions were previously observed 

in the last ten years but selecting ML and DL solution it is still a challenge from the 

industrialization perspective.  

Industrialization and technical requisites must be considered to make this 

solution achieve a higher degree of product maturity (Silva et al., 2018). It is required 

a combination of technology availability, classification assertiveness, detection 

precision, hardware robustness, trained staff in Computer Vision, and Artificial 

Intelligence algorithms. Companies which has research and development (R&D) as a 
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core business or a specialized department may have employees with the required skills 

and infrastructure to develop a customized solution. Companies which does not have 

R&D may have to wait for off-the-shelf solutions, hire specialized companies, or 

develop its own solution without the proper conditions. The lack of proper knowledge 

and know how to apply AI MVS into an existing quality inspection process can be 

subject to successive implementation failures, increased development cost, or inferior 

performance when compared to validated traditional solutions. 

1.2 Objective 

The objective of this research is to create provide an implementation model of 

AI MVS, that can perform better than traditional MVS and human-based inspections. 

The model was built based on the main contributions and points of development found 

in the systematic review and content analysis of state-of-the-art AI techniques. The 

model also considers observations made by the author during his time while working 

for automobile factory, composed of several assembly lines with existing MVS. This 

document also provides a background of 2D MVS main aspects, AI basic concepts and 

machine and deep learning techniques for 2D image system. 

1.2.1 Specific Objectives 

 Identify the current limitations of traditional MVS 

 Identify technological requirements for AI solutions and its applications to MVS. 

 Create an implementation model for AI MVS in industrial inspections 

 Validate the using case models. 

2 BACKGROUND 

2.1 IQC 

Industrial Quality control (IQC) is a management tool used to establish 

acceptable product specifications and characteristics limits and maintain the output 

production within control limits (Hitomi, 2017). There are several phases during product 

development and manufacturing, where quality control tools and concepts can be 

applied. Each one of these tools can be associated with a quality cost, which is one 

way to bring a qualitative evaluation or an indirect quantitative measure into 

measurable value.  
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Materials, components, subassemblies, and products inspections are related to 

quality appraisal cost, which aims to ensure the output meets its desired specifications. 

Assertive inspection projects tend to decrease internal failure costs, such as rework, 

factory downtime, and product downgrading. It also affects the external failure cost, 

which are related after the product leaves the industry, reducing complaints, warranty 

charges, and returned product costs. Improving the bottom line is the goal.  

2.2 Machine Vision System (MVS) 

A typical MVS or Computer Vision are composed of several tasks, which ranges 

from the image capturing or acquisition, image pre-processing and enhancement, 

image segmentation, feature extraction, classification and/or interpretation and 

actuation. 

2.2.1 MVS core functions 

Golbani and Asadpour (2007) proposed a block diagram for a typical vision 

system operation when artificial intelligence techniques were still being developed for 

MVS. According to Silva’s review, AI techniques in all steps ranging from image pre-

processing to the MVS fine tuning. Figure 2 provides a diagram containing a modified 

diagram with new AI techniques identified in recent literature.   

Figure 2 - A block diagram for a typical vision system operation and applicable AI techniques. 

Source: Adapted from Wang, J. et al. (2018) Golnabi; Asadpour (2007) Vergara-Villegas et al. 
(2014) 

In this framework is important to emphasize the need for a knowledge dataset. 

This dataset contains several inputs from gathered from all the steps within the MVS, 
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such as object features and quality criteria definitions, that may be used to improve the 

current learning methods (Wang, J. et al., 2018), (Vergara-Villegas et al., 2014). 

2.2.2 1D and 2D MVS industrial applications 

One (1D) and two dimensional (2D) MVS have a wide range of applications 

such as measurement, surface, and depth inspection, thermal inspection, and robot 

vision. Each kind of application has its own characteristic equipment with different 

image gathering source, such as photoelectric sensor, lasers, cameras, and so on 

(Chauhan; Surgenor, 2015).Some MVS source types and applications are shown in 

Figure 3. 

Figure 3 - Conventional MVS types and detection modes.  

 
Source: Adapted from Chauhan; Surgenor (2015), Vergara-Villegas et al. (2014)  

 Camera-based MVS for industrial applications is commonly used to verify 

presence or absence of components, verify if the components are in their correct 

position and orientation, verify if components have the desired colors, analyze and 
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recognize image content such as code bars and inspect size and measure of parts and 

assembly components (Golnabi; Asadpour, 2007). 

Photoelectric and laser based MVS inspections can also be used to presence 

or absence of components, check component positioning, and verify desired colors, 

mainly to measure parts. 

2.2.3 3D MVS industrial applications 

The optical non-contact 3D measurement technique has been used to measure 

an image of an object and extract its geometrical information. It can be divided into 

passive and active 3D sensing systems, where passive works with natural lighting from 

the scene without controlling the light that goes to the inspected object. While active 

sensing systems use external light, such as laser or a known projected light, by 

measuring the speed of light, laser coherence, or applying triangulation techniques 

(Su; Zhang, 2010). 

Structured light is an active 3D sensing system, which illuminates the object with 

predefined patterns and analyses how these patterns are deformed by the object when 

observed from a different angle of the projection. Some systems adopt non-visible 

structured light to avoid interfering with other computer vision (Van der Jeught; Dirckx, 

2015). 

Stereo vision profilometry techniques simulate human vision through two 

camera setups angled with each other, which aims to identify and match common 

features of object images from multiple allowing it to be reconstructed through 

triangulation techniques (Van der Jeught; Dirckx, 2015). Stereo vision normally is a 

passive 3-D sensing system, but there are new camera setups, which also uses a 

projected structured light in the object that turns them into active stereo vision (Pérez 

et al., 2016). 

Another active vision technique is a time of flight light measurement. This 

technique uses light pulses with a known camera range so the time for the emitted light 

to travel from the camera and hits the object and is reflected on the camera is 

measured, based a fixed and known light speed the distance can be calculated (Pérez 

et al., 2016). 

Light coding imaging is also an active 3D sensing system, but instead of using 

light pulses, it keeps light source constantly turned on. It also uses an infrared spectrum 

emitter and receiver, which analyses lens distortion, the emitted light pattern and the 
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distance between object, emitter, and receiver and the deformation of the light over the 

inspected object (Pérez et al., 2016). 

2.2.4 MVS industrial evaluation 

Pérez et al. (2016) compared several 3D machine vision techniques applied to 

industrial environments emphasizing which factors need to be considered in order to 

select the adequate vision application, considering, system accuracy, working 

distance, image output, system advantages, and limitations. Environment light 

influence was one of the major detected limitations to MVS. Only a few systems were 

not subject to external light negative influence. Some MVS may need the camera and 

the object to remain static so it can work properly. Detection accuracy and working 

distances are also important variables that must be taken into account. 

2.2.5 MVS applications to Industry 4.0  

The fourth industrial revolution or Industry 4.0 aims to develop intelligent 

factories with upgraded manufacturing technologies through new features such as 

cyber-physical system (CPS), Internet of Things (IoT), Big Data and Cloud computing. 

New manufacturing systems propose simultaneous monitoring of physical processes 

with being controlled by digital technologies, being able to make a smart decision 

through real-time communication and interaction between humans, machines, or any 

smart device (Zhong et al., 2017) 

Figure 4 contains a simplified 4.0 Industry diagram, adapted from more complex 

diagrams available in the literature. Machine vision is in the IoT layer. Its function is to 

provide image data through a connected network to a big data cloud server. This data 

will be subject to mining and cleaning procedures, removing unnecessary information. 

This information can be used as an input for machine learning techniques, allowing an 

integrated system to detect and describe what happened to the product, determining 

why that happened, predict what may happen and prescribe which actions must be 

taken (Pal et al., 2016). 
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Figure 4 - MVS integrated with a simplified 4.0 Industry diagram.   

Source: Adapted from Pal et al. (2016)Zhong et al. (2017) 

MVS future solutions, such as knowledge-driven decision-making, real-time 

control, online advanced analytics, and AI in CPS, are considered a challenging 

implementation process. It may take from 3 to 10 years for industries to achieve a 

concrete degree of maturity and obtain a fully operational system with these 

functionalities (Leitão et al., 2016). 

2.3 AI techniques. 

AI is composed of several subfields which aim to understand, mimic, and 

improve how we think, perceive, understand, predict, and act upon an environment. 

That allows us to build intelligent entities to solve complex problems. Russell; Norvig 

(2010) defines an AI solution as a sentient agent which interacts with an environment 

being able to sense what is happening and what should be its output actions based on 

known functions. AI model with low complexity performs simple reflex interactions 

types with the environment. Complex models can evaluate which is the best action to 

be taken based on previous knowledge before performing it. The behavior of the agent 

can improve through learning mechanism, which allows the model to adapt to new 

scenarios. Figure 5 - Complexity examples of AI models: Simple reflex agent and the 

utility-based agent.shows an example of the simple reflex model and the utility-based 

model. 
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Figure 5 - Complexity examples of AI models: Simple reflex agent and the utility-based agent. 

Source: Adapted from Russell; Norvig (2010) 

There are several types of AI solutions which can work alone as an agent itself, 

or they can be combined to a provided hybrid solution with improved functionalities. 

Each AI solution has unique aspects and architectures. Machine learning (ML) is one 

of these possible solutions that may be applied to MVS. It uses the artificial neural 

network (ANN) architecture concepts, which creates an approximation of how our 

neurons interact with each other and allow it to extract representative information for 

decision making.  

These neural networks (NN) are composed of three types of layers: the input 

layer, the inner or hidden layers, and the output layer. The input layer is responsible for 

receiving data and distributing to the first inner layer. Inner layers are responsible for 

processing and extracting the relevant information from the input layer or from a 

previous inner layer. The output layer receives the processed data from the inner layers 

and provides a relevant output.  

2.3.1 Traditional ML and Deep Neural Networks for MVS 

Machine learning (ML) and deep learning (DL) are data-driven artificial intelligence techniques, 
which may be applied to MVS. Both techniques use neural network architecture concepts. 
which transforms raw data into representative information for decision making. Figure 6 - 
Comparison of machine learning and deep learning.  

Source: Adapted from Wang, J. et al. (2018) shows a simplified comparison of 

traditional machine learning and deep learning. 
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Figure 6 - Comparison of machine learning and deep learning.  

Source: Adapted from Wang, J. et al. (2018) 

Traditional Machine Learning uses different features extraction types to obtain 

features descriptors, which will be later used in a simple layer neural network. The 

traditional ML can be considered as a handcrafted process because it requires an 

image processing expert to select which feature extraction technique is being used as 

input for the neural network. DL is applied in both feature extraction and classification 

steps in a unified multi-layer neural network (NN). The neurons will select and extract 

the most relevant features and will evaluate their influence in the classification layer  

Deep learning techniques are within the ML field of study, and its main 

characteristic is the multiple inner layers that allow more complex information 

extraction, but it demands more computational processing power.  

ML and DL techniques are currently being applied for two types of applications: 

classification and regression. Classification is used to analyze data and label into a 

different type of classes. Regression is used to analyze data and predict future values. 

MVS with ML or DL can be applied to IQC for inspections based on pattern recognition 

and classification to improve detection of non-conformities and consequently increases 

quality assurance. DL solutions initially require an AI programmer with MVS knowledge 

to train the system.  
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2.3.2 Simplified AI learning concepts. 

AI learning concepts are based on a mathematical model which transform a 

given input data into a prediction value. Each neuron receives an input value, and it 

will be multiplied by a weight, and a bias addition is applied to the result. Figure 7 will 

be used as a simplified network considering two input values connected to a hidden 

layer with two neurons, and a single output neuron layer. 

Figure 7 - A simplified neural network with a single hidden layer.  

Source: The Author. 

The circles represent the neurons while the squares represent the mathematical 

operations which happen between neurons. A simple neuron typically has at least two 

mathematical operations. First, are the weight multiplication and the bias addition. 

Equation 1 shows the first mathematical operation considering an input node. 

zn = in ∗ wn+ b = input ∗ weight + bias    (1) 

The second mathematical operation is the activation function, as shown in the 

Equation 2, which takes the input zn and applies a function defined by the letter ‘g’. 

g(zn) = activation function output    (2) 

An example of the mathematical operations performed between the input layer 

and the hidden layer is shown in Figure 8. 
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Figure 8 - Example of mathematical operations between the input layer and the hidden layer. 

Source: The Author. 

Each hidden neuron output is the sum of each input value and its respective 

weights, bias, and activation function. Equation 3 shows an example of the output of 

the first hidden neuron shown in the previous figure. 

h1 = g(z1) + g(z3)       (3) 

The operations between the input and hidden neurons are like the relationship 

with the hidden and the output neuron. Figure 9 shows how the hidden neuron is 

connected and its mathematical operations between them. 

Figure 9 - Example of mathematical operations between the hidden layer and the output layer. 

Source: The Author 

The output value is also known as the predicted value. The error of a model is 

based on the predicted value and the desired output value. The cost function is defined 

by the squared value of the difference between the predicted and the desired value. 

This function is also known as loss function or error rate depending on the authors. 

Equation 3 shows how the cost function is calculated. 

cost or loss error rate = (Predicted Value - Desired Value)²   (3) 

The main objective of an AI model is to minimize the cost function, where the 

optimal solution is the global minimum where error tends to zero. This can be achieved 

by updating the weights and biases, evaluating how a change in the weight or bias 
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affects the cost function. Calculating the derivate of the cost function with respect to 

each weight and bias, it is possible to know how small changes in any of the 

parameters will affect the cost function. For the following equations, the cost function 

will be treated as ‘C’, the predicted value as ‘P’ and the desired output will be treated 

as y. Equation 4 shows how the cost function is calculated. 

C = (P - y)²        (4) 

Equation 5 shows an example of the derivative of the cost function regarding 

the weight value w5 located between the hidden neuron and the output neuron using 

the chain rule for derivatives. 

∂C

∂w5
 = 

∂z5

∂w5
 * 

∂P

∂z5
 * 

∂C

∂P
     (5) 

Calculating separately each derivative, the Equation 6 is the derivative of the 

cost function with respect to the predicted output value: 

∂C

∂P
 = 2 ∗ (P - y)      (6) 

The Equation 7 is the derivative of the predicted output value with respect to the 

sum of the output values of the activation function outcomes: 

∂P

∂z5
 = g'(z5)   where   P = g(z5) + g(z6)     (7) 

The Equation 8 is the derivative of the value z5 with respect to the weight w5: 

∂z5

∂w5
 = h1   where   z5 = h1 ∗ w5 + b3    (8) 

Multiplying each derivate value and replacing in the Equation 9: 

∂C

∂w5
 = 2 ∗ (P - y) ∗ g'(z5) ∗ h1      (9) 

The cost function will be affected by the difference between the predicted and 

the desired value, the derivate value of the activation function, and the input value of 

the hidden neuron. Based on that, it is possible to recalculate the new w5 value, which 

depends on the learning rate value. Equation 10 resumes how the weight equation is 

updated. 

w5new = w5 -  αlearning rate ∗
∂C

∂w5
      (10) 

Replacing the derivative in the Equation 11 above we have: 

w5new = w5 -  αlearning rate ∗ 2 ∗ (P-y) ∗ g'(z5) ∗ h1   (11) 
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During the learning process and weight update process, it is possible that the 

derivative of the activation function, given by g’(x), causes the vanishing gradient. 

Sigmoid functions are one type of activation functions which can be subject to the 

vanishing gradient problem since its derivatives tend to zero depending on how the 

input values vary. The vanishing gradient effects propagation greatly increases as the 

neurons layer a far from the output value. This can be observed in the following 

Equations 12,13,14,15 and 16, where the cost function derivative with respect to w1 is 

evaluated: 

∂C

∂w1
 = 

∂z1

∂w1
∗

∂h1

∂z1
∗

∂z5

∂h1
∗

∂P

∂z5
∗

∂C

∂P
     (12) 

Calculating each one of the derivatives: 

 
∂z1

∂w1
 = i1   where    z1 = i1 ∗ w1 + b1    (13) 

∂h1

∂z1
 = g'(z1)   where    h1 = g(z1) + g(z3)     (14) 

∂h1

∂z1
 = w5   where    z5 = h1 ∗ w5 + b3    (15) 

Replacing the values calculated above we have: 

∂C

∂w1
 = i1 ∗ g'(z1) ∗ w5 ∗ g'(z5) ∗ 2 ∗ (P - y)    (16) 

The influence of the w1 is twice affected by derivate values from the activation 

function. In this case, the vanishing gradient will be twice as strong as the effect on the 

weight w5. The farthest a neuron is from the output, the greater the effect of the 

vanishing gradient. 

To perform the learning of the model, each parameter wn and bn should be 

subject to update. When all the values are updated, the new prediction value can be 

calculated. This process is repeated infinitely, and it can be stopped when cost function 

achieves a minimum value, or a certain number of iterations is performed. 

3 RESEARCH METHODOLOGY 

The research method used in this article was the systematic review followed by 

content analysis. The purpose of this review is to identify which are the main requisites 

for AI MVS and which are the state-of-the-art techniques that can be applied to 

industrial inspection. Figure 10 provides a detailed explanation of each step performed 

in this study. Each step will be detailed later in this document. 
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Figure 10 - Research methodology steps performed in this study. 

Source: The Author 

3.1 Systematic Review 

Step 1. The first technique is used to ensure the selection of relevant articles of 

a chosen study area and its followed by a rigorous filtering process which provides an 

accurate search result list. This type of review benefits from the available literature 

datasets related to the desired research field integrating information from different 

studies which may present converging or diverging results.  

The review begins with the definition of the main study groups. The study groups 

for this paper were based on the previous fields of study as described by Silva et al. 

(2018). The research groups were slightly modified to provide an evaluation aligned 

with the research questions from this paper. The main research groups were IQC, AI, 

and MV. This article provides a wider evaluation, considering articles that belonged not 

only to the intersection between the three main groups but the relationships within each 

group pair. Figure 11 shows the differences between, and this paper relative to new 

keywords group names. 
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Figure 11 - Proposed field groups correlation.  

Source: Adapted from Silva et al. (2018) 

MV group was divided into two types of solutions: 2D MV applications and 3D 

MV applications. 3D keywords were used as an exclusion filter, while 2D keywords 

were used in the inclusion filter. AI keywords were added based on Schmidhuber 

(2015) survey and Druzhkov; Kustikova (2016) review. Specific AI techniques for image 

classification and object detection, such as ML and DL, were also added in the 

inclusion keyword group list. New IQC keywords were found using similar industrial 

applications keywords based on findings from Silva et al. (2018) and keywords related 

to quality control and performance evaluation. Table 1 shows the keywords used as 

the inclusion filter for each group. 

Table 1 - Keywords used as the inclusion filter divided into the research groups. 

AI Keywords IQC Keywords MV Keywords 
Automatic Encoder* Assembly line Computer Vision 

Convolutional Neural Network 
or CNN 

Automotive Industry Feature Extraction 

Deep Belief Network or DBN Confusion Matrix 
Image Classification or 

Image Classifier 
Deep Learning Factory or Factories Image Processing 

Extreme Machine Learning or 
ELM 

Fault detection or Anomaly Detection Imaging Technology 

Multi Layer Perceptron or MLP Flaw Detection or Defect Detection Machine Vision 
Machine Learning Industrial Application Multi Target Tracking or MTT 
Neural Network Industrial Inspection Object Detection 

Restricted Boltzmann Machine 
or RBM 

KPI or Key Performance Indicator 
Object Recognition or Part 

Detection 
R-CNN Manufact* ORB 

Recursive Neural Network 

Quality Control or 
Automated Quality Control 

Pattern Recognition or 
Shape Recognition 

Product Analysis or Product Quality SIFT 
Quality Expert SURF 

RNTN 
Quality Prediction Template Matching 

Total Quality or Visual Quality  

Source: The Author. 



33 
 

 
 

The search was performed using advanced document search features, such as 

operators and combine queries options available through Scopus dataset. Search 

combinations were performed only between different keyword groups. Only papers in 

the English language that were classified by Scopus as articles, reviews, conference 

proceedings, and conference reviews were considered in this search. 

Papers covering a period between 2006 to the first half of 2018, along with the 

additional premises and criteria are shown in Table 2. 
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Table 2 - Inclusion and Exclusion criteria for the first step of the systematic review. 

Exclusion Criteria 
Keywords related to:  
  - medicine: 
x-ray ; Alzheimer ; analgesic ; auditory ; biopsy ; blastocyst ; blood ; auditory ; biopsy ; blastocyst ; 
blood ; bone ; bone ; brain tumor ; brainstem ; breast ; cancer ; cardiac ; cardiology ; 
cardiovascular ; cartilage ; catheter ; dermoscopy ; diabetic; disease ; DNA ; Echocardiography ; 
EEG ; electrocardiogram; electroencephalogram ; electrophysiological ; endoscopy ; fetal ; 
fluoroscopy ; genome; gemologic* ; health ; hippocampus ; histopathology ; laparoscopic  ; liver ; 
lung ; mammographic ; mammography ; medic ; mitotic ; MRI ; neuroimaging ; medic ; mitotic ; 
MRI ; neuroimaging ; olfactory ; olfactory ; pancreatic ; pathological ; patient ; pediatric ; 
physiotherapy ; pneumonia ; protein ; proteomics ; psychology ; proteomics ; psychology ; radiation ; 
radiology ; radiotherapy ; rehabilitation ; resonance ; retinal ; saliva ; skeleton ; spinal cord ; stroke ; 
subcutaneous ; surgery ; syndrome ; thyroid ; tissue ; tissue ; tomography ; toxicity ; tractography ; 
tumor ; white matter ; cytometry 
  - human-related applications: 
balancing  ; behavioral ; body postures ; celebrity ; crowd analysis ; crowd behaviour ; driver 
models ; ear recognition ; emotional ; face ; facial ; finger detection ; gesture ; hand gesture ; 
handwrit ; Handwriting ; human actions ; human activity ; human movement ; human part ; human 
pose ; multi-touch ; online purchase ; pedestrian ; sign language ; speech ; speech recognition ; 
surveillance ; traffic ; urban area ; urban environmental ; urban scenes ; urban stree* ; privacy ; 
guidance ; fingerprint 
  - non-industrial applications and non-MVS industrial applications: 
HEVC ; spores ; image restoration ; Hyperspectral ; accelerometer ; aerial images ; aerodynamic ; 
agriculture ; air quality ; airborne ; animal ; animation ; archaeology ; Astronomy ; audio ; 
Autonomous vehicles ; barley ; BIM ; biological  ; broccoli ; bunn ; canvas ; canvases ; cartographic ; 
cellular ; chemical sensor ; cinema ; clothing ; collision ; cultivated ; customer ; dentistry ; dried figs ; 
drying ; egg ; energy ; engine test ; forecast ; fruit ; Galactic ; Galaxy ; Geographic ; geospatial ; 
gyroscope ; harmonic ; horticulture ; hydraulic ; hydrological ; hydrophobicity ; impedance ; insect ; 
landmarks ; landscape ; landslid* ; language identification ; leaves ; line balancing ; magneto-
optical ; meteorolog* ; microscope ; microscopic ; microscopy  ; music ; Navigation; PID control; 
potato ; power transformer ; RFID ; risk ; road-vectorization ; rocks ; satellite ; schedule ; 
scheduling ; seismic ; smart grid ; soccer ; sonar ; sound ; substation ; supplying ; Text detection ; 
Text recognition ; transformer faults ; transmission lines ; ultrasonic; vibration ; voltag* ; Waldo ; 
wastewater ; water distribution ; water quality ; web ; wood ; yarn 

- Measurement MVS: 
LiDAR ; radar ; superresolution;  Laser ; measurement 

Inclusion Criteria 
Keyword selection according to related articles of previous review and surveys 
Search combinations only between different groups: 
  - "Keywords Group IQC" AND "Keywords Group MV" 
  - "Keywords Group IQC" AND "Keywords Group AI" 
  - "Keywords Group AI" AND "Keywords Group MV" 
Keyword matching only in Abstract, Title or Main Keywords of papers available through Scopus 
dataset, covering the period between 2006 to 2018 
Document types searched: 
 - Article - " ar ";   - Conference Proceedings - " cp ";  - Conference Review - " cr ";  - Review - " re " 
Example of search string :  
TITLE-ABS-KEY ( ("AI") AND ("MV") ) AND  PUBYEAR  >  2005  AND  PUBYEAR  <  2019  AND  
( LIMIT-TO ( DOCTYPE ,  "cp" )  OR  LIMIT-TO ( DOCTYPE ,  "ar" )  OR  LIMIT-TO ( DOCTYPE ,  
"cr" )  OR  LIMIT-TO ( DOCTYPE ,  "re" ) )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) ) AND NOT 
("Exclusion Keywords List") 
Document language: English 
Search Results Dataset Information 
Search output format in the Research Information Systems (RIS) format containing the following 
information’s:  
Author, Title, Publication Year, Document Type, Serial Identifiers, and Abstract. 

Source: The Author.
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This publication period was chosen to provide an overview of how each pair of 

keyword group behaves over the years. The keyword exclusion criteria were based on 

keywords extracted from Silva et al. (2018) paper that already detected a significant 

number of articles non-relevant to the study objectives. Keywords related to medicine, 

human features, non-industrial, or other applications were considered in the exclusion 

filter. Table 2 resumes the inclusion and exclusion criteria applied in this paper.  

The output of each search result was exported in the Research Information 

Systems (RIS), containing the following information about the articles: Authors, Title, 

Publication Year, Document Type, Journal or Conference Name, Serial Identifiers, 

main Keywords, and Abstract. These output files were converted into an organized 

datasheet. All the search results were unified into a single datasheet adding the 

information of the pair of keyword group search string. Table 3 shows an example of 

the simplified datasheet output, but the main file output file contains twelve columns 

for authors and more than fifty columns for keywords for each tile. 

Table 3 - Output datasheet format and relevant columns used in the next steps. 

SEARCH 
GROUP 

PAIR 

A
U

T
H

O
R

 1
 

A
U

T
H

O
R

 2
 

TITLE 
PUB 

YEAR 
ABSTRACT 

DOC 
TYPE 

K
E

Y
W

O
R

D
 

1 

K
E

Y
W

O
R

D
 

2 

IS
S

N
/ 

IS
B

N
 

JOURNAL/ 
CONF NAME 

AI+IQC a1 a2 
Title 

Example 
2017 

Full Abstract 
Example 

CONF k1 k2 
ISSN/ 
ISBN 

Proceedings 
name 

Source: The Author. 

The combined search results totalized 24.608 articles after removing duplicate 

values. Duplicate results that were found in more than one different search group were 

labeled as ‘AI+MV+IQC’. Figure 12 shows the number of papers published over the 

years after the removal of the duplicate value. Between 2006 and 2009 there was a 

significant increase in articles related to the ‘AI+MV' group and another increase after 

2014. The ‘AI+IQC' and ‘IQC +MV' does not present any major increase in publications, 

but the themes remain steady over the years.  The ‘AI+MV+IQC' theme has a less 

significant number of published articles, but its interest increased over the years 2016 

and 2017. 
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Figure 12 - The number of publications between 2006 and 2018 distributed into the research 
group combinations. 

Source: The Author. 

Step 2. To provide a better insight into what is currently being developed in each 

area, it was assumed that the recent papers in the last 5 years contain the most 

relevant and updated information. A filter was applied considering only publications 

between the year 2013 and 2018 resulting 13029 remaining papers. 

 Step 3. The next step of data extraction is based on a new keyword group. 

These groups are review or survey (RorS) keywords, AI techniques, and the 

Method/Model-Framework-Architecture (M/M-F-A) as shown in Figure 13.  

Figure 13 - Filtering criteria for title reading. 

Source: The Author. 
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RorS keywords analysis can give a very accurate filtering step for what is 

currently being developed since paper objectives are to provide an overview of each 

subject. The presence of M/M-F-A keywords provides insights about which is the focus 

solution, which may be related to a specific or general solution. The concept of method, 

framework, model, and architecture is based on Van Bon et al. (2007) definitions. A 

method is normally related to an approach that achieves a specific result, while a 

framework is an organized combination of methods. Different frameworks can be built 

based on the same model. Models provide a conceptual or schematic representation 

of a real system. Architecture can be considered a physical process and product or a 

combination of multiple frameworks. 

AI techniques were divided into 3 groups to find more specific information about 

AI MVS. The first group is the Artificial Neural Network (ANN) Group, which has a 

common set of techniques applied to computer vision. The second group is composed 

of the common computer vision feature extraction techniques. The second group alone 

does not have AI characteristics, but it can be combined with them. The last group is 

composed of all other AI techniques. Table 4 shows the list of the groups and its 

respective keyword set. 

Table 4 - AI techniques divided by group. 

ANN Group Feature Extraction Techniques 
ANN ; Artificial Neural Network ; CNN ; 
Convolution ; Convolutional Neural Network ; R-
CNN ; Deep Learning ; Machine Learning 

ORB ; SIFT ; SURF ; Template Matching 

Other AI Techniques 
Automatic Encoder; Automatic Encoders ; Bayesian ; DBN ; Deep Belief ; Deep Belief Network ; EML ; 
Encoder ; Extreme Machine Learning ; Fuzzy ; Genetic Algorithm ; MLP ; Multi Layer Perceptron ; 
MultiLayer Perceptron ; Recursive Neural Network ; Recursive Neural Tensor Network ; Reinforcement 
Learning ; Restricted Boltzmann machine ; RNTN ; Support Vector Machine ; SVM ; Swarm Intelligence ; 
Swarm Optimization ; RBM 

Source: The Author. 

An analysis of the AI techniques group alone shows that 6582 articles do not 

have any keywords of the groups above in their title or abstract. The second most 

relevant value is the ANN group, which confirms the predominance of these techniques 

applied to MVS. Other AI techniques and its combination with the ANN group has a 

fewer article published, but its relevance should not be dismissed in the following filter 

steps. Figure 14 shows the number of publications according to each technique group. 
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Figure 14 - Number of publications according to each technique group. 

Source: The Author. 

RorS keyword group combined with M/M-F-A analysis is shown in the left 

graphic in figure 8. Most of the reviews and surveys performed are related to methods, 

followed by a combination of models and methods and models alone. Based on these 

insights, more specific solutions are more likely to be found rather than schematic 

representations of the solution. It can also be observed that RorS results are strongly 

related to the ANN group, based on the graphic in the right of Figure 15. 

Figure 15 - Review and Survey number of publications divided by M/M-F-A (a) and divided by 
technology (b) 

Source: The Author. 

The title reading and abstract reading selection and exclusion criteria were 

based on the information extracted from the previous analysis. Table 5 resumes the 

selection criteria and the exclusion criteria before title reading step. 
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Table 5 - Selection and Exclusion Criteria 

Selection Criteria  
All the papers within the RorS group; 
Papers with specific contributions to the ANN group applied to MVS/computer vision; 
Papers with other AI solutions applied to MVS/computer vision; 
Papers with ANN group and other AI solutions applied to MVS/computer vision; 
Solutions containing Model and Frameworks keywords for AI and MVS; 
Papers with insights on how AI methods and models are being validated; 
Papers with insights into how-to setup AI model parameters. 
Exclusion Criteria 
Papers which did not belong to any of the keyword groups: RorS, M/M-F-A or AI 
techniques. 
AI applied to quality control that is not related to MVS. 
Papers  

Source: The Author. 

Step 4 and 5. While applying the first exclusion criteria, 3420 papers were 

removed, remaining only 9609. All these papers were subject to the selection and 

exclusion criteria, and 8631 articles were removed during title reading phase, and 650 

were removed during the abstract reading step. The remaining 328 papers were 

selected for the complete paper reading phase and content analysis. Table 6 resumes 

the filtering steps between title selection to abstract reading. 

Table 6 - Filtering steps between title selection to abstract reading resume. 

Status Title Count 
Not selected for Title Reading 3420 
Removed during Title Reading step 8631 
Removed during Abstract Reading 650 
Selected for complete paper reading 328 
Total 13029 

Source: The Author. 

3.2 Content Analysis 

Step 6. While reading the 328 selected papers, a common structure was 

detected. This pattern can be used and divided into main knowledge groups, which are 

commonly found in almost every paper. An evaluation model of the AI integrated MVS 

solution is proposed by the authors, and it is built based on 6 knowledge groups found: 

MVS solution type, AI techniques for MVS, AI Training, Validation Metrics, 

Hyperparameters, and Hardware. Figure 16 shows the proposed evaluation model with 

the knowledge groups mentioned above. 
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Figure 16 - The proposed evaluation model for complete title reading divided by subgroups. 

Source: The Author. 

All selected papers were evaluated under the following criteria that were applied 

during the full article reading step. Table 7 details the criteria that refine content 

analysis.  

Table 7 - Detailed criteria for each subgroup in the proposed evaluation model. 

Group Criteria Description 

MVS Solution 
Type 

Papers which has the main application in Object Recognition, Image 
Classification, Image Labelling, Object Classification, and Semantic 
Segmentation; 

AI technique for 
MVS 

Papers which has detailed information about AI technique applied 
for the solution: Example ML, DL, ANN, CNN, R-CNN, SVM 

AI Training 
Papers with clear and detailed information about the training type, 
dataset source or dataset improvement; 

Hyperparameters 
Papers with a clear and detailed explanation of the framework, 
dataset or layers parameters; 

Validation Metrics 
Papers with a clear and detailed explanation of the metrics used to 
validate the developed solution; 

Hardware 
Papers with clear and detailed information about the hardware used 
to train or the hardware used to deploy the trained model; 

Specific Criteria 

- Review and Survey – Relevant papers containing review and 
surveys applied to image classification, object detection or 
improvement of ML, DL, ANN or CNN techniques were kept; 
- Articles containing ML and DL architectures or framework with 
potential solutions to improve existing classification and detection 
techniques were also kept. 

Exclusion Criteria 

- Papers that contain only theoretical solutions without details of 
implementation  
- Papers with specific techniques or very exclusive solutions 
- Papers with a mathematical approach without solution validation. 

Source: The Author. 
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The result of this step resulted in 98 potential articles to be fully evaluated by 

the proposed model. The remaining 230 papers were removed because they were 

included in the previous exclusion criteria, which removes specific solutions, papers 

with theoretical or mathematical approach without a detailed validation or application.  

The complete evaluation has the objective to identify what is the contribution 

type regarding the AI perspective and MVS perspective. It also assesses what types 

of training, which kind of dataset and if there are any type of improvement with the 

training material. It also verifies if the has a workflow or diagram detailing how the 

proposed solutions are applied, verifying whether the hyperparameters are used or 

not. Validations metrics are also included in the assessment to verify if the paper 

informs if the solution was validated and which metrics were used. A solution can be 

validated to see how it classifies an image and whether it can detect the location of an 

object in a crowded environment of different objects. Metrics regarding how much time 

it is necessary to train an AI model and what it is performed after the model is deployed 

for inference. Model training and inference are directly related to the hardware used. 

The evaluation model verifies if the papers inform which hardware is used for both 

types of hardware. Some papers like reviews and surveys may not be subject to the 

non-applicable option. Table 8 provides detailed evaluation fields. 
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Table 8 - Detailed fields of how the papers were evaluated.  
A

 T
E
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IQ
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S

 

Paper 
Contribution 

Type 

Review - Survey 

H
Y

P
E

R
- 

P
A

R
A

M
E

T
E

R
S

 

Layer 
Parameters 

Informed or  
Non-informed/ Non-
Applicable 

Minor Improvements of 
existing Technique Workflow/ 

Diagram 
Optimization or Tuning 

Convolution/Filters 
/Pooling/Functions 
Improvement 

V
A

L
ID

A
T

IO
N

 
M

E
T

R
IC

S
 

Classification 
Accuracy 

Informed or  
Non-informed/ Non-
Applicable 

M/M-F-A Variation/ 
Improvement 

Localization 
Accuracy 

Main 
Technique 

R-CNN Time to Train 

CNN 
Deployed 
Solution 

Performance 
Other 

M
V

S
 S

O
L

U
T

IO
N

 
T

Y
P

E
 

Classification and Localization 

A
I 

T
R

A
IN

IN
G

 

Supervision 
Type 

Supervised Classification 

Unsupervised 
Semantic Labelling/Semantic 
Segmentation 

Semi-supervised M/M-F-A Optimization 

Non-informed/ Non-Applicable 
Localization/ Detection/ Object 
Extraction 

Dataset 
Source 

Standard and Custom Other 

Standard 

H
A

R
D

W
A

R
E

 Training 
Informed 

Custom 
Non-informed/ Non-
Applicable 

Non-informed/ Non-Applicable 

Embedded/ 
Inference 

Informed - Same as 
Training 

Dataset 
Improvement 

Informed 
Informed - Different 
from Training 

Non-informed/ Non-Applicable 
Non-informed/ Non-
Applicable 

Source: The Author. 

The main AI techniques used was CNN with 46 papers. Other AI techniques and 

R-CNN resulted in 26 articles each. It can be observed that CNN is the core technique, 

and R-CNN has significant importance for MVS applications. Despite that, other AI 

techniques are still being researched for image applications, and these methods can 

also be combined with the existing techniques to provide new frameworks with better 

performance of the existing ones. The most common MVS solution type is 

Classification for CNN and Localization, followed by Classification for R-CNN. The 

main type of AI contribution detected is focused in slight variations of existing 

techniques. M/M-F-A with large variations and new proposals for improvements is the 

second most published AI contribution type. Figure 17 resumes the AI and MVS 

contributions type. 
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Figure 17 - AI contribution (a) and MVS solution type (b) results. 

Source: The Author. 

Regarding AI training, supervised training with standard image dataset without 

any data augmentation process is the most common method. But there are still articles 

which did non-informed any information related training. A standard dataset is used in 

online challenges so users can evaluate and compare their solution performance with 

other existing methods. Custom datasets with augmentation and improvement 

techniques are used in case of the standard dataset does not meet the desired 

detection. These techniques are used in case of the standard dataset does not meet 

the desired detection capacities. Figure 18 resumes the AI training evaluation for 

supervision type and dataset source. 

Figure 18 - Supervision Type and data source results. 

Source: The Author. 

Figure 19 shows the result for dataset improvement during AI training 

evaluation. 
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Figure 19 - Dataset improvement results. 

Source: The Author. 

Classification metrics are informed in most of the analyzed cases. Only in some 

types of AI techniques which the main goal was not classification the evaluation 

considered them non-applicable. In the other way, Localization metrics were not found 

in most of the cases. This can be observed in a CNN architecture which is used only 

for classification of the whole image so localization metric cannot be applied. Some R-

CNN solutions consider an in-built localization algorithm or method, but it does not 

evaluate its performance later. Figure 20 resumes if classification and localization 

metrics were applied in the evaluated papers. 

Figure 20 - Classification (a) and Localization (b) metrics. 

Source: The Author. 

Performance metrics related to time to train and the deployed solution 

performance was not detected in most of the cases. The time to train may affect the 
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capacity of replicating a newly developed model which may rely on powerful training 

hardware or an expensive cloud-based solution so it can be properly trained. The 

performance of a deployed solution is also important because depending on how 

complex the model is, it would require a better processing capacity to operates in real 

time inference solution. Figure 21resumes training and inference metrics were applied 

in the evaluated papers. 

Figure 21 - Time to train (a) and deployed solution performance (b) metrics results. 

Source: The Author. 

Most of the analyzed studies provide workflow or diagram of the chosen AI 

solution. The presence of these diagrams reinforces the need for a clear overview of 

how an AI complex method or framework is organized. Layer hyperparameters are also 

well described in most of the cases, except for other AI techniques that are not based 

on ANN which organize neurons into layers. Figure 22 shows the results for layer 

hyperparameters and diagram or workflow presence. 

Figure 22 - Presence of Workflow (a) and Layer Parameters (b) results. 

Source: The Author. 
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It can be verified that 59 from the 98 cases did not inform the hardware used for 

training the AI algorithm. Training a complex AI algorithm normally requires better 

hardware with GPU acceleration, so the lack of this information in the papers increases 

the difficulty to replicate a solution. Embedded hardware for the AI algorithm 

deployment, also known as inference, was not mentioned in 64 cases. Just like the 

training hardware, embedded hardware will limit the complexity of the deployed 

solution. Although the processing power needed for inference is lower than the training 

hardware, the absence of this information affects the ability of the solution be validated. 

Figure 23 resumes training and embedded hardware were applied in the evaluated 

papers. 

Figure 23 - Presence of training hardware (a) and embedded hardware (b). 

Source: The Author. 

3.3 Content Analysis Contributions 

Step 7. The final step resumes the 17 relevant papers extracted from the 98 

analyzed papers that met most of the criteria's applied above or new approaches that 

provide better solutions to AI MVS. Table 9 resumes the content analysis final step, 

considering each contribution found in the selected paper and some insight for future 

developments that were not considered in the papers. 
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Table 9 - Content Analysis Resume. 

Ref. Contributions Main Insights for Future Development 

Yan et al. 
(2018) 

Propose a Spatial Alignment Network (SAN) which replaces the Region Proposal Network 
(RPN) used in R-CNN techniques. 

Used the same type of hardware for training and inference. 

Increase training speed and inference without major loss classification accuracy Embedded hardware was not used. 
Use the concept of Atrous Convolution Mentions state-of-the-art techniques, but its performance 

comparison was not performed.  Fulfill almost all criteria proposed by this evaluation model. 

Liu et al. 
(2016) 

Propose the SSD framework for fast object detection without reducing classification 
accuracy. 

Used the same type of hardware for training and inference. 

Provide inference performance and classification accuracy comparison with state-of-the-
art approaches and different datasets  

 

Use Atrous Convolution and data augmentation 
Embedded hardware was not used.   

Fulfill almost all criteria proposed by this evaluation model. 

Puttemans 
et al. 
(2018) 

Use transfer learning concept along with a pre-trained model based on a standard 
dataset. 

Localization metrics was not applied. 

Use fine-tuning, custom dataset, and data augmentation to create new refined object 
class. 

Training time and inference performance were not 
measured. 

Use the Recall-Precision curve as classification metrics Used the same type of hardware for training and inference. 
The solution is structured for embedded applications. Embedded hardware was not used.     

Li et al. 
(2017) 

Propose a model that reduces the RoI generation time required for a trained R-CNN 
during inference. 

Used the same type of hardware for training and inference. 

Use Recall-Intersect of Union (UoI) curve as classification and localization metric.  
Embedded hardware was not used.    

The solution is structured for embedded applications. 

Yu, S. et 
al. (2017) 

Use 3D models to automatically create a custom multi-pose dataset 2D dataset. Used the same type of hardware for training and inference. 
Integrate several customized datasets. Embedded hardware was not used. 

Perform a two-stage object classification: Coarse and fine-grained 
Inference performance was not measured should be 
validated for the two-stage classification 
Localization metrics was not applied. 

Chen et al. 
(2018) 

Propose new improvements for the standard RPN. Used the same type of hardware for training and inference. 
Unify classification layer and regression layer to reduce model complexity and 
accelerating training and testing speed. 

Embedded hardware was not used. 

Use Recall-Intersect of Union (UoI) curve as classification and localization metric. 
Mention high-speed inference state-of-the-art techniques, 
but its comparison with state-of-the-art techniques was not 
performed. 

Yao et al. 
(2018) 

Propose a network to learn the coexistence feature of multi-class objects detection to 
improve the classification. 

Embedded hardware was not used. 
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Ref. Contributions Main Insights for Future Development 
May be used in an environment with many overlapping objects or pair of objects that are 
usually nearby each other, improving the classification.  

Inference performance must be validated for the two-stage 
classification 

Use data augmentation Could be used for fined-grained classification.  

He (2017) 

Propose a channel pruning method to remove redundant filters during the convolutions. 
Requires fine-tuning to achieve maximum acceleration 
performance with a lower error rate. 

Channel pruning that accelerates inference speed without a great loss in classification 
accuracy CNN and R-CNN  

Used the same type of hardware for training and inference. 

  Embedded hardware was not used.   

Sun, Zhun; 
Ozay, 
Mete; 
Okatani 
(2016) 

Analyze the effects of quasi-hexagonal shapes of convolution kernels instead of square 
shape. 

R-CNN frameworks were not evaluated with this method. 

Propose a feature visualization method for visualization of pixel-wise classification score 
maps of learned features. 

Did not inform hardware for training and inference. 

Reduce the number of parameters and computational time of CNN models. 
 The method improves detection accuracy, but localization 
metrics were not applied in this paper. 

Improve the robustness of the baseline models to occlusion for classification of partially 
occluded images. 

  

Zhanquan; 
Fox (2012) 

Propose a Support Vector Machine with the customized dataset to replace the softmax 
layer and improve classification accuracy. 

R-CNN frameworks were not evaluated using this method. 

Consider the effects of training time for each change performed in the framework and its 
effects on accuracy. 

Used the same type of hardware for training and inference. 

Kolesnikov
; Lampert 
(2016) 

Improve object localization cues (seeds) by incorporating a CNN with a semantic 
segmentation network. 

R-CNN frameworks performance were not compared with 
the proposed method. 

Uses a globally weighted rank pooling that combines max-pooling and average pooling. Inference performance was not measured 
Use conditional random fields (CRF) to reduce imprecise boundaries.   

 
Hu et al. 
(2017) 

Combine CNN Saliency with a CNN localization with data augmentation into a single 
framework. 

Did not inform hardware for training and inference. 

Use Recall-Intersect of Union (UoI) curve as classification and localization metric.    

Zhang et 
al. (2018) 

Propose the Rotation Invariant Local Binary Convolutional Neural Network. Did not inform hardware for training and inference. 
Use binary weights and rotating convolution filters to increase detection capacity and 
decrease processing power. 

Did not provide localization metrics or performance metrics 
during inference and training. 

The concept can be adapted to CNN and R-CNN to reduce the number of learned 
parameters 

  

Yin et al. 
(2018) 

Evaluate inference classification precision of several object detection R-CNN techniques 
in embedded hardware different from the hardware used for training the model 

Localization metrics was not measured. 

Compare the classification precision, mode, the image input size, model hyperparameters 
size and the embedded hardware performance during inference 

The time required for training of each model was not 
provided, although the lighter model is usually faster to train. 
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Ref. Contributions Main Insights for Future Development 
Use the pruning filter and then fine-tune the model.   

Li et al. 
(2018) 

Propose an ensemble R-FCN model by combing multi-scale inference, with more feature 
extractors and data augmentation 

Did not inform hardware for training and inference. 

Propose model that adapts to multi-scale object detection 
Did not provide localization metrics or performance metrics 
during inference and training. 

Zhiqiang; 
Jun (2017) 

Provide an overview of CNN and R-CNN main techniques up the first half of 2017. 
Did not provide information about hardware for inference 
and training 

Give a brief explanation of the structure of each network and the back propagation 
learning mechanism 

Did not provide performance metrics of each evaluated 
technique 

Provide a Precision-Recall classification metric 
Did not provide detailed hyperparameter information. Give the most common standard datasets used for model evaluation. 

Provide details for the Intersection Over Union (IOU) localization metric 

Zhao et al. 
(2017) 

Provide an overview of different frameworks using CNN and R-CNN techniques for fine-
grained classification and semantic segmentation with a detailed workflow and accuracy 
validation for each proposed solution 

Did not provide information about hardware for inference 
and training 
Did not provide performance metrics of each evaluated 
technique 
Did not provide detailed hyperparameter information. 

Source: The Author
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The most relevant AI technique for MVS is CNN for image classification and R-

CNN for object detection [5], but research trends show that those techniques are being 

combined with other AI techniques to optimize hyperparameters (Li et al., 2018), 

improve classification accuracy (Zhanquan; Fox, 2012), object localization precision 

and reduce the computational processing power (Li et al., 2017), low weight 

frameworks and pruning techniques to remove redundant parameters (He, 2017). 

Multi-class detection and classification of complex images challenges are being 

overcome by two-step classification models with coarse and fine-grained classification 

(Yu. et al., 2017) (Zhao et al., 2017) and by using correlation information of nearby 

objects (Yao et al., 2018). To increase classification accuracy and reduce model 

complexity, some solutions perform significant changes in convolution filter shapes and 

weights. Semantic segmentation techniques (Kolesnikov; Lampert, 2016), (Zhao et al., 

2017) are also being incorporated to standard CNN and R-CNN to provide better 

classification and object localization 

Supervised training using standard dataset available in internet communities is 

the most common procedure adopted by researchers, mostly because they provide a 

common ground to evaluate algorithms performance. Researchers who desire to 

implement their solution in a specific application, such as machine vision inspection, 

may use pre-trained models with a standard dataset and fine tune them by using data 

augmentation to achieve better results, creating their own custom dataset. Yu et al. 

(2017) proposed a solution which uses an algorithm that transforms 3D files to create 

a multi-pose 2D custom image dataset to increase model classification robustness and 

can be used in an industrial scenario which already has a 3D digital version of its 

products.  

The most common metric used to validate a model is Mean Average Precision 

(mAP) for simple classification algorithms when inference speed is not required. 

Classification only algorithms may also use the Precision-Recall curve, which provides 

a wider overview of the algorithm classification performance (Puttemans et al., 2018), 

(Zhiqiang; Jun, 2017). Object detection solutions use Recall-UoI curve, which 

evaluates its capacity to detect the object location and its class (Chen et al., 2018), 

(Hu et al., 2017). The time required for training models and the number of images 

analyzed per second during inference are metrics that are beginning to be used by 

researches (Yan et al., 2018), (Liu et al., 2016) due to its necessity to make solutions 
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more readily available and match video frame rate speeds for real-time detections. Yin 

et al. (2018) were one of the few researchers that provided different embedded 

hardware for inference instead using the same hardware for training. MVS integrated 

with AI solutions should be considered this specific embedded hardware approach 

since existing MVS solutions rely on a plug and play solutions without sophisticated 

hardware or training servers spread over the factory. 

During the paper reading, it was not found an implementation model that 

provides information to integrate AI models in the current Machine Vision Inspection 

scenario regardless of the chosen AI technique. Based on the main contributions and 

insights of the chosen papers, an implementation model is proposed to integrate these 

new AI solutions into the MVS.  

The proposed model gathers all the visual inputs and results in outcomes from 

other inspection and creates a merged dataset. To integrate the new AI functionalities, 

a stable training environment, with validated programming libraries, must be created 

that is compatible with GPU-powered hardware either for training or for inference.  

A machine vision expert must be trained to incorporate the AI programming new 

functionalities or a team with machine vision experts and AI programming must be built. 

This staff or team can be also be obtained from a third-party company depending on 

the size and budget availability of the industry. This team will analyze the visual dataset 

and will select the most suitable algorithm and apply any necessary modification that 

is compatible with the available training and embedded hardware. This algorithm 

should be validated in the training hardware considering all the classification, 

localization, and performance metrics already mentioned in this paper. 

 After the algorithm is validated in the training hardware, it should be validated 

in the industrial environment, using embedded hardware integrated with the camera. 

Algorithm refinement, hyperparameters optimization, and fine-tuning may be required 

to make the whole solution available for the embedded hardware. The solution must 

be validated in the industrial environment in order to achieve satisfactory output and to 

be easily integrated with the assembly line or inspection routines. The outputs from the 

inspections performed by the algorithms should also be stored together with the 

training image inputs to allow new architecture creations and evolve the existing ones. 

 Due to the constant evolving of algorithms, method, frameworks, and 

architectures the proposed model suggests the creation of a platform that will integrate 
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all the functionalities already mentioned into a single AI Machine Vision Management 

System. This platform will allow users to create the AI solutions, modify existing ones, 

evaluate and compare solutions performance, integrate new frameworks with new AI 

techniques, perform fine tuning, create ensemble architectures and apply transfer 

learning of already trained models into new ones. It should also allow users that are 

not familiar to machine vision or AI programming to interact with the system, facilitating 

its integration with quality expert users and plant managers. 

4 PROPOSED MODEL 

The implementation model proposed by this document is based on the 

systematic review and content analysis discoveries. It is developed in a straightforward 

workflow composed of four main groups. The main groups were divided into specific 

subgroups describing the main aspects of technical background to develop user 

knowledge and reduce process uncertainties. Each subgroup contains relevant 

information that allows the reader to understand what should be considered in each 

one of the implementation steps. The purpose of the model is not an automatic 

selection of AI MVS technologies since each industrial inspection scenario has its own 

characteristics, requirements, and specification.  

The model should be considered as an iterative workflow, despite its 

straightforward development. It is recommended that the user go back and forward in 

the model while gathering requisites, selecting possible solutions, and validating into a 

real case scenario. Many technical requisites or new premises are found during the 

implementation steps. Every new requisite and premise should be evaluated and 

included in the AI MVS, improving its robustness of the complete solution. 

4.1 AI MVS Implementation Model  

The proposed AI MVS implementation model, as shown in Figure 24, is divided 

into four major groups.  
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Figure 24 - The proposed AI MVS implementation model divided into the main group and its 
subcategories.  

Source: The Author. 

The first group is related to industrial inspection requirements (IIR). The second 

one is related to the artificial intelligence assessment (ASA). The third group is CNN 

specific details. This group is referred to only one type of AI possible applications, but 

it is the most relevant techniques currently being applied to image-based inspections. 

The last group is the AI MVS Management (AI-MNGT) that describes how the solution 

should be managed after the first three groups are implemented and validated. 

4.1.1 Industrial inspection requirements (IIR). 

The purpose of the IIR group is to assure that all requisites are correctly 

gathered and analyzed.  These steps help the solution to fulfill the requisites from the 

quality control perspective (1. Quality Control Assessment), MVS technical constraints 

and industrialization requirements (2. Scene Constraints and 3. Technical Constraints 

Assessment). Figure 25 shows each activity of the IIR group with its description and 

details. 
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Figure 25 - IIR group with its main activities and simplified descriptions. 

Source: The Author. 

IIR-1.   Quality Control Assessment 

Quality control assessment is the first stage that a user must consider before 

selecting, installing, or purchasing any MVS solutions.  This stage defines which are 

the quality control priorities, whether there are quality indicators or indirect evidence, 

whether these problems can be visually inspected. 

IIR-1.1.   KPI or Indirect Evidences Gathering 

The main purpose of this activity is to relate to KPI’s or indirect quality evidence 

with potential inspections. One must gather evidence of quality problems that affect 

the outcomes of a product or a process, whether it is a problem of high impact on the 
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final product or a problem that occurs frequently. A list must be created to identify 

potential quality problems that may be subject to visual inspection. 

This step is not mandatory, but it increases the probability of the MVS 

investment payback and effectiveness. It also avoids random MVS placement around 

the factory without any valid pieces of evidence that the inspection may improve 

product quality outcomes. 

IIR-1.2.    Visual Inspection Applicability and Accessibility Check 

Right after the potential quality problems list is created, it is necessary to check 

if there is a link between the source of the quality problem and possible visual 

inspection. There are quality problems whose source or the primary cause cannot be 

subject to a visual inspection to mitigate or reduce the incidence of this problem. After 

this link between the problem and visual inspection is made, the potential candidate's 

list is narrowed down to problems that can be visually inspected. 

Another important aspect is the visual accessibility for inspection to be 

performed. Sometimes the problem can be visually identified, but there is no access 

for the equipment to be positioned or the right angle necessary to check that specific 

characteristic. This is a preliminary accessibility check because later in this model, 

there are some steps which will act as significant accessibility restraints and may turn 

the visual inspection technically unfeasible. Some MVS components, such as robots 

and complementary illuminations equipment’s may not fit into the available inspection 

space.  

In the case of multiple potential candidates, further investigation must be 

performed considering the MVS implementation costs, potential quality gains, and 

technological limitations. 

IIR-2.   Scene Constraints Assessment 

Scene constraints assessment is the second stage in the model. This stage 

defines which are the main inspection problem types, identifying the smallest feature 

size to be detected and how the image background complexity may affect the MVS 

performance. 

IIR-2.1.    Inspection Type Definition 

The objective of this objective is to define which are the main types of inspection 

problem. There are several types of inspections, and each one of them has its own 
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characteristics, which may affect the MVS hardware selection, image processing 

techniques, and AI technique. Common inspection problems are, e.g., physical 

damage, missing part, flaws, scratches, knead, incorrect part, incorrect assembly, 

product/part diversity check. Complex inspections may have more than one type of 

inspection to be performed with the same image or MVS equipment.  

It is recommended to take some images of each detection type and link with 

each item in the visual inspection problem list.  

IIR-2.2.    Verify the smallest feature size to be detected 

Some defects and quality problems can be so small that they require a 

magnifying lens or digitally enhanced images to make the inspection possible. Its 

import to provide the approximate size of the feature to be detected. This will allow an 

appropriate lens selection and what should be the distance between the MVS 

equipment and the inspected part. When a small feature is represented only by a few 

pixels, some MVS sensors or image processing techniques might not behave correctly. 

IIR-2.3.    Image Environment and Background Complexity 

 Depending on where the MVS will be installed, it is essential to know what it’s 

the environment the image will be taken along with the rest of the image, as known as 

background information, that will not be subject to any inspection but will affect in the 

outcomes. In this step, one must check the potential location for the image MVS 

location, whether it will be internal or external.   

Lighting environment conditions must also be verified because most of the MVS 

sensors are light sensitive, and most of them are not so adaptable as the human eye. 

Controlled lighting environment together with complementary illumination system can 

be an option for an internal MVS. Even in indoor facilities are subject to slight light 

fluctuations causing system malfunctioning (Gonzalez; Woods, 2008). External MVS 

must consider environmental effects of rain, fog, daylight, and night sensitive sensor 

depending on the application type. 

Background complexity such as object occlusion, a color similarity between the 

inspected object and the background, and reflective parts must also be verified. 

Background information, if not considered, may also affect the detection performance. 

Light reflection problems may be solved by using a polarized lens. One way to reduce 

background complexity is to apply a known background through a controlled 
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environment solution. When this is not possible, the user must look for alternative in 

the image processing and available AI techniques. 

IIR-3.   Technical Constraints Assessment 

Technical Constraints Assessment is the last stage of the IIR group. This stage 

helps to define where the MVS will be located, whether the MVS will be on a fixed or 

moving location, define the main MVS components and its complementary 

functionalities. 

IIR-3.1.    Define MVS Location 

MVS location will be based on the scene constraints definitions and the visual 

inspection applicability and accessibility check. The user must evaluate all the 

gathered data and choose a location which makes visual inspection possible, 

minimizing environmental and background adverse effects. This location must be 

validated with the several departments of the factory because the MVS equipment may 

interfere with an existing process, existing equipment or it may require factory 

modifications which could turn MVS technically or financially unfeasible. 

IIR-3.2.    Fixed or Moving Camera 

To define if an MVS will be stationary or subject to movement may affect in the 

number of the cameras required to perform an inspection. Using stationary cameras 

reduces the necessity of camera integration with other equipment responsible for the 

movement, but it provides a limited view. In some cases, multiple fixed cameras may 

be used instead of one moving camera. 

Using a camera attached to moving equipment may enable the new field of 

views with improved detection possibilities at the exchange of increasing integration 

complexity and complementary equipment cost. Cameras may be attached to, e.g., 

camera lens zoom, a servo motor or stepper motor or robot. Moving cameras that are 

subject to sharp movement may suffer from equipment vibration or a blurring effect 

related to extended exposure time while the camera was in motion. All these 

constraints must be dealt with before equipment purchase.  

IIR-3.3.    Machine Vision Component (MVC) 

A machine vision is composed of several components, such as sensor type, 

lens, controlled lighting, and environment kits. Defining the correct MVCs will directly 
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affect the inspection outcomes. Specialized companies in camera systems usually 

provide manuals and technical specifications to help final users to choose the best 

option. They also have a communication channel with a specialized staff which 

provides technical assistance during this phase. When most of the technical requisites 

are correctly gathered, it will allow a better selection of the MVCs.  

Sensors. Sensors receive light from the inspected object. This light passes a 

light-sensitive sensor such as a charge-coupled device (CCD) or a complementary 

metal-oxide-semiconductor (CMOS). These sensors can be manufactured to detect 

specific light wavelengths. There is a sensor which captures visible light spectrum 

(Red, Green, Blue) or a specific infrared spectrum. Night vision and thermal imaging 

sensor are an application using specific wavelengths of the infrared spectrum. [41] 

Theses sensor receives light and measures luminous packages from time to 

time with that information a numeric pixel intensities value is given, this phenome is 

known as quantization. Typically the pixel is 8 bit long, which allows 256 combinations 

of light. [41] 

Lens. There is three application to a lens in an MVS. The first one is to modify 

the lens magnification effect and its field of view. The second application is to filter a 

determined type of wavelength, also known as colored filters. They allow only a specific 

light wavelength range. The third application is the polarity lens filter. 

Controlled Lighting Kit’s. When environmental light does not deliver 

satisfactory outputs, controlled lighting kits are necessary to control the lighting 

conditions locally. These kits can provide specific light inputs to highlight some defect 

type , to provide inspection conditions for low light scenarios or to combine the effect 

of some light spectrum with a colored filter lens. Light exposure time, intensity, and 

specific wavelength output are some of the control options in a kit. 

Controlled Background Kit’s. There are solutions to provide a known color 

background can be applied to combine with image processing techniques to remove 

any negative influence. Another option of controlled background is to enclosure the 

region of inspection into a dark chamber, minimizing effects of external light. 

IIR-3.4.    Communication with existing Industrial Systems/Equipment's 

Every MVS must consider its integration with other industrials system, so they 

can communicate with them and company staff. To their integration, it is necessary to 

gather communication protocols of each system and assure that information is not lost, 
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corrupted, or misunderstood. Typically, an MVS must communicate with an image 

display output, human-machine interfaces, programmable logic controllers, intranet, 

data storage systems, and other sensors. The activity goal is not to provide details on 

how to create communication between equipment’s and systems, but to inform that 

communication is an essential technical requisite. Depending on the communication 

protocols complexity, the existing communication hardware may not meet all the 

requirements, and it will become a project constraint. 

4.1.2 Artificial Intelligence Assessment (ASA). 

The purpose of the ASA group is to assist the user in defining the most 

appropriate AI solution that meets the requirements gathered in the previous group 

phase. New requirements will be determined in this phase, which may require IIR 

requirements update to make them compatible.  

The ASA group was based on the evaluation model applied during the content 

analysis in early in this document. The first part is to define what type of solution will 

be applied (4. Solution type selection). This selection narrows down the selection of 

the AI technique (5. AI technique for MVS) because there is architecture which is 

optimized according to the solution type required. Defined the AI technique, the user 

will be able to select the most appropriate way to train the AI model (6. AI training 

requisites) and define which are the starting hyperparameters for the solution (7. AI 

Hyperparameters). Given the AI complexity, one can select the most appropriate 

programming environment and libraries along with appropriate hardware to train and 

deploy the final solution (8. Hardware/Software for AI). The whole solution must be 

submitted to a validation process given the required performance metrics (9. Validation 

Metrics). Figure 26 shows each activity of the ASA group with its description and 

details. 
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Figure 26 - ASA group with its main activities and simplified descriptions. 

Source: The Author. 
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ASA-4.   Solution type selection 

Solution type selection is directly related to the Inspection Type Definition. There 

several solutions and multiple functionalities which can be applied. It depends on what 

should be detected and how complex the inspection context is (Yu et al., 2017).Since 

new solutions and functionalities are constantly being developed, and the existing ones 

are still evolving, four main types of solutions will be described as examples.  

ASA-4.1.    Application/ Functionalities  

Classification. Classification applications analyze the input image and provide 

a probability output which determines what the model is seeing. The output could be a 

simple one, as a binary output (e.g., The solution will evaluate if one component is 

good or defective.) or a more complex one with multiple output classes (e.g., The 

solution must evaluate if which component is being applied in a list of several 

possibilities). Classification complexity increases with the number of desired classes 

to be detected. This solution is not recommended when there are multiple classes that 

must be classified simultaneously in the same image input (e.g., classification of 

multiple components being assembled). This type of inspection does not consider the 

localization of the detection since it evaluates the whole image. The user must provide 

labeled images to create a classification system. 

Classification with Object Localization. This application is derived from the 

pure classification model. It is a more complex model because it requires the object 

localization functionality. The input image is analyzed, and the localization of the 

detected object in the image is also given along with the classification probability 

output. Its complexity also increases with the number of classes to be detected, and it 

can perform multiple classification tasks simultaneously in the same image. When 

there are different classes overlapping each other or object occlusion, the system may 

not perform accordingly. Object localization is typically shown through a colored 

rectangle over the detect object, also known as the bounding box. Another limitation is 

that inside the bounding box, there will image pixels that may not belong to the detect 

object, which in some cases are not the desired outcome. The user must provide 

images with labeled bounding box to create a classification with an object localization 

system (Yu et al., 2017). 

Coarse and Fine Classification. Depending on the complexity of the 

application, the number of classes and images features will increase. This increased 
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complexity may turn a single model to became computational extensive and with its 

performance significantly reduced. It is possible to create a combination of NN working 

in series with different purposes to reduce the complexity of a single NN. The first NN 

will provide a coarse classification to detect objects groups (e.g., detect cars and 

trucks). A second coarse classification can be applied only over the detected objects, 

providing more details for the object group (e.g., detect what the car brand is). The last 

NN could be used to perform information a fine-grained classification to extract very 

specific information about the object (e.g., detect what the car model) (Zhang et al., 

2017). 

Semantic Segmentation. It’s a pixel-wise classification and localization model. 

Its localization performance tends to be more precise than the standard object 

localization. In the other hand, the system requires an improved labeling process which 

consists in provide annotations at the pixel level. Image annotation is one of the 

drawbacks of semantic segmentation since annotation at this level of precision is 

usually human-made and it may be time-consuming. This system can be used to detect 

very small types of defects and provide a more precise localization. If the image 

annotation is not performed properly, the system may not work properly also. 

ASA-5.   AI technique for MVS 

AI technique is directly related to the solution type selection. Each technique 

can be considered as a building block of the whole solution, with each one of them 

providing specific functionality. This is one of the reasons that AI MVS are usually tailor-

made because there are several possible combinations of functionalities which could 

be converted into a unique solution. As verified early CNN and R-CNN based solutions 

are the most used techniques to MVS applications. They consist of a pack of several 

AI techniques arranged into a workflow that extracts relevant image features, find a 

correlation between these features, and allows a proper classification.  

ASA-5.1.     AI Techniques Selection 

CNN based. CNN is a deep multi-layered ANN which is related to pure 

classification models (Goodfellow et al., 2016). CNN can be divided into four steps: 

I- Convolution: Receives images inputs and extract relevant image 

features. 
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II- Fully Connected: Receives extracted features and search for correlation 

between them. 

III- Classifier: It receives correlated features outputs and converts them into 

classification probabilities. 

IV- Learning: Compares the label inputs with the classification probabilities 

given by the model and updates it.  

This step cycle is repeated until the error between label input and classification 

output, also known as model loss, achieves a minimum satisfactory value. A CNN 

solution will be detailed in the last group of the implementation model. CNN can also 

be used for semantic segmentation solutions, but it requires some modifications in the 

base model. 

R-CNN based. R-CNN based solutions are related to classification with 

localization models. R-CNN has an additional step when compared to a CNN 

framework. This step usually happens between the convolution and the fully connected 

step, and it is responsible for providing Region of Interest (RoI) for object location. This 

new step will provide a predicted bounding box over the detected object in the image 

and its classification probability. Semantic segmentation with R-CNN is also possible 

given the adequate modifications in the base model. 

Other Methods. There several other techniques that can be added to the core 

CNN and R-CNN techniques providing additional functionalities, or they can be used 

to create a unique solution. A few examples are stated below with a potential 

application into AI MVS: 

 Support Vector Machines (SVM) can be used in the classification phase of a 

CNN, replacing the softmax functions. 

 Extreme Machine Learning (EML) can also be used to replace the softmax layer, 

but it can also be used to replace the hole CNN architecture, given specific input 

requirements and classification output limitations. 

 Generative Adversarial Networks (GAN) can be used to improve image dataset 

through the creation of synthetic data, or it can be used to reconstruct CNN 

features output. 

 AI bioinspired techniques can be used to optimize model parameters, improving 

model performance and reducing the time required to optimize and fine-tune 

models. 
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ASA-6.   AI training requisites 

AI training defines how the selected technique will be trained. Training is related 

to the selected AI technique and its solution type. It is also related to the image dataset 

availability, what kind of image annotation is required, how many images are 

necessary, and whether the images will be required preprocessing operations.  

ASA-6.1.    Supervision Type Selection 

Selecting supervision type is related to how data is provided to the AI solution. 

Data can be provided in two forms, raw data or labeled data. Raw data is obtained 

directly from machines or equipment’s (e.g., camera), without it being modified or 

analyzed by a human. While labeled data can be obtained through the interpretation 

of raw data (e.g., search for specific objects in the image) followed by an annotation 

process based on the extracted information (e.g., add classification label and draw a 

bounding box around the object) (Goodfellow et al., 2016). 

Based on these definitions, supervision type can be divided into three groups: 

supervised, semi-supervised, and unsupervised. 

Supervised Training. All dataset provided for training is labeled. CNN requires 

a label class for each image, without informing where the label is located in the image. 

Besides the class label, R-CNN also requires the corresponding bounding box with its 

coordinates . 

Semi-supervised Training. Part of the dataset provided for training is labeled, 

while the rest of the dataset is not labeled. This type of training usually requires an in-

built algorithm which can automatically label images without human aid. This labeling 

process could be performed by an already trained AI solution, or a complementary 

dataset could be created through a GAN solution.  

Unsupervised Training. This type of training uses raw data only. This kind of 

solution extracts features from each image in the dataset and find patterns that allow 

the solution to split and classify images (Lin et al., 2016). 
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ASA-6.2.   Dataset source 

Image dataset source is essential to create a reliable AI solution with a common 

base to evaluate them and still be adaptable to suit its final use. The dataset that is 

available on the internet is considered standard, while a unique dataset that is created 

for a particular application is called custom.  

Standard. These datasets are preprocessed, and most of them are already 

labeled. They are commonly used to analyze a new algorithm`s performance because 

they provide a standard base of evaluation. Another application for them is to use them 

to pre-train an ANN and create an initial feature extraction of a more complex solution. 

Microsoft COCO, PASCAL VOC, ImageNet Large Scale Visual Recognition 

Competition (ILSVRC) datasets are some type of standard dataset that is available on 

the internet[52]. Typically a standard dataset has a balanced number of images for 

each detection class. 

Custom. These datasets are created when the standard ones may not have the 

required information to train the model. In order to fit them into an AI solution, they must 

be subject to preprocessing steps (e.g., cropping, resizing, rotation, color map 

operations), labeling steps (Guan et al., 2017).The amount of image may vary from 

case to case, but a dataset with few images or an unbalanced number of images per 

class may create an unreliable model. 

Standard and Custom. It is usual to use both types of dataset source to create 

a unique and robust solution. The customized dataset must be adapted to have the 

same inputs as the standard one (Sun; Xiao, 2016). 

ASA-6.3.    Dataset Improvement 

Dataset improvement, also known as data augmentation, is a technique that 

creates new images based on an existing image dataset. There are several purposes 

which this improvement is required. It can be used to solve the dataset with unbalanced 

classes or simply to verify if the model performance increases with a more extensive 

source of images. Another application to dataset improvement is to increase model 

sensibility to the rotation. An example of this case is when the input training data 

considers the object in one possible rotation, but in the real case, the object may 

appear rotated. (Yao et al., 2018). There cases where 3D models are used to create a 

2D dataset from multiple views, which also increase model robustness (Puttemans et 

al., 2018). 
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ASA-7.   AI Hyperparameters 

AI Hyperparameters covers the steps needed to organize several programming 

methods and specific algorithm functionalities into a unique framework. A solution 

framework is composed of several different layers, methods and algorithms, and 

specific hyperparameters.  

ASA-7.1.    Solution Workflow/Diagram 

To better visualize how the AI solution will work, a workflow or diagram of the 

framework must be provided. It facilitates solution replicability and future changes. The 

diagram must provide the framework layout and how layers are connected. 

Layer Connection and Framework Layout. The layers are connected to each 

other and how they are positioned affects the framework will work (e.g., a CNN is 

composed by multiple convolution layers, and its outputs are connected to fully 

connected layers.). 

ASA-7.2.    Layer, Method and Framework Parameter 

Method and Algorithms. These are the main programming functions that 

compose a solution. (e.g., the convolution operation over an image is a method). 

Combining and sequencing different methods in NN creates layers (Young et al., 

2018). 

Method and Algorithms Hyperparameters. Each method and algorithm has 

input values which must be defined by the user (e.g., kernel size of the convolution or 

number of neurons in the fully connected layer). Most of the known methods contain 

pre-set or recommended starting values to avoid an incorrect selection of parameters. 

In the other hand, AI solution fine tuning can be achieved by changing and optimizing 

these starting values. 

Layers. They are composed of methods (e.g., the first convolution layer can be 

composed by a convolution, an activation function, and a pooling while the last 

convolution layer may not have the pooling functionality). 

ASA-8.   Hardware/Software for AI 

All AI solutions rely on adequate hardware and software. Hardware gives the 

necessary processing power to allow complex algorithms, parallel processing, faster 

training, and faster model inference. Software is the base to create new AI algorithms 
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and implement existing programming methods. Both represent core elements of an AI 

solution, and their technical requisites are interconnected. There are two types of 

hardware and three software requisites that should be considered while selecting an 

AI solution. 

ASA-8.1.    Training Hardware 

Training hardware is the first part of an AI MVS solution. Either Multi-Core 

Computer Processing Units (CPU) or Graphic Processing Units (GPU) can be used to 

train AI solutions. GPU architecture was designed to work image data, and it can be 

used to perform more complex calculations. Shi et al. (2016) performed a benchmark 

of existing DL frameworks with different configurations of hardware. It was observed 

that GPU computing is faster than models trained by CPU only. 

The first version of GPU’s where not designed for the purpose of training and 

deploying AI models at first, but newer architectures are developed for this purpose.  

Training hardware can be a PC or Laptop with a GPU, a local server with 

multiple GPU’s or a cloud server. 

PC or Laptop with GPU. They can be used to create first AI models, 

programming new algorithms, technological experiments, and applying new Proof of 

Concept (PoC). Training a complex AI model can be time-consuming and, sometimes 

it might not be possible to run due to lack of memory. Training AI with less powerful 

PC’s may require days so that the model can be completed. A simple PC can be used 

if the application does not require a constant model update or newer training. It can be 

used when training time is not a constraint. 

Local Server. A local server can be built or purchased using multiple GPUs. A 

local server is a robust option to train very complex models without worrying with model 

complexity or extended training time. Since it does not rely on the internet for training, 

it has an advantage over cloud-based servers. There are companies which already 

provide ready to go local servers with the necessary support to integrate it with existing 

communication protocols. It is also possible to use a customized local server.  

Cloud Server. A cloud server can be a solution when a PC is not powerful 

enough or acquiring a local server is not a viable option, or the cost of processing 

power and data storage are satisfactory. Model complexity and training time are not 

technical restraints, but rental costs may increase with longer time to train, or more 

processing power are needed. It is possible to combine PC/Laptop with a cloud solution 
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when a once-off complex training is promptly needed. Another possible combination is 

cloud and local servers, where the cloud is used when the training queue exceeds a 

certain threshold (Agrawal et al., 2015).  

ASA-8.2.    Operational System 

The operational system (OS) should be considered during the AI software 

programming phase, AI software deployment phase, and the management of the 

inspection outputs provided by the AI solution. The OS affects the availability of 

programming tools, libraries availability, and compatibility. The last phase should match 

with the operational system, which is currently being used. It is possible to create a 

solution with a different OS in each phase, but a compatibility analysis must be made. 

The three most common OS are Windows, Linux, and macOS, but each one of them 

has many versions of its OS so that must be considered during software integration.  

ASA-8.3.    Programming Language 

The programming language is the backbone of any programming activities. 

Each programming language has its own characteristics which provide different 

processing performance with the same method. There are several programming 

languages available, but Python, C, and C++ have a broader programming repository 

already available for ML/DL and computer vision. A company normally choose its 

programming language for creating an AI solution according to the availability of trained 

professionals, ongoing support for the existing and development of new programming 

tools, and stability of the current versions. Since programming languages are always 

changing and evolving, a company should constantly be checking for newer and better 

options without dismantling existing solutions. 

ASA-8.4.    Programming Environment and Libraries 

The programming environment and its libraries are the programmer user 

interface tool which allows him to create new algorithms and test them. Figure 27 

shows an example of how the programming environment and its programming libraries 

are related to the OS and the programming language. 
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Figure 27 - Correlation between the main components for AI programming. 

Source: The Author. 

Programming environment. It is created by the programmer with the desired 

programming libraries. Just like the programming language, the programming 

environment usually is a personal choice of the programmer. A programming 

department may define a standard environment for management purposes. Some 

programming environments help to organize the management of the current 

programming language version and  

Programming library. It has built-in methods and algorithms which facilitates 

the development of new solutions. One programming library may be compatible with 

different OS and programming languages, but they usually are specific to an OS and 

programming languages. Libraries are constantly evolving, and newer versions are 

being released. Keeping track of libraries version is very important when developing AI 

solutions because a simple version update may affect the whole solution. 

Several programming libraries have been developed to allow DL models to 

communicate with CPU and GPU, such as cuDNN (Chetlur et al., 2014), Caffe (Jia et 

al., 2014), and Tensorflow (Abadi et al., 2016). They allow researchers and developers 

to build new deep learning models without being concerned with scheduling data 

processing, on-chip memory placement, register blocking, and basic linear algebra 

subprograms (BLAS) calculations. GPU accelerating libraries have its specific version 

compatibility according to hardware architecture; any change in one of them may 

cause algorithm malfunction (Abadi et al., 2016). 

 Developed AI algorithms should also be submitted to version control. 

Otherwise, any non-validated updates may compromise an existing solution.  



70 
 

 
 

ASA-8.5.    Embedded Hardware 

Embedded hardware is the last part of an AI MVS solution. They are used to 

perform model inference using smaller hardware with reduced performance, but with 

reduced costs. It is possible to use the same hardware to train and deploy an AI 

solution. A deployed solution requires less processing power, so it will consume only a 

fraction of the processing power used during training (Abadi et al., 2016).To avoid 

unused processing power, it better to use simpler hardware for less complex 

applications.  

Embedded hardware is recommended in the following cases:  

 When latency between AI model inference and Local/Cloud servers 

exceeds the time required for inspection. 

 When multiple simultaneous inspections are required, and the existing 

hardware does not support it. 

 When MVS has limited working space and the training hardware will not 

fit in. 

 When implementation costs are limited and using multiple training 

hardware will be expensive in a multiple inspection scenario. 

Complex AI models are still a challenge for embedded hardware. These 

complex models can achieve better detection performance, but they require a lot of 

processing power. Embedded hardware usually does not have enough processing 

power for complex models. This model can be simplified, but they will eventually 

reduce detection performance. Applications using embedded hardware should be 

validated in accordance with each type of inspection and its specific requirements.  

ASA-9.   Validation Metrics 

Validation metrics are used to verify if the solution outcomes will meet the 

desired quality requirements. Each new algorithm, framework, or solution must be 

validated to assess if there was any performance improvement. Image-based solutions 

can be validated through classification metrics and object localization (Zhang et al., 

2013). Training time and algorithm deployed performance are metrics, which also 

appears in Deep Learning industrial applications. 
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ASA-9.1.    Classification Metrics 

Classification problems use the concept of the Confusion Matrix (CM), which 

compares the real data input with the classification model output. There are four 

possibilities of outputs in a confusion matrix. Figure 28 shows the four types statement 

which a confusion matrix can provide (Zhiqiang; Jun, 2017) 

Figure 28 - Confusion Matrix Example.  

Source: Adapted from Zhiqiang; Jun (2017) 

The threshold value is a parameter set by the AI MVS user which will modify the 

confusion matrix output without retraining a whole model. Figure 29 shows that the 

threshold value is applied right after the classification output value. 

Figure 29 - Relationship between the model output value and the confusion matrix given a 
threshold value. 

Source: The Author. 

The threshold value affects directly in the four main outputs of the confusion 

matrix. Figure 30 shows how an upper limit threshold value can affect the false 

negative (FN), false positive (FP), true negative (TN) and true positive (TP). 
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Figure 30 - The four types of possibilities of a confusion matrix given threshold value. 

Source: The Author. 

If the threshold value “T” is larger than the average value of true statements 

given by the model output “X”, there will be increasing value of the false negative (FN) 

outputs. An example of this scenario is an AI MVS quality control to detect defective 

parts. The system will be incorrectly informing that good parts may have defects when 

they do not have any. In the other hand, a high threshold value decreases the chance 

of false positive (FP) outputs. This trade-off between FP and FN should be evaluated 

by the user depending on the final application of the AI MVS classification model. 

Classification accuracy considers the number of correct statements the model 

performs compared with the hole data input. Equation 17 and 18 shows how accuracy 

can be calculated. 

TT = TP + FP + FN + TN      (17) 

Accuracy% = 
TP + TN

TT
      (18) 

Receiver operating characteristics (ROC) graph is another option to use CM 

information to evaluate classification performance. It uses FP and TP values to plot 

performance curves for each algorithm (Fawcett, 2006).  

Precision-Recall graphs can also be used to evaluate classification 

performance. Recall evaluates how many true statements the model achieved from 

the total possible true statements. Values closer to one mean that the model is 

detecting all true statements, so FN tends to zero. Equation 19 shows how the recall 

is calculated. (Davis; Goadrich, 2006). 

Recall% = 
TP

TP + FN
      (19) 

Precision evaluates how many true statements were given along with wrong 

statements. Values closer to one mean that the model is providing good statements, 

so FP tends to zero. Equation 20 shows how precision is calculated (Davis; Goadrich, 

2006) 
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Precision% = 
TP

TP + FP
       (20) 

There are other classification metrics (e.g., F-Score, F1-Score, OTA, OTP) that 

combines precision, recall, and accuracy outputs into new metrics (Sunkara et al., 

2018) that can be used to evaluate an AI solution.  

AI MVS solutions usually require a model that classifies multiple objects or 

products. Achieving a maximum classification metrics value is very challenging when 

multiple objects must be classified by the same model. During the learning process, a 

model classification performance may be optimized to some specific object while it 

lacks for the other objects. To check the performance of the solution for all objects, an 

average value must be calculated. Equation 21 shows an example of the Mean 

Average Precision (mAP) value that can be used for multiple object classification 

solution. 

(mAP)% = 
Precisionobj.1  + Precisionobj.2 + … + Precisionobj.n

Number of Object or Classes (n)
     (21) 

ASA-9.2.    Localization Metrics 

Localization metrics were already used in traditional machine learning 

techniques, such as SIFT, feature matching, and others. It became more significant 

with the region based CNN (R-CNN) architecture proposed by Girshick et al. (2014). 

This new type of algorithm architecture requires not only an accurate classification but 

also that a bounding box to place over the detected object.  

To validate the proposed bounding box location, a comparison must be made 

with the true bounding box, also known as ground truth. The combined area of the 

ground truth and the predicted box is known as the area of union. The intersected area 

of the ground truth and the predicted box is known as the area of overlapping. The 

Union of Intersects (UOI) is the relation between the area of overlapping is divided by 

the area of the union, as in Equation (5).  

UOI = 
Area of Overlap

Area of Union
       (22) 

The closer UOI is to one, more accurate localization your algorithm will have. 

Figure 31 shows the main variables of this localization metric. 
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Figure 31 - Intersect of Union localization metric.  

Source: Adapted from Girshick et al. (2014) 

ASA-9.3.    Training Hardware Performance 

Training hardware performance for this document was considered as the time 

required to train the same AI model comparing them with available hardware. Normally, 

modern hardware’s performs better than older ones, training a model much faster. 

Normally, for academical purposes, training time is not a restriction, but in an 

industrial scenario, multiple instances must be trained simultaneously. Higher training 

times or a large training queue may delay new inspection demands and become a 

blocking point for AI MVS. Training time for industrial will affect in the hardware 

selection cost`s or cloud computing cost`s which is normally charged by consumed 

computational time. 

ASA-9.4.    Embedded Hardware Inference Performance 

Deployed Inference Performance considers the time needed to analyze an 

image or a video in real time given an existing trained model. The inference 

performance should consider the speed required for the inspection to be performed, 

the frames per second input (FPS) and the camera resolution height and width. Higher 

resolution models normally require more time to perform inference. If the FPS input is 

higher than the inference performance, the model will not be able to process every 

input given by the camera. The model may not achieve the desired performance if the 

required time for inference is higher than the inspection time.  
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The same hardware adopted during the training phase can be used for 

inference, and they usually have better inference time performance than embedded 

hardware. Older R-CNN algorithms were capable of processing only 1 FPS, while You 

only look once (YOLO) achieved 45 FPS (Redmon et al., 2016) and its newer version 

achieved up to 90 FPS without losing accuracy (Redmon; Farhadi, 2018).  

Embedded hardware is an option to perform inference when training hardware 

is not viable. Compared to the training hardware, they have slower performance, but 

they are a more affordable option with better mobility and scalability when multiple 

simultaneous inspections are required. Inference time with recent embedded hardware 

can achieve 3 to 4 FPS with SSD and YOLO algorithms (Sunkara et al., 

2018).Research and development of specific embedded hardware is an ongoing 

subject. This new hardware should allow faster inference time with smaller hardware 

and meeting industrial requirements. 

4.1.3 CNN specific details (CNN) 

The purpose of this group is to provide the user with basic knowledge of the 

CNN main requisites, defining how the final solution will work. Figure 32 shows each 

activity of the CNN group with its description and details. 
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Figure 32 - CNN specific details group with its main activities and simplified descriptions. 

Source: The Author 

The group begins with the dataset requirements (10. Dataset), then it is followed 

by the convolution layer requirements (11. Convolution Operation, 12. Activation 

Function and Normalization, 13. Pooling Operation). After the convolution, the fully 

connected layer (14. Fully Connected Layer) along with the classifier (15. Classifier) 

are defined. The last part of this group is the learning method (16. AI Learning Method).  
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CNN-10.   Dataset  

Image dataset is the main input to CNN’s learning process. The learning 

mechanism will depend on how the data is provided to the AI solution. The user can 

define if a customized dataset will be created or an existing data will be used, deciding 

if the dataset requires image preprocessing, data annotation and how the data will be 

divided during training and model validation. This section will give details on how to 

structure a dataset to be properly fed into a CNN. 

CNN-10.1.   Dataset Creation/Selection 

The first step of a dataset is to define if it will be created, selected, or both 

options. Regardless of its origin, a dataset input must have a standard image height 

and width input to allow CNN models properly. The number object/classes and the 

number of images for each class are also important to assure the model has enough 

data to learn the characteristics of each class. 

Image input size could be as small as the MNIST dataset with a 32x32 input, 

an intermediate input with 300x200 as the Caltech101 dataset or a larger input with 

800x600. The smaller the dataset width and height, the faster they are to train, but 

larger images can provide more relevant information depending on how the CNN is 

built. 

The number of classes and number of images per class should be defined 

by the user while constructing or selecting a dataset.  

Images per class. A larger number of images per classes increases the 

chances of the model, learning more relevant data and increasing its classification 

performance. Datasets with fewer images per class can be subject to two problems. 

The first problem is overfitting. Overfitting in CNN happens when the model learns 

specific information of the images given by the dataset, but it lacks the ability to 

recognize any other images of the same trained class during model validation and 

inference. The second problem may happen with unbalanced datasets. AI solutions 

with a dataset with some classes with very few images than other classes may not 

learn properly. Depending on how the model updates its learning, an unbalanced class 

may be treated as an outlier, where the relevant characteristic may be discarded by 

the model or its relevant features will not be learned. It is recommended that the 

number of images for each class is almost the same. 
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The number of images will vary depending on the application, and they can be 

increased or modified while the model is being trained and validated. The CIFAR-10 is 

an image dataset with 60.000 images divided into ten classes, and each image has a 

size of 32x32. MS-COCO dataset has more than 330.000 images divided into 80 

classes.  

Number of classes. The more classes a model has, the more complex it is to 

learn image features of each class. Optimized CNN’s for a certain number of classes 

may suffer from decreasing mAP when the number of classes is increased. 

Selection or Creation. For industrial inspections applications, it is 

recommended to create its own dataset because each inspection will involve images 

of a part, component, assemblies or process which are not common in existing 

datasets. Selecting and using existing image datasets are useful for other purposes 

such as algorithm performance evaluation and optimization due to available 

benchmarks in the academic community. A selected dataset could be also used for 

pre-training models, where learned features could accelerate the fine-tuning process 

with a customized dataset. 

CNN-10.2.    Dataset Pre-processing 

Raw images gathered from cameras or images from existing datasets are 

normally submitted to preprocessing which involves cropping and resizing. These 

preprocessing steps are used to normalize image inputs, selecting the relevant 

information required for training. Preprocessing can also be used to created 

augmented images, though color changes, image rotation, warping, and scaling 

operations. Augmented images are an alternative for balancing datasets that has fewer 

images inputs. Preprocessing steps are important to assure that trained data will 

gather relevant image features without harming the detection performance (Guan et 

al., 2017) 

CNN-10.3.    Dataset Annotation 

Dataset annotation is the process to add labels and other relevant information 

for the learning step. There are three major types of annotation that can be added to 

an image depending on the AI solution. Image classification models require that the 

image input has a label describing which class that image belongs to. Object detection 

requires the bounding box image coordinate along with the class it belongs. Semantic 
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segmentation models require a precise drawing of the contours of the desired detection 

class along with the class it belongs.  

The annotation process is normally performed by the user, but there are non-AI 

algorithms and AI trained solutions that could be used to accelerate the annotation 

process. This annotation algorithm should be submitted to an evaluation of the user 

because an incorrect labeling may impair the learning process. 

CNN-10.4.    Dataset Division 

Dataset division is the last part of the process where data can be composed of 

several datasets split into smaller ones. Figure 33 shows the main dataset (MD) is 

divided into the training dataset (TD) and model evaluation dataset (MED), then the 

training dataset is divided into several mini-batches. 

Figure 33 - Dataset division smaller parts for training and model evaluation. 

Source: The Author 
 

The first step divides the main dataset into two, the training dataset and the 

validation dataset. They are important to assure that the model is trained and validated 

properly. During splitting the user must check if unbalanced datasets were created 

during the splitting activity. The validation dataset should be composed of images that 

were not used during the training phase. This important to compare model performance 

during training and validation. AI solution overfitting can be detected if the model 

achieves satisfactory performance in the training phase, but it achieves a poor 

performance during validation. In this case, the dataset must be verified and improved 

along with some modifications in the model hyperparameters. 

The second step is to divide the training dataset into smaller parts, also known 

as batches. Current CNN models and data used for training are fully uploaded into the 

hardware, but if the hardware does not have enough memory, the model will crash. To 

avoid model crashing, the user may use more powerful hardware, or it could divide the 
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dataset into batches. This division affects the learning process, and it will be discussed 

later in a specific topic.  

CNN-11.   Convolution Operation 

The convolution operation process an image input from the training dataset will 

be subject to. It is important to distinguish the convolution layer between the 

convolution operation. The convolution layer is normally composed by the convolution 

operation, the activation and normalization functions, and the pooling operations. 

Figure 34 shows the initial part of a convolution operation over an image. 

Figure 34 - Example of a generic kernel applied over an image input and its respective feature 
map. 

Source: The Author 

The convolution operation consists of a kernel, also known as a filter, applied 

over an image input or feature map coming from a previous convolution layer. The 

kernel is a small matrix with a given height and width, and each value of the matrix is 

known as weights (wn). The output values of a features maps are composed by the 

summation of the multiplication of kernel weights and the inputs values, and a bias 

value is added to the result of this summation. Figure 35 shows an example of the 

convolution operation during the first stride  
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Figure 35 - Example the mathematical operation of the kernel over the input and the first 
resulting value. 

Source: The Author 

This process is repeated as the kernel sweeps over the image input given a 

stride value, where the image inputs will change according to the stride value, but the 

weights and the bias remains constant. Figure 36 shows the following stride over the 

same image. 

Figure 36 - Example the mathematical operation of the kernel over the input given a stride of one 
and the next, resulting value. 

Source: The Author 

 The feature map output size will be affected by the kernel size, the stride value, 

and the padding (Goodfellow et al., 2016).The feature map is a matrix containing the 

output of a convolution operation, and each filter will provide a different feature map 

give the same input. Figure 37shows a full feature map values from a convolution filter. 
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Figure 37 - Example the complete mathematical operation of the kernel over the input and all 
the resulting values. 

Source: The Author 

The values obtained in each feature map represents how relevant they are to 

the learning process. Positive values can be considered as important features, while a 

negative value is not.  

CNN-11.1.    Weights and bias 

Filter weights are one of the variables which are optimized during the learning 

process. These values can be started randomly, imported from previous training, or be 

set manually by the user.  

The values of this weight are normally assigned to 32 bits floating point, but 

recent CNN research shows that 8 bits value can be assigned instead of the previous 

one (Truong et al., 2018).To change from 32 to 8 bits, data type can reduce mAP, but 

it increases processing speed performance. According to a research, it is also possible 

to replace 32 bits for a binary (2 bits) weight data type with greater loss in the mAP 

with faster processing speed, but it should be properly evaluated to be applied into a 

rigorous industrial inspection scenario. 

CNN-11.2.    Kernel/Filter Size and Shape 

The size and shape of the filter determine how the model will process the image 

inputs. Common kernel sizes of standard square filters range from 1x1 to 11x11 but 

that does not mean larger sizes cannot be used. The computational power 

requirements may increase with larger filter sizes since it must store a bigger matrix 

with more weights within. 
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The standard shape for a filter is a square, but newer studies propose quasi-

hexagonal shapes  (Sun, Zhun; Ozay, Mete; Okatani, 2016), dilated squares (Wang, 

P. et al., 2018), deformed (Dai et al., 2017), and atrous convolution. Squared shaped 

considers the influence of each nearby feature value or image pixel given the center 

of the kernel. Dilated shapes do consider nearby features because they have blank 

spaces between filter weights. Quasi-hexagonal shapes consider nearby features but 

not all of them. Deformed convolution has an irregular shape which or may not consider 

nearby features. The newer shapes tend to decrease model complexity, and they can 

be used to optimize existing standard shape models. 

CNN-11.3.    Kernel Stride and Padding 

Kernel stride and padding are parameters of the convolution operation. The 

stride value defines how the filter will be sweep over the input. The minimum value for 

a stride is one, but larger values can be used. Figure 38 shows an example of the 

effects of a fixed size filter over the same image, considering a different stride value 

and the difference in the feature map size caused by that change. 

Figure 38 - Example of Valid Padding with different stride values. 

Source: The Author 

Higher strides values tend to compress the resulting feature map and can be 

used for image and feature map input that have a larger size. One drawback of a higher 
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stride value is that it can lose information on small or scaled objects during the 

compression process. 

Padding parameter changes the input size by adding zero value around the 

image. Padding can be used for two purposes: to assure that the feature map output 

will have the same size as the input and to allow the filter to extract relevant information 

located near the feature map edges. When a padding value is equal to zero, it means 

the image input size will not be changed before the convolution operation. This is 

known as valid padding. When padding is higher than zero, it means that the input will 

be changed. The same padding happens when the padding value assures that the 

output will have the same size as the input. Figure 39 shows an example of a 

convolution operation with a stride value of 1 and padding same. 

Figure 39 - Example of Same Padding with stride value equals two. 

Source: The Author 

The feature map output depends on the input size, stride value, padding value, 

and kernel size. Equation 22 shows how the feature map width can be calculated, and 

equation 23 shows how to calculate the padding value for the same padding option. 

 Woutput = 
Winput + 2 ∗ (Padding Value) - Wfilter

Stride Value
 + 1    (22) 

Padding Value = 
൫Winput-1൯ ∗ Stride Value + Wfilter - Winput

2
   (23) 

CNN-11.4.    Number of Filter/Kernels per layers 

The convolution operation is composed of several filters applied over the same 

input. Each filter can learn a different characteristic of the image input. Equation 24 
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shows how to calculate the number of feature maps output based on the number of 

inputs and the number of filters.  

nfmap = nfilter ∗  ninput     (24) 

The more filters are applied, the higher the image features learned during the 

convolution operation. Increasing the number of filters increases the demands for 

computational power because the number of feature maps will increase, and they will 

need to be stored in the hardware memory. Figure 40shows stacked filters applied over 

an image input with the standard RGB color channels and its resulting stacked feature 

maps. 

Figure 40 - Example of stacked feature maps gives an image input and a pack of convolution 
filters. 

Source: The Author 

The deep learning concepts for image processing is related to how many 

convolution layers are applied over an image input. Recent researches introduced the 

wide concept, which increases the number of filters of a single convolution layer and 

allows a reduced number of convolution layers without losing mAP performance (Lee 

et al., 2017), (Szegedy et al., 2016) 

CNN-11.5.    Convolution Options 

Besides the standard hyperparameters described above for the convolution 

operation, there are new options that improve its performance. The first option is the 

concatenating filter, which speeds up the setup process and selection of the adequate 

filter sizes. The process is known as the inception layer, which applies multiple filter 

sizes and concatenates into a single feature map output (Szegedy et al., 2016)  

Another option for the convolution operation is to prune filters during the learning 

process. During the learning process, some filters may have little effect over the output 
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generating unused feature maps output, which consumes hardware memory. The filter 

pruning technique detects those unused filters a remove them from, saving memory 

and speeding up the learning process. The pruning technique can also be used to 

remove filter which a very high influence during the learning process. The presence of 

these filters may severe the learning of other filters. They can be suppressed during a 

certain stage of the training, allowing other filters to compensate for its absence. The 

pruned filter can be reactivated in a later moment if necessary (He, 2017), (Luo et al. 

2017).  

CNN-12.   Activation Function and Normalization 

Input normalization, also known as batch normalization (Ioffe; Szegedy, 2015), 

and activation functions are mathematical operations that can be performed with the 

feature maps. Both are important to assure that the learning process will converge.  

CNN-12.1.    Activation Function 

The activation function effects over the learning process were already detailed 

previously in this document. Rectified Linear Unit (ReLU) Nair; E. Hinton (2010), Leaky-

ReLU (L-ReLU), and Parametric-ReLU(P-ReLU) (He et al., 2015) are being used 

instead of the sigmoid functions such as hyperbolic tangent and arctangent functions. 

Table 10 shows four common types of activation functions which are commonly applied 

in ANN`s (Gupta; Duggal, 2018).  

Table 10 - Example of commonly activation function for image-based solutions. 

Source: Adapted from Gupta; Duggal (2018) 



87 
 

 
 

Sigmoid functions are more sensitive to the vanishing gradient, thus, they 

increase the chance of the harming the learning process. ReLU transforms all the 

negative inputs into zero, while P-ReLU and L-ReLU multiply the negative value by a 

small variable. This small variable is a learning parameter while using P-ReLU, but L-

ReLU consider it like a fixed hyperparameter (Zhang et al, 2017). 

CNN-12.2.    Normalization 

The normalization process can be applied before the activation function, and 

through this method, the mean of the inputs of each layer is standardized, limiting its 

variance to one. Normalization contributes to the learning process by adding a well-

behaved input, which enables a faster and effective optimization. It also turns the 

model robust to hyperparameter slight changes and helps minimize the vanishing 

gradient problem (Santurkar et al., 2018). 

CNN-13.   Pooling Operation 

The last step of a convolution stage is pooling. Pooling is used in CNN to reduce 

the dimensionality of feature maps, making them less susceptible to data variation and 

perturbation, and still preserving the main image features. The two main pooling types: 

averaging, maximum. Pooling also represented by a square matrix of size WpoolxHpool 

(Lee et al., 2015). Pooling works like a convolution operation, which requires a stride 

and padding parameters. 

CNN-13.1.    Pooling Types 

The first pooling types applied to CNN were the average and the max pooling. 

Figure 41 shows an example of the max and average pooling.  
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Figure 41 - Example of max and average pooling. 

Source: The Author 

Average pooling sums the values inside the and finds the average value based 

on the filter size. Max pooling extract the highest value of the analyzed filter. Feature 

output reduction due to pooling can decrease training time. One aspect that should be 

taken into account when choosing the pooling type is that max-pooling tends to 

underestimate the size of objects while average-pooling tends to overestimate it 

(Kolesnikov; Lampert, 2016). 

CNN-13.2.    Pooling Stride and Size 

Pooling stride and size function similarly to the convolution equivalent 

parameters. Stride equal one is the minimum value, but it can be higher if necessary. 

The higher the stride value, the smaller the feature output it will be. Feature output 

reduction due to pooling can decrease training time. While excessive feature output 

reduction performed by a single pooling operation may cause relevant information to 

be discarded, and consequently decreasing detection accuracy (Yu, Q. et al., 2017). 

High pooling size values tend to increase the evaluation window of the feature 

map. It will consider more information for the max or average pooling. A high size value 

may not differentiate two important features located at the pooling extremities with the 
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same values. While a high size value using averaging filter may combine the effects of 

a high feature map value with a nearby low importance feature map. 

CNN-14.   Fully Connected Layer 

The term 'fully connected' means that every neuron from the previous is 

connected to each neuron layer in the current layer. A fully connected (FC) layer in 

CNN is located at then of the convolution layers which provide processed feature 

maps, as shown in Figure 42. 

Figure 42 - Localization of the pooling layer and its relationship with the stacked feature maps. 

Source: The Author 

The feature maps will be considered as input neurons in the FC layer. The FC 

layer is composed by the input layer, the hidden layers, and an output layer. These 

layers work the same way as described previously in the AI simple learning. Figure 43 

shows the that the input of the FC is a feature map and all values will be fed into each 

neuron if the next layer, given its specific weight, bias and activation function given by 

‘g’. 
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Figure 43 - Feature maps being fed into the input layer and their relationship with a single 
neuron in the hidden layer.  

Source: The Author 

CNN-14.1.    Number of layers in FC  

The number of layers in an FC depends on how many hidden layers it will have. 

Increasing the number of hidden layers will increase the ability of CNN to evaluate the 

influence of combined feature maps, furthermore, improving the ability of learning 

complex data. Models are normally composed of three hidden layers Krizhevsky et al. 

(2012), but it is possible to use FC with one, two, or any value larger than three. A side 

effect of several hidden layers is the increased chance of overfitting, where the models 

memorize the training data and lose the ability to generalize the classification. The 

increased number of layers will increase the number of neurons and consequently, the 

number of weight and bias to be learned, which may slow down the training speed.  

CNN-14.2.    Number of neurons 

The number of neurons can be defined by the user, and a different value for 

each layer in the FC can be set by the user. Usually, the number of neurons of the FC 

input layer has the same amount the number of feature maps. The output neuron will 

depend on the number of classes or objects to be detected. The number of neurons in 

the hidden layer is variable 

Increasing the number of neurons in each hidden layer does not necessary 

means that the FC performance will increase proportionally. When the number of 

neurons achieves a certain threshold, some neurons may not be activated. Activated 

neurons mean that the feature is relevant for that kind of input. Neurons that are not 

activated can mean two things, either the neuron is not relevant to that specific input, 
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but it is relevant for another input, or the neuron is not relevant at all. These irrelevant 

neurons are considered as neurons with zero or near zero activation values. 

CNN-14.3.    Fully connected layers Options 

Dropout, pruning are techniques for FC layers which can aid in excessive 

irrelevant neuron and overfitting problems. Each technique affects the neurons in the 

hidden layers. 

Dropout is a technique that creates a probability of shutting off a hidden neuron 

randomly. If a neuron is shut off, any incoming and outcoming weights and bias related 

to that neuron will also be dismissed (Srivastava et al., 2014). The dropout rate is the 

hyperparameter, which defines the probability of a neuron to be active. The lower the 

rate, the higher the chance of neurons being turned off. Dropout may also reduce the 

number of neurons with low activation values and decrease the chance of overfitting. 

Excessive dropout rates could cause underfitting, where the model loses the ability to 

learn from data. 

Pruning (Bondarenko et al., 2015) has the same effect of the dropout, but 

instead of removing neurons randomly, it can select the neurons. The main challenge 

of the pruning is to implement an efficient algorithm which can carefully select which 

neurons are relevant or not. 

CNN-15.    Classifier. 

The classifier is the last layer of a CNN and its fed by the output of the FC layer. 

Its purpose to provide a probability class or object output given the input data provided 

by the FC layer (Hu et al., 2017). Figure 44 shows how the classifier is connected to 

the previous layer.  

Figure 44 - Relationship of the fully connected layer output and the classifier layer. 

Source: The Author 
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The output of the classification layer is a vector containing the probabilities of 

each possible class or object. The equation describes the classification output vector, 

where Pn is the probability value of the ‘n’ object. 

Classification Output = [P1 , P2 , P3, … , Pn] 

This output vector is compared with the label input given with the image input. 

The label input should inform what object class was fed into the CNN. To match the 

input with the classification output, the label must be converted to one hot encoding. 

Figure 45 shows a label input is converted into one hot encoding, where the initials 

‘OBJ’ are referred to the object class and its respective one hot encoding. 

 Figure 45 - Transformation of the label input into a one-hot encoding form. 

Source: The Author 

For example, OBJ2 means that the image input belongs to the object class two 

and the all the values of the one hot encoding will be zero except the second position 

in the vector, which will be one. The position of the one value will determine which 

object class input will be. Figure 46 shows an example of an object label input 

converted into one hot encoding and the comparison with the classification output 

probabilities vector form. 
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Figure 46 - Relationship of the label input and the classification output and its one hot encoding 
vector.  

Source: The Author 

The one hot encoding input value is compared with the probabilities given by 

the output vector. For example, in Figure 46, has the input vector with the one value in 

the second position, and the output vector value P2 should be close to one for a good 

classification score. In the other hand, the remaining probabilities values should be 

close to zero. The error value given by the comparison between the input and output 

vectors will be used as the input for the AI learning method. 

CNN-15.1.    Classifier Type 

There are several classifier methods that can be applied to CNN. The main 

classifier methods are SoftMax (Duan et al., 2007), Support Vector Machine (SVM) (Li 

et al., 2016), Adaptive Boosting (AdaBoost) (Song et al., 2015) (Wu; Nagahashi, 2015), 

Linear discriminant analysis (LDA) (Liu et al., 2019). There are studies to determine 

which classifier has the most accurate results, but there no major difference between 

them (Tang, 2013) (Liu et al., 2019). 

CNN-16.    AI Learning Method 

The learning method is the last part of the solution which uses the mathematical 

equations early in chapter 2 of this document. The learning method will depend on the 

number of images in the dataset, how these datasets are divided into smaller batches, 

when the model will update the learned parameters (e.g., weights and bias) and which 

are the convergence criteria. The number of cycles of the learning process, also known 

as an epoch, is a way to count how many times all the images or batches are where 

fed into the CNN and its learned parameters are updated. 
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Stochastic, batch, and mini-batch learning are three main types of learning 

strategies that can be applied into CNN’s. The difference between each one of them is 

when the weights and bias are updated, and what is the batch size input. Figure 47 

shows the first type of strategy, known as stochastic learning. 

Figure 47 - Example of stochastic learning on CNN. 

Source: The Author 

Stochastic learning uses a batch size of one, and the learned parameters 

updates happen right after each input is processed by the CNN. One learning cycle in 

stochastic learning is when all the images from the trained dataset are processed by 

CNN. This type of learning strategy is the one who demands less computational power 

because only one image at the time must be load into the system memory. Figure 48 

shows an example of what kind of data is allocated into the GPU/CPU memory and 

the differences between stochastic and batch learning. 

Figure 48 - Differences between stochastic learning and batch learning regarding memory 
consumption. 

Source: The Author 

Batch learning strategy is different from the stochastic type. In batch learning 

the model upload more images into the memory. The weights and bias updates are 
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calculated using the average values of the errors of each image input in the batch, and 

they are updated only after a whole batch is processed. Full batch learning happens 

when the batch size value is equal to the number of images given in the training 

dataset. Figure 49 shows the second type of strategy, known as batch learning. 

Figure 49 - Example of full batch learning in CNN. 

Source: The Author 

Mini-batch learning is the third possible strategy. The training image dataset is 

divided into several small batches and learned parameters updates are performed at 

the end of each mini batch. Epoch update happens when all the mini batches are 

processed. Figure 50 shows this type of strategy. 

Figure 50 - Example of mini-batch learning on CNN. 

Source: The Author 

Full batch training is considered the best training option to achieve a generalized 

solution, but using this strategy is not always possible. Memory limitation to upload the 

full batch is the main challenge for this strategy, and when there are memory shortage 
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problems, the mini batch is recommended. Figure 51shows the noisy error behavior of 

mini-batch learning and the smoother behavior of the full batch learning. 

Figure 51 - Error vs. Epoch curve for full batch and mini-batch behavior comparison. 

Source: The Author 

CNN-16.1.    Learning Method Epoch and Convergence 

 The number of epochs required for a model to achieve the minimum error and 

achieve convergence will vary case to case. Convergence is achieved when the 

difference between the updated error value is almost the same as the previous value. 

Figure 52 shows an example of model convergence. 

Figure 52 - Error vs. Epoch graph with a model that already achieved convergence. 

Source: The Author 
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To avoid unnecessary training, it is possible to use an algorithm which detects 

the difference between errors, and it achieves a certain threshold stopping the learning 

process. If the loss function is too noisy, this error difference may not be achieved. A 

second parameter may be set to limit the number of epochs regardless of the model 

achieving the desired minimum error.  

CNN-16.2.   Learning Method Characteristics 

 Model convergence depends on how the weights and bias are updated. These 

learned parameters depend on the learning rate parameter value. Setting this 

parameter is a challenging task due to its effects on weights and bias update. Figure 

53 shows an example of how the loss function in the function of a weight value changes 

given different learning rates values. 

Figure 53 - Example of the effects of different learning rate values.  

Source: The Author 

Smaller learning rates makes models longer for training, while excessive values 

cause a non-convergence. Through an optimized learning, rate can make the model 

converge with fewer epochs. Figure 54shows an example of these three scenarios. 

Figure 54 - Example of different learning rate values in the loss/error vs. epoch curve. 

Source: The Author 
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Equation 24 and 25 show how the weights and bias are updated using a fixed 

learning rate. 

wnnew = wn − αfixed l.rate ∗
∂C

∂wn
     (24) 

bnnew = bn - αfixed l.rate ∗
∂C

∂bn
     (25) 

There are optimization methods which accelerate the learning process. The first 

of them add a momentum variable which accelerates the gradient descent by replacing 

the derivative of the cost function relative to a weighted derivative value. Equation 26 

a 27 shows the weighted derivate value formula and 28 and 29 shows how they are 

used to calculating the new parameters. 

V∂wnnew
 = βmomentum ∗ V∂wn

 + ൫1 - βmomentum൯ ∗
∂C

∂wn
   (26) 

V∂bnnew
 = βmomentum ∗ V∂bn

 + ൫1 - βmomentum൯ ∗
∂C

∂bn
   (27) 

wnnew = wn - αfixed l.rate ∗ V∂wn
     (28) 

bnnew = bn - αfixed l.rate ∗ V∂bn
     (29) 

An unoptimized value of momentum may cause an excessive weight update, 

and the convergence is not achieved properly requiring more epochs. 

There are other optimization algorithms which consider a variable learning rate 

such as Adagrad (Duchi et al., 2011), Adam (Kingma; Ba, 2014) and their implantation 

are already available over the existing programming libraries. Ruder (2016) provided 

an evaluation of learning functions optimizer’s which aid the user to select the best 

optimization strategy for gradient descent. 

4.1.4 AI MVS Management (AI-MNGT) 

The purpose of last this group is to provide minimum management requirements 

to keep AI MVS systems working and updated. The group begins with the type of users 

(17. User Profiles) which will interact with the AI MVS. The second part of this group is 

related to the management of the framework of an AI MVS (18.AI Frameworks). The 

last part provides basic functionalities for the AI MVS models (19.AI Models). Figure 

55 shows each activity of the CNN group with its description and details 
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Figure 55 - AI-MNGT group with its main activities and simplified descriptions.  

Source: The Author 

Since the concepts of framework and models may have similar interpretations, 

for this document, an AI Framework will be treated as the final AI algorithm. This final 

algorithm can be composed by a combination of methods and algorithms where each 

one of them provides complementary functionality. The AI model will be considered as 

the application of an AI framework for a given inspection purpose. Thus, an AI 



100 
 

 
 

framework serves as the backbone of a solution which can be deployed for different AI 

models. 

AI-MNGT 17.    User Profiles 

 User profiles define the basics type of user which will interact with the AI MVS 

in each phase of the solution lifecycle and which are their interactions the whole 

solution. The user profiles were divided into four groups based on their required skills, 

their main tasks, and what are their permission to interfere with the system. The main 

suggested users are the quality inspector, quality engineer, AI MVS expert, and other 

users. This task division is not mandatory because each company has its own 

hierarchy, job positions names, and responsibilities. Companies will have to choose if 

the proposed task division meet their corporate requirement. Otherwise they will have 

to adapt some of these new tasks.  

AI-MNGT 17.1.    Quality Inspector 

The first user proposed by this method is the quality inspector. This user will 

directly interact with AI MVS providing it with new images for inspections or giving 

feedback of an inspection output given by the system. The role of the quality inspector 

is work as a supervisor of the AI MVS or to work together with it aiding in tasks where 

the AI MVS has a technical limitation.  

The quality inspector can be one of the main sources of input data to train or 

retrain a system. Their feedback to the system, either for the training phase or the 

deployed phase is very important to assure if the system is performing detections 

correctly. Also, the quality inspector has skills which do not rely on vision. They can 

gather complementary data to perform a complete analysis of defects and a root cause 

analysis. 

The AI MVS is always trained with a fixed number of objects classes and 

detection outputs, but newer defects which were not included in the first AI model can 

happen. A quality inspector can inform the other users of the AI MVS platform to add 

theses update the system.  

Depending on the size of the company and the inspection complexity, the task 

assigned to the quality inspector could be incorporated into the quality 

engineer/supervisor. 
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AI-MNGT 17.2.    Quality Engineer or Supervisor 

The second user proposed by this method is the quality Engineer or supervisor. 

This user will also directly interact with AI MVS, and they have the main responsibility 

of managing the system and its respective inspection outcomes. 

In addition to the quality inspector responsibilities, the quality supervisor will 

have the permission to create new image datasets and select a validated AI framework 

to run the training. After the training, the responsible must check if the trained AI model 

meets the validation metrics and required performance. If the model shows satisfactory 

results, it will be deployed for inspection activities. If the model does not meet the 

validation metrics, the supervisor can either select a different AI framework or request 

the AI MVS expert to perform an assessment. This assessment can be related to AI 

framework hyperparameters fine-tuning or AI model dataset analysis.  

The supervisor will be responsible for the inspection of KPI’s monitoring and 

control. These KPI’s could be related to the AI MVS performance such as periodic 

classification and localization metrics check or related to the process performance, 

such as the number of detected defects, type of defects. In the case of process updates 

or production evolution, the responsible must evaluate if the AI model should be 

updated or not. 

AI-MNGT 17.3.    AI MVS Expert 

The third user proposed by this method is AI MVS Expert. This user must have 

skills in image processing techniques and AI intelligence programming. Their role will 

be to create new AI frameworks, add new AI techniques and functionalities, optimize 

and fine-tune AI trained models, perform minor AI framework and updates, and 

evaluate the performance of existing AI models. 

Due the constant evolution of AI techniques, the AI MVS Expert must be 

constantly evaluating the updates of these newer frameworks, which can increase 

detection speed and classification performance, or reduce the need of computational 

processing power.  

Newer AI frameworks do not necessarily mean the addition of newer AI 

techniques. There are several techniques which already exist in the literature, but there 

are not fully integrated into an industrial solution. The AI MVS expert will be responsible 

for creating and testing the performance of these newer frameworks. 
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Another role of the specialist is to optimize and fine-tuning trained models when 

requested by the supervisor or the engineer. This task is normally related to AI models 

that do not meet the validation metrics. To fine tune models, one must understand how 

image processing and AI programming works. The specialist must determine what is 

cause non-convergence, where the source of the problem can be the insufficient 

images, unbalanced datasets, low-quality images, incorrect annotation, wrong initial 

hyperparameters, incorrect selection of AI framework and so on. Upon training, a 

quality engineer may learn how to identify some those problems, but to avoid problems 

of AI MVS malfunctioning, it is recommended that this task is performed by an expert. 

The AI MVS expert has a very specific set of skills which can be uncommon for 

some industries to have this kind of staff. One option for this type of user is to look for 

third-party companies which have this kind off staff. It is also possible to train existing 

MVS expert with AI programming skills to allow them to operate these kinds of 

solutions. 

AI-MNGT 17.4.    Other Users 

Inspection outcomes may be distributed to users who are neither from the 

quality area nor from the specific AI MVS expert group. This other user’s can receive 

outcomes in the form of images, for technical reports, KPI dashboards, or any other 

type of information the AI MVS can provide. Their level of access to modify how the AI 

MVS should be restricted in order to avoid any malfunctioning from external sources. 

Inspection outcomes data can also be sent for other machines, to raise alarms 

or even to perform minor modifications in the manufacturing process. How this 

integration will work will not be discussed in this document, but it an important factor 

for factories to achieve a higher degree of maturity regarding 4.0 industry concepts. 

AI-MNGT 18.    AI Frameworks  

AI framework is the fully working algorithm with the standard image processing 

functionalities and AI techniques integrated into one solution. The CNN group 

discussed earlier in this document is an example of an AI framework. Several 

frameworks were shown in the content analysis and they can be used or adapted to 

the industrial inspection scenario. Managing AI framework its essential to keep AI MVS 

working properly and to allow system improvements. 
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AI-MNGT 18.1.    Standard AI Framework 

Standard frameworks will be the first AI solutions adapted to the industrial 

scenario. They could be simple classification framework, object detection framework, 

or semantic segmentation framework. Each one of them must have all the 

hyperparameters pre-set and easily customizable for different images dataset. After 

each one is validated, they will be uploaded to the AI MVS platform so users can 

access and use them to create new inspections.  

Each framework must have a version control system, so the AI MVS expert can 

manage the most stable version and perform the necessary modifications without 

harming existing inspections. Since the AI framework is the core of multiple AI model 

inspections, one must be very careful when updating them.  

AI-MNGT 18.2.    Create a new framework or modify an existing one. 

The AI MVS platform must consider a developer option to create new AI 

framework or perform slight changes in the existing standard frameworks. The creation 

of a new framework must consider the requirements gathered in the ASA and CNN 

group. Other requirements which this method did not cover that AI MVS expert may 

find necessary can also be included in the creation of a new framework.  

An example of newer frameworks is to use multiple AI framework to create an 

ensemble decision tree, where the same input is subject to multiple AI solutions, and 

they vote for the best result. Another example of a new framework is the coarse and 

fine-grained R-CNN.  This network works with a generic or less specific R-CNN object 

detection, also known as coarse. The output of this coarse detection will be used for a 

more detailed classification, also known as fine-grained. 

AI-MNGT 19.    AI Trained Models 

AI trained model is the combination of an image inspection data combined with 

an AI framework whose training is already validated and is ready to be deployed. 

Creating and managing AI models is one of the core activities to ensure that an AI MVS 

will work properly. First, an AI model must be trained, then it should be validated in with 

an ongoing inspection activity. Validated models can be subject to updates given new 

defects or the inclusion of the object classes. These models should be properly stored, 

and its backup managed to avoid corrupting existing models. This backup also serves 

as data to allow transfer learning from existing models. 
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AI-MNGT 19.1.    Train Model 

The first step of AI model is to train them. The user must create a new image 

database or upload existing ones along with its respective labels and annotations 

based on the required inspection type. The adequate AI framework must also be 

selected, and then training can be performed. The trained model will be subject to a 

validation using part of the images which were not used during the training phase to 

perform an initial validation. If the model does not achieve the required metrics, it must 

be subject to dataset improvements and corrections or, AI framework fine-tuning or, 

reselection the appropriate AI framework. 

AI-MNGT 19.2.    Validate Model 

A model which has been trained and a pre-validated will be subject to real case 

inspections. During the validation process, the metrics should be constantly checked 

and be subject to the quality inspector or engineer feedbacks. These feedbacks will 

assure the ability of the model be flexible in real case inspections. When the model 

achieves is metrics, it will be validated and uploaded to the AI MVS platform. This 

validated version will be stored so the users can always have a stable inspection 

version. 

AI-MNGT 19.3.    Update Model 

Industries, factories, and companies are subject to constant process changes 

and new product development. In addition to that, existing processes and its respective 

manufacturing processes are subject to new defects, which previously was not 

considered during the training phase of a model. The ability to update the model is 

essential to assure that the AI MVS inspection will be flexible to adapt to these 

modifications. Users will be able to send this new input to the AI MVS platform, and the 

responsibility for its management will be able to update the dataset and retrain an 

existing model. This update must be subject to the same validation metrics and if the 

new model will be updated only if they achieved the required performance. If they do 

not achieve the performance, the AI MVS expert will have to analyze these new 

changes and optimize the AI framework for this new scenario. 

AI-MNGT 19.4.    Model Backup 

A backup of each new validated Model with be performed and stored in the AI 

MVS platform along with the respective images of the training and validation dataset. 
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These backups will assure that existing inspections will not be corrupted during their 

evolution process. The users responsible for the model creation, validation, and update 

must be registered in the AI MVS platform to keep track in who performed each activity. 

This register allows better management of what’s have been done, monitor any 

problems in the process and allow the AI MVS correct evolution. 

AI-MNGT 19.5.    Model Transfer Learning 

Training and optimizing new models with the current dataset, frameworks, and 

programming tools can be time-consuming. Model transfer learning is a technique 

proposed in this research that can transfer a specific knowledge about an existing class 

from a trained model and transfer them into a new or existing model. Figure 56 shows 

a diagram of how the transfer learning would be extracting data an existing model.  

Figure 56 - Example of the extraction of relevant data in the proposed transfer learning 
technique. 

Source: The Author 

Based on a trained model, the user would select several images from a single 

known class and feed into the trained AI model. The output the model would fire all 

pack of neurons in the FC layers, but only a few of them would the most relevant values 

for that classification process. This allows the user to find which were the most relevant 

feature maps generated by the convolution layers. The same backtracking technique 

would be used to find the most relevant convolution filters. 

This proposed technique is different from fine-tuning, which feeds a new dataset 

into an existing AI trained model with a specific AI framework. The proposed technique 

must consider how this extracted data from a certain AI framework would be fed into a 

different AI framework with different convolution layers and FC configuration. 

To validate if the extracted data is relevant, it is possible to pick the same dataset 

from the same desired class to train a single classification model and compared if the 

neurons and filters from both techniques are similar. 
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AI-MNGT 20.    AI MVS Management Platform 

The AI MVS management platform briefly mentioned in the previous section is 

a software that would integrate all the functionalities described in the proposed 

implementation model. Figure 57 shows how the AI MVS management platform works 

and its main functionalities. 

Figure 57 - AI MVS Management Platform main workflow and its functionalities. 

Source: The Author 

Each element in the workflow has its correspondent description in the model so 

that the users can find how each of them works. Each new AI MVS inspection can 

begin in the Quality Control Assessment and follow the model in a clockwise flow. If 

the AI MVS is already implemented and functional, the user can start the process from 
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the AI Framework or the AI Train Model. This workflow can be adapted to each 

industrial scenario considering each specific requirement. 

AI-MNGT 20.1.    Management Software 

All these workflow and functionalities can be converted into management 

software since most of the proposed functionalities are computer-based. The elements 

within the dashed line yellow box in Figure 57 are elements that would require to 

communicate with management software or to be directly accessed in the 

management software. 
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5 IMPLEMENTATION EXAMPLE OF THE PROPOSED FRAMEWORK MODEL  

The implementation model validation was performed after each new 

functionality and activity was added. Four scenarios are presented to illustrate how the 

main elements of the model were validated and how the model evolved with each new 

scenario. 

5.1 First Implementation Scenario – Non-AI-MVS Robotic Arm. 

The first scenario is an example of non-AI MVS Robotic Arm project which was 

implemented in the of the assembly to perform image-based inspection. Since the 

model does not use any kind of AI technique, the implementation model can be used 

for the IIR group phase.  

By using the IIR model the Quality Control Assessment was performed, and the 

warranty related cost expenditure KPI was used to define which product should be 

inspected. This KPI considers the cost that the factory had to indirectly pay to 

customers due products which showed some type of defect before its warranty expires. 

Components which presented the higher impacts on this KPI were selected for a 

deeper analysis. In this second analysis it was mapped the potential localization where 

the failures or defects origin source(s). Based on that information it was possible to 

determine the types of inspection that should be performed, the smallest feature size 

and where to place the MVS. The end of one assembly lines was selected as the best 

location, since the project consisted in a camera attached to robotic arm and it could 

detect most of the problems and it would have minor impacts on the existing assembly 

process. Table 11 resumes the outputs of the implementation model for this scenario. 
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Table 11- Summary of the implementation steps of the Robotic Inspection MVS 

  Sub Group Activity Scenario 01 -  Robotic Inspection MVS 

IN
SD

U
ST

RI
AL

 IN
SP

EC
TI

O
N

 R
EQ

U
IR

EM
EN

TS
 (I

IR
) 

1.Quality 
Control 
Assessment 

IIR-1.1 KPI or Indirect Evidences 
Gathering 

Warranty related cost expenditure KPI Mapping 
Simplified root cause analisys to determine the potential 
localization of the failures or origin of defects 

IIR-1.2 Visual Inspection 
Applicability and Accessibility 
Check 

Preliminary assesment of the potential localization of the failures or 
origin of defects to evaluate the accesibility check 

2.Scene 
Constraints 
Assessment 

IIR-2.1 Inspection Type Definition 
Several types of inspection: 
Diversity Check, Incorrect Part, Missing Part 

IIR-2.2 Verify the smallest feature 
size to be detected 

10mm to 500mm depeding on the problem type 

IIR-2.3 Image Environment and 
Background Complexity 

Industrial environment with low lighting region. 
No influence from sunlinght. 
Possible occlussion due worker interference 

3.Technical 
Constraints 
Assessment 

IIR-3.1 Define MVS Location 
In the end of the assembly line where most of the desired 
inspections could be performed simultaneously 

IIR-3.2 Fixed or Moving Camera Camera attached to a Robotic Arm (Moving Camera) 

IIR-3.3 Machine Vision 
Components 

Customized Camera with Controlled Lighting Kit 

IIR-3.4 Communication with 
existing Industrial 
Systems/Equipment's 

HMI, Standardized PLC, Other Sensors 

Source: The Author 
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5.2 Second Implementation Scenario – Non-AI – MVS. 

The second implementation scenario is a non-AI MVS prototype that was used 

to quickly validate some concepts and activities of the ASA group. Most of the IIR group 

was imported from the previous implementation case, except for the following changes:  

 Inspection type: Diversity check of assembled components. 

 Smallest feature size: changed to 20 millimeters due component 

characteristics, 

  Inspection camera: webcam on a fixed position. 

 Equipment; Laptop and Raspberry PI 

 Most of the ASA activities could be applied on this scenario with the exception 

of the AI related data. The solution type chosen was the classification with object 

localization using a customized dataset. This dataset was created through images 

extracted from videos when the camera was positioned in the assembly line. No 

dataset improvement technique was applied in this case. The algorithm was 

programmed in Python 3.6 using the AWS Sagemaker online platform and the Jupyter 

Notebook the application to write the codes and validate the programming. Feature 

matching technique was selected because it can be programed to perform simple task 

of classification and object localization. The confusion matrix was applied to evaluate 

the algorithm classification performance. 

Some difficulties were identified during the implementation process. One 

problem the absence of the solution workflow. The other one was to transfer the same 

programming environment created in the AWS Sagemaker to embedded hardware so 

it could run the designed solution. The last problem of this scenario was the low 

performance of the algorithm which was not optimized for the embedded hardware. 

The algorithm required almost four second for every image input image to evaluate 

correctly which was the component diversity, which is a very poor performance 

compared to recent techniques (Redmon; Farhadi, 2017),(Liu et al., 2016). Those 

difficulties motivated upgrades in the implementation model which are already included 

in the version described early in this document. Table 12 resumes the main activities 

output of this scenario.  
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Table 12- Summary of the implementation steps of the Non-AI MVS Prototype 

  Sub Group Activity CASE 02 - Non-AI MVS Prototype 

IN
SD

U
ST

RI
AL

 
IN

SP
EC

TI
O

N
 

RE
Q

U
IR

EM
EN

TS
 

(II
R)

 

2.Scene 
Constraints 
Assessment 

IIR-2.1 Inspection Type Definition One type of inspection: Diversity Check 
IIR-2.2 Verify the smallest feature size to be 
detected 

20mm 

IIR-3.2 Fixed or Moving Camera Fixed Camera 
IIR-3.3 Machine Vision Components Simple Webcam only 
IIR-3.4 Communication with existing Industrial 
Systems/Equipment's 

Laptop and Raspberry 

AR
TI

FI
CI

AL
 IN

TE
LL

IG
EN

CE
 A

SS
ES

SM
EN

T 
(A

SA
) 

4. Solution type 
selection 

ASA-4.1 Application/ Functionalities Classification with Object Localization 

5. AI technique for 
MVS 

ASA-5.1 AI Techniques Selection AI Technique was not applied 

6.AI training 
requisites 

ASA-6.1 Supervision Type Selection AI MVS was not applied - Training was not applied 
ASA-6.2 Dataset source Customized Dataset (Custom) 
ASA-6.3 Dataset Improvement No Dataset improvement was performed 

7.AI 
Hyperparameters 

ASA-7.1 Solution Workflow/Diagram Workflow or diagram was not used 
ASA-7.2 Layer, Method and Framework 
Parameters 

AI MVS was not applied - MVS techniques: Automatized 
Feature Matching 

8. Hardware/ 
Software for AI 

ASA-8.1 Training Hardware AI MVS was not applied - Training was not applied 
ASA-8.2 Operational System Windows 
ASA-8.3 Programming Language Python 3.6 
ASA-8.4 Programming Environment and 
Libraries 

AWS Sagemaker - Jupyter Notebook 
OpenCV, PIL 

ASA-8.5 Embedded Hardware Raspebrry PI  

9. Validation 
Metrics 

ASA-9.1 Classification Metrics Confusion Matrix 
ASA-9.2 Localization Metrics Localization Metrics was not applied 
ASA-9.3 Training Hardware Performance Training Hardware Performance was not applied 
ASA-9.4 Embedded Hardware Inference 
Performance 

Frame processed per second - (4 seconds per input 
image) 

Source: The Author 
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5.3  Third Implementation Scenario – First AI MVS Prototype 

The third implementation scenario considers the first AI MVS prototype to 

validate the remaining concepts and activities of the ASA group. Most of the IIR group 

was imported from the second implementation case, except for the equipment, which 

did consider the Rasberry PI due its lack of performance. This third scenario evaluates 

the algorithm performance only in the training hardware. 

The solution type chosen was also the classification with object localization 

using the same dataset created previously. The SSD (Liu et al., 2016) was the AI R-

CNN technique selected to match the solution type functionalities. The programming 

platform was changed to the Anaconda Navigator so it would not depend on cloud 

computing and online services. The programming language was kept but new 

programming libraries has to be installed in order to use the GPU computing, such as 

cuDNN (Chetlur et al., 2014), CUDA, and R-CNN framework libraries, such as 

Tensorflow (Abadi et al., 2016) and Keras. The training hardware was the in-built GPU 

of the Laptop NVIDIA Geforce GTX 950M. 

The images in the dataset were subject to cropping, changing the its size from 

1280x720 to 300x300 which is the required input to the SSD framework. Bounding 

boxes a diversity classes labelling was also applied which each image of the dataset 

to allow supervised training. Seventy percent of the dataset was destined to the training 

phase, while the remaining was used for model validation. The remaining information 

of the CNN specifics details were not changed from the base SSD framework. 

New difficulties were identified during the implementation process in this 

scenario. Since the available GPU of the laptop was not a early model, there was some 

challenges to find older programming libraries which would enable the programmed 

algorithm to work properly. Even with this problem solved, the SSD layers were not 

customized for this application which caused the AI model to crash during the training 

phase due lack of memory. After that, the SSD framework configuration and learning 

parameters, such as mini-batch size was modified. Those difficulties allowed more 

upgrades in the implementation model which are already included in the version 

described early in this document. Table 13 resumes the main activities output of this 

scenario. 
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Table 13 - Summary of the implementation steps of the First AI MVS Prototype 

  Sub Group Activity CASE 03 - First AI MVS Prototype 

A
R

T
IF

IC
IA

L
 

IN
T

E
L

L
IG

E
N

C
E

 
A

S
S

E
S

S
M

E
N

T
 (

A
S

A
) 4. Solution type selection ASA-4.1 Application/ Functionalities Classification with Object Localization 

5. AI technique for MVS ASA-5.1 AI Techniques Selection Single Shot Multi Detector SDD- R-CNN based 
6.AI training requisites ASA-6.1 Supervision Type Selection Supervised Training 

7.AI Hyperparameters 
ASA-7.1 Solution Workflow/Diagram Used the SSD workflow 
ASA-7.2 Layer, Method and Framework 
Parameters 

Layer and Framework Parameters according to SSD paper 

8. Hardware/ 
Software for AI 

ASA-8.1 Training Hardware GPU - NVIDIA Geforce GTX 950M 
ASA-8.4 Programming Environment and 
Libraries 

Anaconda Navigator - Jupyter Notebook  
OpenCV, CUDA, cuDNN, Tensorflow, Keras 

C
N

N
 S

P
E

C
IF

IC
 D

E
T

A
IL

S
 

10. Dataset 

CNN-10.1 Dataset Creation/Selection 
Images with 1280x720 resolution extracted from static videos 
form the assembly line divided into 5 different classes 

CNN-10.2 Dataset Pre-processing 
Dataset Image cropping from the original size to 300x300 to 
adjust data into the framework parameters 

CNN-10.3 Dataset Annotation Manually applied Bounding Box and class type annotation 
CNN-10.4 Dataset Division 70% Dataset form training and 30% for validation 

11. Convolution 
Operation 

CNN-11.1 Weights Ramdomized Weights startup 

CNN-11.2  to CNN-11.5 
Kernel and Filters were not changed from the SSD framework 
extracted from the paper 

13. Pooling Operation 
CNN-13.1 Pooling Types Pooling were not changed from the SSD framework extracted 

from the paper CNN-13.2 Pooling Stride and Size 

14. Fully Connected 
Layer 

CNN-14.1 Number of fully connected layers Modified only the last FC layer to match the number of classes 
for the diversity check 
Other fully connected parameters were not changed from the 
SSD framework extracted from the paper 

CNN-14.2 Number of neurons 

CNN-14.3 Fully connected layers Options 

15. Classifier CNN-15.1 Classifier Type 
Modified only the classifier to match the number of classes for 
the diversity check 

16. AI Learning Method 
CNN-16.1 Learning Method Epoch and 
Convergence Learning Method were not changed from the SSD framework 

extracted from the paper 
CNN-16.2 Learning Method Characteristics 

Source: The Author 
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5.4 Fourth Implementation Scenario – Final AI MVS Prototype. 

The fourth implementation scenario considers the final AI MVS prototype to 

validate the remaining concepts which were not considered in the previous scenario. 

Most of the IIR group, ASA group and CNN group configurations were imported from 

the second implementation case. For this final prototype the embedded hardware 

Rasberry PI were added to evaluate its performance with an optimized framework. The 

laptop used in this scenario has a modern GPU, NVIDIA Geforce GTX 1060, where 

there is no concern regarding to the version of the programming libraries, allowing a 

smoother evaluation the algorithm performance with the training hardware. This also 

allowed a faster optimization to deploy the trained model into the embedded hardware. 

Tiny YOLO was used as the AI R-CNN technique, which is based on YOLOv3 

(Redmon; Farhadi, 2018). Tiny YOLO requires an input of size 32x32, which allows a 

lighter AI model and it can run on embedded hardware. To allow a faster training, the 

starting weights were downloaded the YOLO website Redmon (2019) and they were 

pretrained based on the COCO dataset (Lin et al., 2014). 

Given all the customizations performed in the Tiny YOLO framework the model 

was trained and validated in less than 10 hours. Then it was upload into the embedded 

hardware. The embedded hardware managed to run the model processing three 

images per second, which is satisfactory performance given the available benchmarks 

(Yin et al., 2018). Table 14 resumes the main activities output of this scenario. 
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Table 14 - Summary of the implementation steps of the Final AI MVS Prototype 

  Sub Group Activity CASE 04 - Final AI MVS Prototype 

A
R

T
IF
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IA
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 I

N
T

E
L
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E
N

C
E

 
A

S
S

E
S

S
M

E
N

T
 (

A
S

A
) 

5. AI technique for 
MVS 

ASA-5.1 AI Techniques Selection Tiny Yolo - R-CNN based 

7.AI Hyperparameters 
ASA-7.1 Solution Workflow/Diagram Used the Tiny Yolo workflow 
ASA-7.2 Layer, Method and Framework Parameters Layer and Framework Parameters according to Tiny Yolo 

8. Hardware/ 
Software for AI 

ASA-8.1 Training Hardware GPU - NVIDIA Geforce GTX 1080 
ASA-8.2 Operational System Windows 
ASA-8.3 Programming Language Python 3.6 

ASA-8.4 Programming Environment and Libraries 
Anaconda Navigator - Jupyter Notebook  
OpenCV, PIL, CUDA, cuDNN 

ASA-8.5 Embedded Hardware Raspebrry PI 

9. Validation Metrics 
ASA-9.3 Training Hardware Performance Time required for training 
ASA-9.4 Embedded Hardware Inference 
Performance 

Frame processed per second 

C
N

N
 S

P
E

C
IF

IC
 D

E
T

A
IL

S
 

10. Dataset CNN-10.2 Dataset Pre-processing 
Dataset Image cropping from the original size to 32x32 to 
adjust data into the framework parameters 

11. Convolution 
Operation 

CNN-11.1 Weights Pretrained Weights imported from COCO Dataset 
CNN-11.2 Kernel/Filter Size and Shape 

Kernel and Filters were customized to adapt the Tiny Yolo 
framework 

CNN-11.3 Kernel Stride and Padding 
CNN-11.4 Number of Filter/Kernels per layers 
CNN-11.5 Convolution Options 

13. Pooling Operation 
CNN-13.1 Pooling Types 

Pooling was customized to adapt the Tiny Yolo framework 
CNN-13.2 Pooling Stride and Size 

14. Fully Connected 
Layer 

CNN-14.1 Number of fully connected layers Modified only the last FC layer to match the number of 
classes for the diversity check 
 
Other fully connected parameters were customized to adapt 
the Tiny Yolo framework 

CNN-14.2 Number of neurons 

CNN-14.3 Fully connected layers Options 

16. AI Learning 
Method 

CNN-16.1 Learning Method Epoch and Convergence Used mini-batch learning with six images per batch and ten 
thousand of epoch to achieve model convergence. CNN-16.2 Learning Method Characteristics 

Source: The Author 
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6  CONCLUSION 

The research provides an evaluation of current status of MVS for industrial 

inspection, identifying potential AI technique for MVS, and detailing how can they be 

implemented through the proposed model.  

The most relevant limitations of traditional MVS identified by this research are 

the constant need of reprogramming the MVS for existing or newer inspection and, 

adapting it to newer inspections. They are more sensitive to environmental lighting 

changes, requiring more investments on controlled lighting background or special 

equipment to provide specific illumination conditions. Traditional MVS also lacks the 

ability to learn from previous inspections, which decreases its ability to adapt and the 

data from previous inspections are lost, if not stored properly. 

The systematic review and content analysis allowed a deeper evaluation of the 

current scenario for AI MVS, identifying which techniques are being applied already, 

such as R-CNN. In addition to that, the review showed promising techniques like 

transfer learning, ensemble neural networks and automatic hyperparameters 

optimization architecture (PNAS) (Liu et al., 2017), which can used to further improve 

the existing AI MVS inspections functionalities. Despite the existing improvements of 

AI MVS, it was identified that the existing techniques and algorithms need to consider 

industrial requirements. Without these requirements and extensive validation in the 

industrial inspection scenario, the gap from what is being developed in the academical 

researches and industrial needs will not be fulfilled. Embedded hardware with the 

ability to run complex AI model in real-time inspection is one of the main challenge new 

AI MVS research must overcome. Specific validation metrics that fulfil not only 

algorithm performance, but industrial requirements must be included in these studies, 

to make these techniques more robust. Through the review it was possible to identify 

the absence of how industries can implement AI MVS, considering the most relevant 

requisites and what is the required knowledge to create technical specifications or 

allow negotiations with specialized companies that can provide this service. 

The proposed model was built on the extracted elements from the systematic 

review and based on the experiments performed in an industrial environment which 

the author participated. The model division into steps helps non-AI specialist or non 

MVS specialists, to understand which are the main requisites to implement this solution 
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in an industrial scenario. It also provides a technical background and basic knowledges 

of the current AI techniques applied to machine vision. The approach was designed to 

use only the necessary mathematical operations without deepening into more complex 

operations and programming that each technique is based on.  

The validation of the model was done parallelly as the model was built, 

identifying the limitations of each group and activities and improving it as new 

requirements or limitations were found. Since all the validation steps of the model was 

performed under the supervision of the author, some technical limitations, new 

requirements or newer groups may be required. These improvements would turn the 

proposed model more flexible to specific industrial scenarios and more robust in the 

validation process. The proposed management system and software were based on 

these difficulties and since their programming and implementation were complex, they 

could be further detailed during the two years of research. However, if companies have 

the intention to integrate AI MVS in their inspection routines, they will be soon needing 

some sort of management. 

It is important to know that current AI MVS has the potential to perform many 

descriptive evaluations and in some cases some predictions based on the data given, 

but diagnostic and prescriptive functionalities, based on 4.0 industry concepts, are still 

to developed. Another important point to be developed and integrated into this study is 

the addition of 3D machine vision with AI features which were not covered. Besides 

that, this research and the proposed model can serve as a foundation for further 

improvements of AI MVS in academical research and allowing them to evolve into the 

cognitive machine vision inspection. 
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