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Resumo
A variabilidade é um tipo de flexibilidade aplicada ao processo empresarial. Problemas
de variabilidade para lidar com um mesmo processo para diferentes contextos. Cada um
desses contextos diferentes é chamado de variante do processo. Por exemplo, o mesmo
processo executado em diferentes países pode exigir variações na sequência de tarefas
devido a diferenças nas regulamentações. Cada uma dessas variações para a seqüência
de tarefas é uma variante do processo. Variantes de processo também podem surgir da
variabilidade de produtos e serviços, diferentes grupos de clientes e diferenças temporais.
Um conjunto de variantes diferentes de um mesmo processo é chamado de família de
processos. Para as empresas, projetar e implementar cada variante do processo a partir
do zero e mantê-la separada seria ineficaz e onerosa. Assim, há um grande interesse em
capturar o conhecimento comum do processo apenas uma vez e reutilizá-lo em termos de
modelos de processo de referência. Nos últimos anos, vários estudos foram feitos para lidar
com famílias de processos. Esses estudos propuseram técnicas e métodos para selecionar
variantes da família de processos. No entanto, essas técnicas e métodos têm sido fortemente
direcionados aos processos pré-especificados. Embora já existam estudos que desenvolvam
métodos e técnicas para fornecer seleção de variantes a processos pré-especificados, há
uma falta de estudos que abordam as variantes de seleção para processos baseados em
restrições. Os processos baseados em restrições tomaram atenção considerável nos últimos
anos devido à maior flexibilidade que eles fornecem ao usuário, em oposição aos processos
pré-especificados. Assim, esta pesquisa fornece um estudo que traz fundamentos, técnicas
e métodos para criar uma estrutura conceitual (PAIS conceitual) para fornecer seleção
de variantes para processos baseados em restrições, ou seja, combinar variabilidade com
frouxidão.

Palavras-chave: variabilidade. variantes de processo. processo de negócio. processos
pré-especificados. processos baseados em restrições.



Abstract
Variability is a kind of flexibility applied to business process. Variability concerns to handle
a same process to different contexts. Each of these different contexts is named process
variant. For example, the same process executed in different countries may require variations
to sequence of tasks due to differences in regulations. Each of these variations to sequence of
tasks is a process variant. Process variants can also emerge from variability of products and
services, different groups of customers, and temporal differences. A set of different variants
from a same process is called processes family. For companies, designing and implementing
each process variant from scratch and maintaining it separately would be inefficient and
costly. Thus, there is a great interest in capturing common process knowledge only once
and re-using it in terms of reference process models. In recent years, several studies
have been made to deal with process families. These studies have proposed techniques
and methods to select variants from process family. Nevertheless, these techniques and
methods have been strongly targeted to pre-specified processes. Although there are already
studies developing methods and techniques to provide selection of variants to pre-specified
processes, there is a lack of studies that address the selection variants to constraints based
processes. Constraints based processes have taking considerable attention at last years due
the greater flexibility that they provide to the user, in opposite to pre-specified processes.
Thus, this research provides a study that brings fundamentals, techniques and methods in
order to make a conceptual framework (conceptual PAIS) to provide selection of variants
to constraints based processes, i.e. to combine variability with looseness.

Keywords: variability. process variants. business process. pre-specified processes. con-
straints based processes.



Lista de ilustrações

Figura 1 – Research method’s tasks and data (research process) . . . . . . . . . . 27
Figura 2 – Automata representing: (a)activity model and (b) uncoordinate behavi-

our model of two activities . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figura 3 – Venn diagram of languages relation . . . . . . . . . . . . . . . . . . . . 39
Figura 4 – Automata representing constraint existence(a1, 1) . . . . . . . . . . . . 40
Figura 5 – Automata Sc1/A, Sc1’/A1 and Sc1r . . . . . . . . . . . . . . . . . . . . 41
Figura 6 – Automata C2, Sc2/A, and Sc2r . . . . . . . . . . . . . . . . . . . . . . 42
Figura 7 – Automata C3, Sc3/A, and Sc3r with c2 as an uncontrollable event . . . 43
Figura 8 – Automata Sc3/A’, and Sc3r’ with c2 as a controllable event . . . . . . 44
Figura 9 – Automata representing the group existence . . . . . . . . . . . . . . . . 45
Figura 10 – Automata representing the group relation . . . . . . . . . . . . . . . . 46
Figura 11 – Automata representing the group negation . . . . . . . . . . . . . . . . 47
Figura 12 – Automata representing the group choice . . . . . . . . . . . . . . . . . 47
Figura 13 – Project management process, process instances and users worlists . . . 49
Figura 14 – Executing the project management process under supervision . . . . . 50
Figura 15 – Venn diagram of languages relation. . . . . . . . . . . . . . . . . . . . . 59
Figura 16 – Reference Process model adapted from (REICHERT; WEBER, 2012a). 62
Figura 17 – Possible automata representing an action . . . . . . . . . . . . . . . . . 64
Figura 18 – Automata representing constraints on ordering of actions . . . . . . . . 65
Figura 19 – Constraints and automata associated with configurable connectors . . . 67
Figura 20 – Process variant representing an emergency medical examination . . . . 69
Figura 21 – Very simplified framework to design and run a process . . . . . . . . . 71
Figura 22 – Example of syntactically correct and incorrect workflow nets . . . . . . 75
Figura 23 – Example of semantically correct and incorrect workflow nets . . . . . . 77
Figura 24 – Automaton that represents a task in Declare framework . . . . . . . . 77
Figura 25 – Process Example1 at simulation interface . . . . . . . . . . . . . . . . . 80
Figura 26 – Process Example2 modeled by Declare and at simulation interface . . . 80
Figura 27 – Process Example3 modeled by Declare and at simulation interface . . . 81
Figura 28 – Process Example4 modeled by DCR and at simulation interface . . . . 85
Figura 29 – Process Example5 modeled by DCR and at simulation interface . . . . 86
Figura 30 – Task model proposed by (SANTOS et al., 2014): event start (s) is

controllable, and events complete (c) and cancel (x) are uncontrollable 87
Figura 31 – Constraints SCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figura 32 – Sequence of operations for reaching the supervisor . . . . . . . . . . . . 88
Figura 33 – The single method of SDL framework at design time . . . . . . . . . . 90
Figura 34 – The three methods of SDL framework at run time . . . . . . . . . . . 91



Figura 35 – Some tasks and constraints . . . . . . . . . . . . . . . . . . . . . . . . 92
Figura 36 – tm||r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figura 37 – tm||r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figura 38 – Procedure for verifying if a set of constraints is valid. . . . . . . . . . . 101
Figura 39 – Markers for the synchronous product of t1, t2 and r1 . . . . . . . . . . 104
Figura 40 – Tasks and constraints of the process EXAMPLE . . . . . . . . . . . . . 105
Figura 41 – Markers that are reached after the sequence s3.s1.c3.s2.c1.c2 is executed .108
Figura 42 – Simplified representation of the framework proposed in this work . . . 113
Figura 43 – Four variants and their mergers . . . . . . . . . . . . . . . . . . . . . . 115
Figura 44 – Part of a questionnaire for selection of variants in the health-care domain117
Figura 45 – Domain facts from Figure 43(e) grouped in two questions . . . . . . . . 118
Figura 46 – User support framework at design time and User support framework at

configure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figura 47 – User support framework at design time . . . . . . . . . . . . . . . . . . 121
Figura 48 – Method to make Function . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figura 49 – Method to make Set of Features . . . . . . . . . . . . . . . . . . . . . . 122
Figura 50 – Method to make a Reference Process Model . . . . . . . . . . . . . . . 126
Figura 51 – Method to make a Set of variants (Vrpm) . . . . . . . . . . . . . . . . . 132
Figura 52 – Method to Map from Features to Variants . . . . . . . . . . . . . . . . 135
Figura 53 – Method to to make a Set of questions. . . . . . . . . . . . . . . . . . . 138
Figura 54 – Method user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figura 55 – Method Logic Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figura 56 – Method logic control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figura 57 – Framework for user support at design time and Framework for user

support at configure time . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figura 58 – Framework for user support at design time . . . . . . . . . . . . . . . . 169
Figura 59 – a Syntactically and Semantically SDL process taken from configure time182
Figura 60 – Sequence of markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figura 61 – a Syntactically and Semantically SDL process taken from configure time194
Figura 62 – Sequence of markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



Lista de tabelas

Tabela 1 – Researches on business process variability aspects . . . . . . . . . . . . 55
Tabela 2 – Researches on business process variability aspects . . . . . . . . . . . . 56
Tabela 3 – Guided questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Tabela 4 – Constraints from Declare and their description . . . . . . . . . . . . . 78
Tabela 5 – Constraints from Declare and their LTL expressions . . . . . . . . . . . 79
Tabela 6 – Five relations from DCR Graphs . . . . . . . . . . . . . . . . . . . . . 83
Tabela 7 – SDL automata and the soundness requirements that they affect . . . . 95
Tabela 8 – Three cases to check the pendent events in a task . . . . . . . . . . . . 104
Tabela 9 – Pendent events in automata task, atleast1 (ti), precedence(ti,tj) and

response(ti,tj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Tabela 10 – Pendent events for automaton t1||t2||r1. . . . . . . . . . . . . . . . . . 105
Tabela 11 – Sets of pendents events (P) to each construct of the process EXAMPLE106
Tabela 12 – Variation points and process facts to the configurable process model in

Figure 43(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Tabela 13 – Correspondence between domain facts and features . . . . . . . . . . . 116
Tabela 14 – Process facts from Figure 43(e) with their logical expressions . . . . . . 117
Tabela 15 – Constraints avoid a non-valid variant from being selected from Figure 43(e)118
Tabela 16 – Description of Method to make Set of Features . . . . . . . . . . . . . 122
Tabela 17 – Description of Method to make a Reference Process Model. . . . . . . 127
Tabela 18 – Description of Method to make a Set of variants Vrpm. . . . . . . . . . 131
Tabela 19 – Description of Method to Map from Features to Variants . . . . . . . . 136
Tabela 20 – Description of Method to make a Set of questions. . . . . . . . . . . . 139
Tabela 21 – Description of Method User Interface . . . . . . . . . . . . . . . . . . . 142
Tabela 22 – Description of Method Logic control 1. . . . . . . . . . . . . . . . . . . 143
Tabela 23 – Description of Method Logic control 2. . . . . . . . . . . . . . . . . . . 143
Tabela 24 – Project Scope Management processes . . . . . . . . . . . . . . . . . . . 160
Tabela 25 – Inputs, tools and techniques, and outputs in Scope Management Plan . 160
Tabela 26 – Inputs, tools and techniques, and outputs from Requirement Gathering 162
Tabela 27 – Inputs, tools and techniques, and outputs from Define Scope . . . . . . 163
Tabela 28 – Inputs, tools and techniques, and outputs from Create WBS . . . . . . 164
Tabela 29 – Inputs, tools and techniques, and outputs from Validate Scope . . . . . 165
Tabela 30 – Inputs, tools and techniques, and outputs from Control Scope . . . . . 166
Tabela 31 – Set of tasks selected to the Examples 1 and 2 . . . . . . . . . . . . . . 167



Sumário

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.3 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.4 Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 Articles in this research . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 MODELING CONSTRAINT-BASED PROCESSES: A SUPERVI-
SORY CONTROL THEORY APPLICATION . . . . . . . . . . . . . 32

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Supervisory Control Theory . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Modeling activities of constraint-based processes . . . . . . . . . . . 37
2.4 Modeling constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Executing the supervisory control . . . . . . . . . . . . . . . . . . . . 48
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 SELECTION OF PROCESS VARIANTS FROM PRE-SPECIFIED
PROCESSES BASED ON SUPERVISORY CONTROL THEORY . 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Supervisory Control Theory . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 The proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 SIMPLE DECLARATIVE LANGUAGE (SDL): A CONCEPTUAL
FRAMEWORK TO MODEL CONSTRAINT BASED PROCESSES 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Declare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



4.3.1 Tasks and constraints in Declare . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Soundness in Declare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.3 Constraint violation and enabled events in Declare . . . . . . . . . . . . . . 81
4.4 DCR graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Tasks and constraints in DCR graphs . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Soundness in DCR graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.3 Enabled and pendent events in DCR graphs . . . . . . . . . . . . . . . . . 84
4.5 SCT approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.1 Tasks and constraints in SCT approach . . . . . . . . . . . . . . . . . . . 87
4.5.2 Soundness, Enabled and pendent events in SCT approach . . . . . . . . . . 89
4.6 Simple Declarative Language (SDL) . . . . . . . . . . . . . . . . . . . 89
4.6.1 Design time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.2 Run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6.3 Syntax in SDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6.4 Semantics in SDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6.4.1 SDL automata and soundness requirements . . . . . . . . . . . . . . . . . . . 94
4.6.4.2 Synchronous product of SDL automata and its influence on soundness requirements 95
4.6.4.2.1 Influence of synchronous product of tasks on option to complete, no dead task and

proper completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6.4.2.2 Influence of synchronous product of constraints precedence on no dead task . . . . . . 96

4.6.4.2.3 Influence of synchronous product of constraints response on option to complete . . . . 97

4.6.4.2.4 Influence of synchronous product of constraints atleast1 on option to complete . . . . 98

4.6.4.2.5 Influence of synchronous product of constraints response and atleast1 on option to complete 98

4.6.4.3 Conditions to SDL processes comply with soundness requirements . . . . . . . 99
4.6.5 Other definitions to SDL processes . . . . . . . . . . . . . . . . . . . . . . 100
4.6.6 Enabled and pendent events in SDL . . . . . . . . . . . . . . . . . . . . . 103
4.6.7 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 A CONCEPTUAL FRAMEWORK TO SELECT VARIANTS FROM
CONSTRAINT BASED PROCESSES . . . . . . . . . . . . . . . . . 110

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Configurable process model . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Domain facts and questionnaire . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 Grouping domain facts into questions . . . . . . . . . . . . . . . . . . . . 117
5.3.2 Domain fact constraints and order dependencies . . . . . . . . . . . . . . . 118
5.4 Selection of Variants with Simple Declarative Language (SVSDL) . 119
5.4.1 Design time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.1.1 Method to define Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



5.4.1.2 Method to make Set of Features . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.1.3 Method to make Set of Domain Constraints . . . . . . . . . . . . . . . . . . 123
5.4.1.4 Method to make Reference Process Model . . . . . . . . . . . . . . . . . . . 123
5.4.1.5 Method to make Set of Variants (Vrpm) . . . . . . . . . . . . . . . . . . . . 130
5.4.1.6 Method to Map from Features to Variants . . . . . . . . . . . . . . . . . . . 130
5.4.1.7 Method to make a Set of Feature Precedence Relations . . . . . . . . . . . . . 134
5.4.1.8 Method to make a Set of Questions . . . . . . . . . . . . . . . . . . . . . . 135
5.4.1.9 Method for Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4.2 Configure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.2.1 Method User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.2.2 Method Logic Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.2.3 Method Logic Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.3 Run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.4 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.4.1 Example 1: Function = Exactly.one . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.4.1.1 At design time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.4.1.2 At configure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.4.1.3 At run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.4.2 Example 2: Function = Atleast.one . . . . . . . . . . . . . . . . . . . . . . . 149
5.4.4.2.1 At design time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.4.2.2 At configure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.4.2.3 At run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 SELECTION OF VARIANTS FROM PMBOK PROCESSES: AN
EXAMPLE OF APPLICATION OF SVSDL . . . . . . . . . . . . . . 156

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2 PMBOK Project Scope Management . . . . . . . . . . . . . . . . . . 159
6.2.1 Scope Management Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.2 Requirement Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2.3 Define Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.4 Create WBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.5 Validate Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.6 Control Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 Approach to select variants from PMBOK processes by using SVSDL167
6.4 First example of selection of variants with PMBOK and SVSDL . . 167
6.4.1 At design time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.4.2 At configure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.4.3 At run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.5 Second example of selection of variants with PMBOK and SVSDL . 184



6.5.1 At design time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.5.2 At configure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.3 At run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.1 Evaluating compliance with Specific Objectives . . . . . . . . . . . . 199
7.2 Main contribution and its originality . . . . . . . . . . . . . . . . . . . 202
7.3 Secondary contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.5 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



15

1 Introduction

From the late 1970s to the early 1990s, the data had the main attention in information
systems. Storing and retrieving information got the main attention. Designers of the
information systems often concentrated on the data models. Database management systems
were considered to be the main part of the information systems. During the 1990s, the
process also had the attention of engineers and designers. The result was an increasing
number of business processes managed by information systems. These information systems
were named Process-Aware Information Systems (PAIS) (DUMAS; AALST; HOFSTEDE,
2005; AALST, 2013; LEITNER; RINDERLE-MA, 2014).

PAIS has evolved in several technical aspects. New techniques are always being developed
in order to provide new services and tools. This is required since the world is constantly
changing. From several technical aspects that can be enumerated to PAIS, our research is
interested in two of them: perspectives to be model in PAIS (GRAMBOW; OBERHAUSER;
REICHERT, 2017; STROPPI; CHIOTTI; VILLARREAL, 2015), and types of flexibility
that PAIS can provide (ZUGAL et al., 2015; SLAATS et al., 2016; UNGER; LEOPOLD;
MENDLING, 2015). In the following, each of these two aspects is briefly presented.

There are six perspectives to PAIS: function, behavior, information, organization, operation
and time (REICHERT; WEBER, 2012a). Function perspective defines which tasks must
compose the process (KHLIF et al., 2017). Behavior perspective defines which rules
must to guide the sequence of tasks execution (ROSING; SCHERUHN; FALLON, 2015).
Information perspective defines which information is required and what is its sequence
among tasks (MEYER et al., 2013). Organizational perspective defines which human
resources should perform the tasks (LEE; HWANG, 2016). Operational perspective defines
what are the tools and technological requirements the tasks need to be performed (BRAUN
et al., 2015). Time perspective defines temporal constraints that need to be obeyed during
process execution (AREVALO et al., 2016).

Our research is interested in defining tasks to processes and which are the permitted
sequences to these tasks. So our research is interested in function and behavior perspectives.
Thus, from now, all the considerations in this work are related to function and behavior
perspectives.

There are two types of processes to PAIS: pre-specified processes (YOUSFI; SAIDI; DEY,
2016; COSTA; TAMZALIT, 2017), and knowledge intensive processes (GOEDERTIER;
VANTHIENEN; CARON, 2015; CICCIO; MARRELLA; RUSSO, 2015).

Pre-specified processes has rigid events sequences (COSTA; TAMZALIT, 2017). They offer
few alternatives for the user to change events sequences (KOPP et al., 2015). Sequence of
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tasks are well defined, and the user should follow this sequence with few alternatives to
change it. Pre-specified processes are also called highly structured processes. They are mo-
deled by imperative languages. Example of imperative languages are BPMN (ALLWEYER,
2016) or Petri Nets (REISIG, 2013), among other.

Knowledge-intensive processes has greater flexibility to execute tasks than pre-specified
processes (MUNDBROD; BEUTER; REICHERT, 2015). Unlike pre-specified processes,
knowledge-intensive processes do not have rigid events sequences, the user can choose
the tasks to be executed, based on knowledge and professional experience (MUNDBROD;
REICHERT, 2014). There are two types of Knowledge-intensive processes: loosely specified
processes (MAGGI, 2013; DEBOIS et al., 2016) and data-driven processes (KOUFI;
MALAMATENIOU; VASSILACOPOULOS, 2015). Our work is interested only in loosely
specified processes. Loosely specified processes are modeled by a set of tasks and a set
of constraints (GIACOMO et al., 2015). Any sequence of events is permitted since it
fulfills the constraints (CARVALHO et al., 2016). Loosely specified processes are also
named declarative processes or constraints based processes. From now, this work uses the
term constraints based processes to refer to loosely specified processes. Constraints based
processes are modeled by declarative languages. Example of declarative languages are
Declare (MONTALI et al., 2013), Dynamic Condition Response (DCR) Graphs (SLAATS
et al., 2013), and Supervisory Control Theory (SCT) Approach (SANTOS et al., 2014).

There are four types of flexibility to PAIS: looseness, variability, adaptation, evolution and
looseness (REICHERT; WEBER, 2012a; AYORA et al., 2015). This work is interested in
looseness and variability.

Looseness is related to knowledge-intensive processes (MARTIN, 2016). There are not
events sequences previously defined in knowledge-intensive processes. Events sequences are
defined by the user at same time the process is executed. This provides flexibility to the user
to execute the tasks in accord to knowledge and professional experience. Since knowledge-
intensive processes do not have rigid events sequences, they have loose specification. So
knowledge-intensive processes provides Looseness. In other words, Looseness is the type
of flexibility that provides great power to the user to choose the tasks to be executed in
a process. This power is supported by the user’s knowledge and professional experience.
This is in opposition to pre-specified processes.

Variability concerns to handle a same process in different contexts (ROSA et al., 2017).
Each of these different contexts is named process variant or just variant (VALENÇA et al.,
2013). For example, the same process executed in different countries may require different
tasks sequences due to differences in regulations. Each of these tasks sequences is a process
variant. Process variants can also arise from variability of products and services, different
groups of customers, and temporal differences (AYORA et al., 2015).

A set of variants from a same process is called processes family (GRÖNER et al., 2013).
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So, variability is the type of flexibility that provides power to the user to select a process
variant from a process family .

Designing and implementing each process variant from scratch and maintaining it separately
is costly (LEE; HWANG, 2016). There is a great interest in capturing common process
knowledge only once and re-using it in terms of reference process models (AYORA et al.,
2016). Examples of reference process models are Information Technology Infrastructure
Library (ITIL) in Information Technology (IT) Service Management (IDEN; EIKEBROKK,
2013; MARRONE et al., 2014; CARDOSO, 2015), Reference Processes in SAP’s ERP
System (LEON, 2014), or Medical Guidelines (BARR et al., 2013; KATZNELSON et
al., 2014; CHOU et al., 2016; LYMAN et al., 2015). Although reference process models
foster the reuse of common process knowledge, they usually lack comprehensive support
for explicitly describing variations (REICHERT; WEBER, 2012a; AYORA et al., 2015).

In recent years, several studies have addressed topics related to processes families (AYORA
et al., 2013b; NATSCHLÄGER et al., 2016). These studies have proposed techniques and
methods to select variants from process families (ROSA et al., 2013). These methods are
usually called methods to selection of variants. Nevertheless, these techniques and methods
have been strongly targeted to pre-specified processes (ROSA et al., 2017). This happens
because researchers usually want to identify pre-specified processes as from reference
process models (AYORA et al., 2016; REICHERT; HALLERBACH; BAUER, 2015).
Implementing a lot of tasks sequences in a pre-specified process can demand a lot of gates
(YOUSFI; SAIDI; DEY, 2016). This can be costly because makes the process modeling
hard and prone to errors. Nevertheless, when the user applies some method to select
variants from pre-specified processes, it is easier defining a set of variants (a processes
family) that complies with a set of different contexts. This happens because the methods
of selection of variants provide techniques that allow the user to act properly at three
different times: design time, configuration time and run time (AYORA et al., 2015).

At design time, the methods to selection of variants makes the modeler able to model
each variant of the pre-specified process and mix all of them into the same model. This
model is usually named configurable process model. At design time, the modeler must
define the method to support the user to select the variants at configuration time. There
are, at least, four methods to support the user to select the variants at configuration
time: questionnaires, features, goals models, decisions tables (AYORA et al., 2015). This
work is interested only in questionnaires. Thus, modeler defines the configurable process
model with the set of variants (the processes family) of the pre-specified process, and
the questionnaire to support the user to select the variants from the configurable process
model.

At configuration time, the methods to selection of variants makes the user able to answer
the questionnaire. User answer the questionnaire and select a process variant from the
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configurable process model. At run time, the process variant selected from the configurable
process model is executed.

Although researchers usually define pre-specified processes as from reference process models,
some reference process models are modeled in a more suitable way by constraint based
processes (ROVANI et al., 2015). There are already studies developing methods and
techniques to provide selection of variants to pre-specified processes. But there is a lack of
studies addressing selection of variants to constraints based processes.

Constraints based processes have taken considerable attention at last years because they
provide greater flexibility than pre-specified processes (REIJERS; SLAATS; STAHL, 2013;
MERTENS; GAILLY; POELS, 2015b; UNGER; LEOPOLD; MENDLING, 2015). As
previously mentioned, there are studies that provide frameworks and approaches for
modeling constraint based processes. These studies propose methods and techniques
to provide only looseness to the processes, but they do not provide variability. But,
we understand that providing variability to constraint based processes, i.e. combining
variability with looseness, can bring several advantages. We believe that the user can take
these advantages at design time, configuration time and run time in PAIS.

Thus, this research provides a study that brings fundamentals, techniques and methods to
make a conceptual framework (conceptual PAIS) to select variants to constraints based
processes, i.e. to combine variability with looseness. In the following subsection, we present
the advantages we believe that can be taken at design time, configuration time and run
time in PAIS. These advantages are our justification to address this topic.

1.1 Justification
This section presents the justification to our research.

The first justification is related to define a constraint based process as from a reference
process model. As mentioned previously, although, researchers usually define pre-specified
processes as from reference process models, some reference process models are better
supported through constraint based processes. This can be demonstrated by examples of
constraints based processes. Among these examples, there are constraints based processes
to model healthcare system (TELANG; KALIA; SINGH, 2015). But a constraints based
process to healthcare system could be derived from a reference process model like Medical
Guideline (MERTENS; GAILLY; POELS, 2015a). So from the same Medical Guideline,
we can define other constraints based processes intended to healthcare system. Thus, this
set of constraints based processes would define a processes family to a healthcare system
based on a Medical Guideline. Other example is demonstrated in this research. In this
research, we use Project Management Body of Knowledge (PMBOK) (SNYDER, 2014)
to derive a set of process variants modeled by a constraints based process. PMBOK is a
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reference process model to project management. These two examples demonstrate that
process variants can also be modeled by constraints based processes.

The second justification is related to the increasing interested in constraint-based processes
in recent years. Constraints-based processes have received increased interest because they
provide a non-standardized setting (REIJERS; SLAATS; STAHL, 2013). Constraints-
based processes are modeled by a set of tasks and a set of constraints. Users are able
to easily identify what are the constraints to be obeyed by the process (GOEDERTIER;
VANTHIENEN; CARON, 2015). If compared with pre-specified processes, this can be
an advantage because the user do not need to describe the whole process with all the
tasks sequences. Users just have to specify the tasks and the constraints of the process.
Non-standardized setting provides power to the user to choose tasks to be executed in a
process (MERTENS; GAILLY; POELS, 2015b). In general, the user makes these choices in
accord to professional expertise and the context in which the process is performed (UNGER;
LEOPOLD; MENDLING, 2015). If compared with pre-specified processes, this requires a
greater expertise from the user. But at same time, it can be also a great advantage to the
user. Justifications 1 and 2 are enough to justify a study about selection to variants as
from constraints based processes. Nevertheless, we present two more justifications.

The third justification concerns to the user support that selection of variants (variability)
can provide to constraints based processes (looseness). First, we should analyze design
time, configuration time and run time. We suppose a constraint based process modeled
to comply with a great number of process variants. This process does not have variants
selection support support. So the constraint based process probably be modeled with a lot
of tasks and constraints. At run time, the user has to choose one out of a lot of sequences
of events that can be followed, to comply the process objectives. But, each sequence of
events is related to a specific process context (process variant). So the user must have, at
run time, a wide knowledge of all the process variants. This is required because the user
must be able to identify each process application context. After identifying the process
application context, the user must have expertise to identify the tasks to be executed
inside this context. This condition can be complex to the user since there are a lot of
application’s contexts, and each of them has a lot of tasks. Now, we suppose a constraint
based process modeled to comply with a great number of process variants. This constraint
based process is modeled with a lot of tasks and constraints. But, this process has variants
selection support. So before run time, there is the configuration time. At configuration
time, the user has the support of a questionnaire to select process variants. Questionnaire
provides a finite set of features to be selected. So the user focus the professional experience
to this finite set of features. At run time, the user must select the tasks to be executed in
only one application’s context. At configuration time, questionnaire brings ease to the user
to choose the application’s context. Thus, methods to select variants (variability) improve
user support to constraints based process (looseness).
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The fourth justification concerns to improve the power of the user to specify tasks and
constraints. Firstly, we suppose a constraint based process modeled to comply with two
variants: variant 1 and variant 2. In variant 1, there is a constraint that imposes that task
1 must be executed before task 2. In variant 2, there is a constraint that imposes that task
2 must be executed before task 1. These constraints are conflicting. This conflict impedes
that task 1 and task 2 be executed. There is not variants selection support, i.e. there is not
configuration time. So at run time, the user cannot complete any task because there is a
conflict between process constraints. We can suppose other case. There is a process modeled
to comply with two variants: variant 3 and variant 4. In variant 3, there is a constraint
that imposes that whenever task 3 is executed, task 4 must be executed afterward. In
variant 4, there is a constraint that imposes that whenever task 4 is executed, task 3 must
be executed afterward. These constraints are conflicting. This conflict impedes that the
process be finished. There is not variants selection support, i.e. there is not configuration
time. So at run time, user cannot finish the process. These two cases demonstrate that
if process variants are inserted into the same constraint based process, with no variants
selection support, then problems related to tasks execution can arise. In these cases, if
variants selection support is applied then these problems can be solve. If variants selection
support is applied, then there is configuration time. At configuration time, user selects
exactly one variant. So at run time, there is only one variant to be executed. There is not
mix of conflicting constraints. Thus, variants selection methods (variability) improve the
power of the user to specify tasks and constraints to constraints based process (looseness).

1.2 Research question
In section Introduction we demonstrated that the focus of our research is the application
of variants selection methods to constraints based processes. In section Justification, we
argued that there are at least four reasons to justify that our research is important. In
this section we are going to present variants selection’s fundamentals and our research
question.

Literature provides several topics to be complied to implement a framework to variants
selection’s support (AYORA et al., 2015). We selected five of them to define the scope
of our research. They are: (i) definition of a language to model process variants, (ii)
syntactic and semantics correctness of process variants, (iii) map as from process variants
to domain facts, (iv) logical and temporal consistency between domain facts, (v) grouping
domain facts into questions. We believe that if we concentrate on these five topis, we
are able to propose a framework to select variants from constraints based processes. Our
research question is related to these five topics and how they can be dealt to make a
framework (PAIS) to select variants from constraints based processes. Next, we present a
brief description of each of these five topics.
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Variants selection fundamentals provide that it is required to define the variants mode-
ling language. For pre-specified processes, there are already languages to this purpose.
Configurable Event-driven Process Chains (C-EPC) (RIEHLE et al., 2016), Process Vari-
ants by Options (Provop) (SARNO et al., 2015), Process Family Engineering in Service
Oriented Applications (PESOA) (WESKE, 2006) are frameworks to variants selection to
pre-specified processes. C-EPC framework provides C-EPC language. Provop framework
provides a language-independent approach. PESOA framework provides a set of techniques
that may be applied to any imperative language. As far as we know, for constraints based
processes, , there are only frameworks for processes modeling, but with no variants selection
support. For example, Declare/LTL (PESIC, 2008; MONTALI et al., 2013; CICCIO et
al., 2015), DCR Graphs (MUKKAMALA, 2012) and SCT approach (SANTOS et al.,
2014) provide process modeling support, but none of them provides any variants selection
support. If we chose one of these approaches for modeling processes variants, we would have
to provide it with external elements to enable variants selection support. This can brings
advantages since we would not need to worry about developing a declarative language
from scratch. But, at same time, we would have to make connections and adaptions to
enable variants selection support to the chosen approach. For Declare/LTL and DCR
Graphs frameworks, these connections and adaptions probably would be hard to do, since
they are ready frameworks. SCT approach encompasses a lot of constructs, and provides
support to other elements which are out of the scope of our research, such as uncontrollable
events (RAMADGE; WONHAM, 1987). That can bring difficulties to implement variants
selection support. On the other hand, defining a new declarative language from scratch
probably would bring a lot of work at first. However, that could ease to develop a language
in accord to the fundamentals of variants selection. No adaptations would be required, the
language is created from scratch to fulfill variants selection’s fundamentals.

Variants selection fundamentals provide that it is required to ensure process variants
correctness (ROSA, 2009). Process variants correctness is related to the syntax correctness
and semantics correctness from the modeling language. For pre-specified processes, there
are already models that address that topic. That is the case of frameworks C-EPC, Provop
and PESOA. Frameworks C-EPC, Provop and PESOA offer technical resources to allow
the user to model each process variants in accord to language’s syntactic and semantics
rules. At design time, process variants are mixed at the same process by techniques to
preserve their syntactic and semantics features. These process are called configurable
process model. At configuration time, techniques are used to select process variants and
to keep them syntactic and semantics preserved. At run time, the preserved syntactic
and semantics features ensure the process variant be performed properly. With regard to
constraints based processes, Declare/LTL and DCR Graphs frameworks provide support
to syntactic and semantics correctness. But, they do not provide any variants selection
support. SCT approach still does not provide any syntax and semantics rules. Making a
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new declarative language from scratch would permit to precisely define language’s syntax
and semantics rules. This could be much advantageous since the syntax and semantics
rules, and the techniques to deal with them, would be made from scratch, in other words,
no adaptation would be required.

Variants selection fundamentals provide that pre-specified processes must be composed by
a set of fixed tasks and a set of variable tasks (REICHERT; WEBER, 2012a). Fixed tasks
are always executed in every application context. Variable tasks are not executed in every
application context. Each variable task is executed only in some application contexts. The
process regions with variable tasks are called variation points. Selection of the application
context and variable tasks are implemented by domain facts and process facts. Domain
fact is a process feature which can vary in accord to the application context. Process fact
is a set of variable tasks which is performed if a set of domain facts is selected. In fact, a
process fact is an option from a variation point. So when the user selects a set of features
(domain facts), set of tasks (process facts) are selected. For example, after the initial exam,
a physician is able to define a set of features (domain facts) to the patient. In accord
to the set of features (domain facts), a set of tasks for the patient treatment (a set of
process facts from variation points) is selected. Mapping domain facts to process variants
are usually implemented by logic sentences. For example, a mapping as from features
to a process variant could be expressed by a sentence like if feature 1 and feature 2 and
feature 3 are true, or if feature 4 and feature 5 and feature 6 are true, then the process
variant 1 is selected. Although there are studies addressing domain facts, process facts,
and variation points to pre-specified processes, there is lack of studies addressing these
topics to constraints based processes.

Variants selection fundamentals provide that logical and temporal consistency must be
guaranteed to domain facts (AYORA et al., 2015). There are already studies addressing this
topic to pre-specified processes. As from these studies we enumerate four logical/temporal
relations to be imposed to domain facts: mutual exclusion, mutual inclusion, implication,
and precedence. Mutual exclusion defines that if a domain fact is selected then the other
cannot be selected and vice verse. Mutual inclusion defines that if a domain fact is selected
then the other must be selected and vice verse. Implication defines that if a domain fact is
selected then the other must be selected. Precedence defines that a domain fact must be
set out before the other during configuration time. All the domain facts relations must be
consistent to each other. Inconsistencies happen when two relations impose contradictory
behavior among domain facts. For example, the specifications if domain fact 1 is selected
then domain fact 2 must be selected and vice verse, and if domain fact 1 is selected
then domain fact 2 must not be selected and vice verse are inconsistent. Domain facts
relations also must be checked to identify tasks that cannot be executed. For example, the
specifications task 1 must precede task 2 and task 1 excludes task 2 set out that task 2 will
never be executed. Although the existent studies are intended to pre-specified processes,
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they can support our research. This happens because logical and temporal consistency
between domain facts do not depend on the type of the process. That is exclusively a
logical issue.

Variants selection fundamentals provide that domain facts must be grouped into questions.
There are already studies proposing some formalization to questionnaires and questions
(ROSA, 2009). In general, these studies define questionnaires as a set of questions, and
define questions as a set of domain facts. Functions map questions to domain facts. Question
provide sets of domain facts. Questions inherit logical and temporal consistency from
domain facts. For example, the specification if domain fact 3 is selected then domain fact
4 is selected, sets that whenever domain fact 3 is selected, domain fact 4 is selected even
the question with domain fact 4 was not answered yet. An example of inheritance as from
temporal consistency is presented next. The specification domain fact 1 must be set before
domain fact 2, sets that the question with domain fact 1 must be answered before the
question with domain fact 2. Although the studies are intended for pre-specified processes,
they can support our research. This happens because formalization to questionnaires,
questions and domain facts do not depend on the type of the process.

After presenting a brief description of the previous five topics, we set our research question.
This is done next.

Given that: (i) definition of a process variants’ language, (ii) syntactic and semantics
correctness of process variants, (iii) map as from process variants to domain facts, (iv)
logical and temporal consistency for domain facts, (v) grouping of domain facts into
questions, are the issues to be complied with, the following research question is proposed:
how may these five issues be dealt by a set of methods and techniques, to make a framework
to select variants from constraints based processes?

1.3 Objectives
This section presents the main and the specific objectives of our research. The main
objective is derived from research question set in the last section. To be able to fulfill the
main objective, five specific objectives are derived. By fulfilling these five objectives, the
main objective is fulfilled. The main and specific objectives are presented next.

Main objective (MO). Propose a conceptual framework to select variants as from cons-
traints based processes. The framework that we propose in this research is supported by
fundamentals from Process Aware Information Systems (PAIS), selection of variants and
constraints based processes. The framework selects variants from only a type of the process:
constraints based processes. The framework covers two perspectives: function and behavior.
It covers Function perspective because a constraints based process defines a set of tasks. It
covers Behavior perspective because a constraints based process defines a set of constraints
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to restrains tasks events sequences. The framework covers two types of flexibility: looseness
and variability. It covers looseness because it models, configures and runs constraints based
processes. It covers variability because it provides variants selection for constraints based
processes. The framework covers three times: design time, configuration time and run time.
It covers design time because it provides a sub-framework to design all the process variants,
and mix all of them into the same configurable process model. It covers configuration time
because it provides a sub-framework for variants selection. It covers run time because it
provides a sub-framework to run the process variant that was selected at configuration
time.

Specific Objective 1 (SO1 ): Define a constraints based language to model process variants.
There are at least four options of constraints based language. The first one is Declare/LTL
framework. Declare is based on Linear Temporal Logic (LTL). Declare provides a set of
graphics constructs to model, verify, and run constraints based processes. Declare offers
a great number of constraints (more than twenty), and provides interface to make new
constraints. The second one is DCR Graphs framework. DCR Graphs is based on set’s
operations. DCR Graphs also provides a set of graphics constructs to model, verify, and
run constraints based processes. DCR Graphs offers five constraints, and it does not
provide interface to make new ones. The third one is SCT approach. SCT approach is a
mathematical formalism based on Supervisory Control Theory. SCT approach does not
provide any set of graphic support to model, verify, and run constraints based processes.
SCT approach also offers a great number of constraints (more than twenty), and it is able
to implement new constraints. The fourth one is setting a new language. As previously
mentioned, defining a new declarative language demands additional effort, but it can be
advantageous because we can make it from scratch in accord to the necessary requirements.
These requirements, of sure, would be in accord to the fundamentals of variants selection.

Specific Objective 2 (SO2 ): Propose a framework for design time. Framework for design
time must provide support for user to model process variants. Every process variant must
comply with the language’s syntax and semantics defined in SO1. Framework for design
time must provide support for user to mix all the process variants at the configurable
process model. Configurable process model must be also made in accord to the language
syntax and semantics. Framework for design time must provide support for user to define
process fact. In pre-specified processes, a set of process facts represents a set of variable
tasks. Framework for design time must provide support for user to make logic relations
between domain facts and process facts. These relations must preserve logic and temporal
consistency and, at the same time, all process variants must be able to be selected.
Framework for design time must provide support for user to group domain facts into
questions. Temporal and logical constraints applied to domain facts are inherited by the
questions.



25

Specific Objective 3 (SO3 ): Propose a framework for configuration time. Framework for
configuration time must provide support to user to select domain facts (features) from
processes. This must be done by some user interface. That user interface could be provided
by a more refined graphical interface or just by a text interface. The user interface must
be able to take the domain facts selected the user. Framework for configuration time must
provide support for simplifying and reducing the logic sentences. Whenever the user sets a
domain fact (as TRUE or FALSE), domain facts’ logic sentences need to be simplified.
This simplification reduces the amount of variables in the logic sentences. Framework for
configuration time must provide support for presenting the questions to the user. This
must be in accord to the domain facts’ logic and precedence rules. Domain facts’ logical
and precedence rules are inherited by questions. Thus some method or technique must be
suggested to address this issue. Framework for configuration time must provide support
for user to identify which are the selected (TRUE) and not selected (FALSE) process facts.
Some approach to address that topic must be presented.

Specific Objective 4 (SO4 ): Propose a framework for run time. Framework for run time
must provide support to user to know which are the enabled tasks events at each process
step. Each approach uses some technique to calculate the enabled tasks events at each
process step. For example, Declare/LTL uses Linear Temporal Logic, DCR Graphs uses
sets’ operations, and SCT approach uses method synchronous product, method to exclude
bad states, and method to exclude blocking states. We can use some of these techniques
or propose a new one. Framework for run time must provide support for user to know
which are the pendent tasks to be executed at each process step. Declare/LTL does not
inform which are pendent tasks, but it informs which are the not fulfilled constraints. User
must perform events sequence to fulfill the not fulfilled constraints. DCR Graphs informs
which are the events that are pendent. User must perform events sequence to execute the
pendent events. SCT approach does not provide any technique to inform which are the
enabled events. We are going to propose some technique to inform which are the enabled
and pendent events in our framework.

Specific Objective 5 (SO5 ): Demonstrate the application of the framework. Reference
process models captures common process knowledge only once to re-using them repeated
times. It captures common knowledge as from several process application contexts. Each
process application context corresponds to a process variant. Techniques and methods have
been targeted to derive process variants as from pre-specified processes. Nonetheless, some
cases of application of reference process models can be better modeled by constraint based
processes. So we want to do two demonstrations through SO5. The first one is model the
variants as from an actual reference process model by using a constraints based language.
The second one is demonstrate the virtual operation of our framework presenting the steps
at design time, configuration time, and run time. Information Technology Infrastructure
Library (ITIL) in Information Technology (IT) service management, reference processes in
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SAP’s ERP system, medical guidelines, and Process Management Body Of Knowledge
(PMBOK) are examples of reference process models. Any of them can be suitable to be
used as the reference process model to fulfill SO5. Other reference process models can be
researched in order to be used to that objective.

1.4 Research method
This section presents the method (process) used to develop our research. This research
process is composed by a sequence of tasks. These tasks generate data to fulfill the five
Specific Objectives previously defined in section 1.3. If all the Specific Objectives are fulfilled
then the Main Objective is also fulfilled. Figure 1 shows the research method. Research
process is divided in three phases. These phases are explained next.

1.4.1 Phase 1

Phase 1 of the research process encompasses three tasks: Do literature review to reference
process models (t1), Do literature review to selection of variants (t2), Do literature review
to declarative languages (t3). Tasks sequence execution at Phase 1 is t1.t2.t3. From these
three tasks are generated three data: Literature review to reference process models (d1),
Literature review to selection of variants (d2), and Literature review to declarative languages
(d3). d1, d2 and d3 cover all the literature review required to develop our research and
fulfill the five Specific Objectives. Tasks and data at Phase 1 are described next.

Task Do literature review to reference process models (t1) has no input. We execute t1 to
identify and organize reference process models’ fundamentals. t1’s output is Literature
review to reference process models (d1). d1 must cover the following topics: history, features,
and description of reference process models. t1 is the first task to be executed at Phase 1
because it is able to provide a reference process models broader view. So we think that t1
can bring great contribution for next research steps.

Task Do literature review to selection of variants (t2) has an input: Literature review
to reference process models (d1). t2’s output is Literature review to selection of variants
(d2). d2 must cover the following topics: logical/temporal relations of domain facts and
process facts, questionnaire, variants modeling, configurable process models, variation
points, syntactic and semantics correctness.

Task Do literature review to declarative languages (t3) has an input: Literature review to
selection of variants (d2). t3’s output is Literature review to declarative languages (d3). t3
uses d2 to address the important features for variants selection.
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Figura 1 – Research method’s tasks and data (research process)
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1.4.2 Phase 2

Phase 2 of the research process encompasses four tasks: Define declarative language to
model the process variants (t4), Define set of methods to run time (t5), Define set of
methods to design time (t6), Define set of methods to configuration time (t7). The execution
sequence of tasks at Phase 2 is t4.t5.t6.t7. From these four tasks are generated four data:
Declarative language to model the processes variants (d4), Framework for run time (d5),
Framework for design time (d6), Framework for configuration time (d7). Tasks and data in
Phase 2 are described next.

Task Define declarative language to model the process variants (t4) has two inputs: Literature
review to selection of variants (d2) and Literature review to declarative languages (d3). t4’s
output is Declarative language to model the processes variants (d4). t4 is the first task
to be executed at Phase 2. This is important because all the operations at design time,
configuration time and run time are defined as from process variants language (d4). d4

fulfills Specific Objective 1 (SO1 ).

Task Define set of methods to run time (t5) has an input: Declarative language to model the
process variants (d4). t5’s output is Framework for run time (d5). t5 is the first task executed
after t4 because the methods to run the process variant can be defined independently. Any
method to run the process variant process is related only to modeling language, so it does
not depend on other methods at design time and configuration time. d5 fulfills Specific
Objective 4 (SO4 ).

Task Define set of methods to design time (t6) has two inputs: Literature review to selection
of variants (d2) and Declarative language to model the processes variants (d4). t6’s output
is Framework for design time. d6 fulfills Specific Objective 2 (SO2 ).

Task Define set of methods to configuration time (t7) has two inputs: Literature review to
selection of variants (d2) and Framework for design time (d6). t7’s output is Framework
for configuration time (d7). d7 fulfills Specific Objective 3 (SO3 ).

1.4.3 Phase 3

Phase 3 of the research process encompasses two tasks: Define reference process model (t8)
and Develop example of application (t9). The tasks execution sequence at Phase 3 is t8.t9.
From these two tasks are generated two data: Reference process model (d8) and Example
of application (d9). Tasks and data in Phase 3 are described next.

Task Define reference process model (t8) has an input: Literature review to reference process
models (d1). We execute t8 to analyze the features of the reference process models covered
by literature review. t8’s output is Reference process model to be used in Example of
application (d9).



29

Task Develop example of application (t9) has four inputs: Framework for design time (d6),
Framework for configuration time (d7), Framework for run time (d5), and Reference process
model (d8). We execute t9 to present Example of application. Example of application must
cover modeling, configuration and run of process variants. Example of application fulfills
Specific Objective 5 (SO5 )

1.4.4 Expected results

Expected results are directly associated to the five Specific Objectives. In other words, the
expected result is fulfill the five Specific Objectives and consequently, the Main Objective.
Expected results in each Specific Objective are listed next.

For Specific Objective 1 (Define a constraints based language to model the process variants),
the expected results are:

• ER1.1: Tasks and constraints must be represented by well defined mathematical
models.

• ER1.2: Accurate rules to constraint based language’s syntax and semantics: these
rules must describe precisely how to combine constraint based language’s constructs.

For Specific Objective 2 (Propose a framework for design time), the expected results are:

• ER2.1: Make process variants: framework must provide some procedure to make each
process variant in accord to syntactic and semantics rules of the constraints based
language.

• ER2.2: Mix process variants: framework must provide some procedure to mix all the
process variants into the same constraints based process.

• ER2.3: Questionnaire support: framework must provide some procedure to make
the questionnaire. Questionnaire supports the user to select process variants at
configuration time.

For Specific Objective 3 (Propose a framework for configuration time), the expected results
are:

• ER3.1: Questionnaire support: At configuration time, framework must provide some
procedure to support the user to answer the questionnaire.

• ER3.2: Support to select process variants: At configuration time, framework must
provide some procedure to identify and select a process variant in accord to syntax
and semantics rules of the constraints based language.
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For Specific Objective 4 (Propose a framework for run time), the expected results are:

• ER4.1: User Support to inform which are the tasks that must be executed. At run
time, framework must provide some procedure to identify which are the tasks required
to be executed at each process step.

• ER4.2: User Support to inform which are the tasks that can be executed. At run
time, framework must provide some procedure to identify which are the tasks that
can be executed at each process step.

For Specific Objective 5 (Demonstrate the application of the framework), the expected
results are:

• ER5.1: Present a reference process model with features and domain application.

• ER5.2: Define a set of application contexts for reference process model.

• ER5.3: Demonstrate the set of application contexts at design time, configuration
time and run time.

1.5 Articles in this research
This section describes shortly each article of this document.

Article 1 is Modeling Constraint-based Processes: a Supervisory Control Theory Application.
This article presents a study about constraints based process and propose an approach to
model constraints based process by using methods of Supervisory Control Theory (SCT).
It presents a template to model tasks and a set of templates to model constraints. Each
process is composed by a set of tasks and a set of constraints. Article 1 uses constraints
based process’ fundamentals to demonstrate its application in variants selection. Article 1
is related to SO1.

Article 2 is Selection of process variants from pre-specified processes based on supervisory
control theory. This article presents a study about selection of variants for pre-specified
processes. It proposes to apply constraints in some points of pre-specified processes in order
to model process variants. Modeling of these constraints is ruled by SCT formalism. Article
2 also uses constraints based processes’ fundamentals to demonstrate its application in
variants selection. It is the continuity of Article 1. textitArticle 2 is also related to SO1.

Article 3 is Simple Declarative Language (SDL): a conceptual framework to model constraint
based processes. Article 3 defines Simple Declarative Language (SDL). SDL is a conceptual
framework to model constraints based processes. This paper defines the syntactic and
semantically rules to the processes modeled by SDL framework. frameworks for design
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and run time are described from syntactic and semantically rules. Article 3 finish the
study about constraints based process to model process variants. Article 3 also proposes a
framework to run the processes modeled by SDL. Article 3 is related to SO1 and SO4.

Article 4 is A conceptual framework to select variants from constraint-based processes.
Article 4 defines Selection of Variants with Simple Declarative Language (SVSDL). SVSDL
is a conceptual framework to provide variants selection support to SDL processes. SVSDL
is divided into three frameworks: framework for design time, framework for configure time
and framework for run time. Since framework for run time is the same of Article 3, Article
4 is related to SO2, SO3, and SO4.

Article 5 is An approach for selection process variants from PMBOK. Article 5 presents
some processes management models, including Process Management Body Of Knowledge
(PMBOK). This paper demonstrates an application where SVSDL is used to select variants
from PMBOK processes. Article 5 is related to SO5.

1.6 Document structure
This document is divided in 7 sections. Section 1 presents the context, justification,
research question, research objectives, research method, expected results, articles summary,
and document structure. Section 2 presents Article 1. Section 3 presents Article 2. Section
4 presents Article 3. Section 5 presents Article 4. Section 6 presents Article 5. Section
Conclusions presents the final evaluation of the main and specific objectives. That section
analyzes which objectives are complied with and which techniques are utilized to do that.
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2 Modeling Constraint-based Processes: a
Supervisory Control Theory Application

Abstract
Constraint-based processes require a set of rules that limit their behavior to certain
boundaries. In these processes, the control flow is defined implicitly as a set of constraints
or rules, and all possibilities that do not violate any of the given constraints are allowed
to be executed. The present paper proposes a new approach to deal with constraint-based
processes. The proposed approach is based on Supervisory Control Theory, a formal
foundation for building controllers for discrete-event systems. The controller proposed in
this paper monitors and restricts execution sequences of activities such that constraints are
always obeyed. We demonstrate that our approach may be used as a declarative language
for constraint-based processes. In order to provide support for users of such processes and
to facilitate the using of our control approach, we offer a set of constraints modeled by
automata. This set encompasses the constraints frequently needed in workflow system.

Keywords: constraint-based processes, Supervisory Control Theory, declarative languages,
flexible processes.

2.1 Introduction
Nowadays constraint-based processes approaches have received increased interest (REI-
CHERT; WEBER, 2012a). In these processes, the control flow is defined implicitly as a set
of constraints or rules, and all possibilities that do not violate any of the given constraints
are allowed to be executed (PESIC; SCHONENBERG; AALST, 2007) (HILDEBRANDT;
MUKKAMALA; SLAATS, 2012) (HILDEBRANDT; MUKKAMALA; SLAATS, 2011). A
constraint-based process model specifies the activities that must be performed to produce
the expected results but it does not define exactly how these activities should be performed
(FAHLAND et al., 2009b) (FAHLAND et al., 2010). Thus, any execution order of activities
is possible provided that the constraints are not violated. Thus, most of time the process
execution is driven by users choice.

DECLARE (PESIC; SCHONENBERG; AALST, 2007) (AALST; PESIC; SCHONEN-
BERG, 2009) is developed as a constraint-based system and it uses a declarative language
grounded in Linear Temporal Logic (LTL). DECLARE provides a graphical representa-
tion of constraints (DecSerFlow) (PESIC; AALST, 2006) that hides the associated LTL
formulas from users. According to (HILDEBRANDT; MUKKAMALA; SLAATS, 2012)
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(HILDEBRANDT; MUKKAMALA; SLAATS, 2011), this approach suffers from the fact
that the subsequent tools for execution and analysis will refer to the LTL expression and
not to the graphical notation. The full generality of LTL may lead to a poor execution
time. For verification and enactment purposes, it is necessary to translate LTL to finite
automata. While computers are very good at handling nite automata, the translation
itself is often a roadblock as it may take time exponential in the size of the LTL formulas
(WESTERGAARD, 2011). This motivates researching the problem of finding an expressive
constraint-based processes approach where both the constraints as well as the run time
state can be easily visualized and understood by the end user and also allows an effective
verification (blocking,conflict, dead tasks) and execution of activities.

In the present paper we propose a new approach to deal with constraint-based processes
founded on the Supervisory Control Theory (RAMADGE; WONHAM, 1989). The new
approach proposes a control system which restrains the process in order to not violate
the constraints. This action is accomplished through dynamic disabling of some events,
restraining the state space of process. We consider that a process may contain sequences
of events that are not allowed to occur. These sequences may violate a desired ordering
of events and they need to be avoided. Thus, a supervisor is built in order to ensure
that the whole set of constraints is not violated. We had some challenges bringing the
formal foundation of SCT into a constraint-based process model, which characterizes the
originality of our paper. We highlight the following contributions:

1. A new approach to deal with constraint-based processes. The proposed approach
is based on SCT. The supervisor obtained applying SCT monitors and restricts
execution of sequences of activities such that constraints are always obeyed. We
demonstrate that our proposal can be used as a declarative language for constraint-
based processes. Our approach does not limit the user by imposing rigid control-flow
structures. In fact, the basis of our approach is to inform users of which activities
are not allowed to occur after an observed trace of events at run-time, and users
operate with some freedom because they choose execution sequences allowed under
supervision;

2. A new approach to audit processes. Applying SCT results in a language (sequence
of events) that considers all possible sequences which do not violate any of the
constraints imposed to the process. It is possible to audit an execution of a process
comparing if the performed sequence of activities belongs to that language.

3. Modeling activities and constraints using automata. We represent activities and
constraints frequently needed in workflow systems using automata. This is necessary
to apply the SCT. We propose a general model of activities as well as a set of



34

constraints (Fig. 9 to 12, section 2.4). We aim to support users without a deep
knowledge in SCT on its application in order to model constraint-based processes;

The present paper is an extended version of the previous paper presented in WorldCist
2013 (SCHAIDT et al., 2013), and is organized as follows: Section 2.2 describes the
Supervisory Control Theory, as the fundamental concept of the proposed approach. Section
2.3 explains the modeling of activities using automata. Section 2.4 explains the modeling
of constraints using automata. Also, it is presented four categories of constraints usually
needed in business processes. Section 2.5 presents an application example to illustrate our
approach. Section 2.6 discusses the process execution and the architecture of the run-time
environment. Section 2.7 concludes the paper.

2.2 Supervisory Control Theory
Supervisory Control Theory (SCT)(RAMADGE; WONHAM, 1989) has been developed
in recent decades as an expressive framework for the synthesis of control for Discrete-
Event systems (DES). According to SCT, the behaviour of a DES may be represented by
sequences of events corresponding to ordered execution of activities. Among all possible
sequences of events and due to the process rules and constraints, some sequences of events
are desirable while other sequences are not since they violate these rules or constraints.
Instead of defining a priori a specific sequence of events to be enforced in order to satisfy
the constraints, the core concept of SCT is to design a supervisor that, following the
sequence of events while the process evolves, specifies which events cannot occur in order
to not violate the constraints. Thus, after the occurrence of an event the system (or the
DES) decides which event will occur among those that are not disabled by a supervisor.
SCT provides algorithms that, based on a process model considering all feasible event
sequences and the associated constraints, allow one to design a supervisor whose control
action imposes a minimally restrictive behaviour over a DES under consideration.

SCT is based on automata and formal language theories. Usually, a composed system is
represented by a set of automata as {Gi|i ∈ I}, where i ∈ I identifies each subsystem.
Automaton Gi represents the independent behaviour of a corresponding subsystem in a
high degree of abstraction. The uncoordinated or unconstrained behaviour of the entire
DES is obtained by the synchronous product (CASSANDRAS; LAFORTUNE, 2008) of
all subsystems as G = ||∀i∈IGi. An automaton (also known as a language generator) is a
structure as Gi = (ΣGi, QGi, δGi, qGi

0 , QGi
m ) where ΣGi is the alphabet (set) of events, QGi

is the set of states, δGi : (QGixΣGi) → QGi is the state transition function (in general,
partially defined), qGi

0 is the initial state, and QGi
m ⊆ QGi is the set of marker states. An

automaton state represents that a certain activity is being performed or that the subsystem
is idle. Events represent the beginning and (un)successful execution of such activity. One
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may differentiate some states to give them a special meaning by grouping them in a set of
marked states. In SCT marked states are those representing accomplishment of activities.

A Product System Representation (PSR) is a set of asynchronous subsystems such that
all pairs of subsystems in {Gi|i ∈ I} have disjoint alphabets. The system’s whole set of
events is Σ = ∪∀i∈IΣGi. There are two languages associated with automaton G: the closed
language L(G) and the marked language Lm(G). The closed language is the set of all
sequences of events leading from the initial state to some state of G. The marked language
is the set of all sequences of events leading from the initial state to any marked states such
that Lm(G) ⊆ L(G). These are the languages representing the unconstrained behaviour
of the entire system. Under these languages there are several undesirable sequences of
events that must be avoided in order to restrain the system inside a desirable (allowed)
behaviour.

SCT allows the designer to take into account the nature of events. While there are some
events whose occurrence might be disabled by a control agent there are events whose
occurrence cannot be disabled. An event is controllable if a control agent (supervisor)
can disable its occurrence. One may consider that a certain event is uncontrollable by
convenience in order to not allow it to be disabled. In general, an uncontrollable event is
inherently unpreventable. Considering a subsystem in {Gi|i ∈ I}, ΣcGi denotes its set of
controllable events and ΣucGi its set of uncontrollable events. The whole set of controllable
events is Σc = ⋃

∀i∈I ΣcGi.

Usually there is a set of constraints to be imposed to the system to restrain its uncoordinated
behaviour. Each constraint may be represented by an automaton resulting in a set as
{Cj|j ∈ J}, where j ∈ J identifies each constraint. Performing the synchronous product of
all automata in {Cj|j ∈ J} with automaton G results automaton C representing a global
constraint.

A supervisor is a map from the closed language of G to a subset of events to be enabled
S : L(G)→ 2Σ. A supervisor may be represented by an automaton and an output map
{Υ} = (S,Φ), where S = (ΣS, QS, δS, qS

0 , Q
S
m). Automaton S is driven by occurrence

of events in DES, and output map Φ : QS → 2Σc specifies the subset of controllable
events that must be disabled as a correspondence of the active state of automaton S. The
action of a supervisor includes disabling controllable events and unmarking sequences of
events. Algorithms provided by SCT allow the formal synthesis of automaton Υ/G, which
represents the optimal behaviour of G under supervision of Υ, where L(Υ/G) ⊆ L(G)
and Lm(Υ/G) ⊆ (L(Υ/G) ∩ Lm(G)). This behaviour is named supremal controllable
sublanguage of Lm(C) with regard to G and it is usually represented as supC(E,G).
Whenever Lm(Υ/G) is a proper subset of (L(Υ/G)∩Lm(G)), Υ is a marker supervisor, i.e.,
there are sequences of events corresponding to accomplished tasks in the uncoordinated
behaviour of G that are no longer considered accomplished tasks under the action of the
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supervisor. Typically, the automaton representing a supervisor is automaton Υ/G itself.
(MINHAS, 2002) and (SU; WONHAM, 2004) provide algorithms to obtain a reduced
representation of supervisor Υ as a new pair (Sr,Φr) where automaton Sr has a smaller
number of states than Υ/G and it provides the same control action.

In a monolithic approach, a single global supervisor is synthesised to cope with all cons-
traints. Necessary and sufficient conditions for the existence of supervisors are established in
(RAMADGE; WONHAM, 1987). According to Local Modular Control (LMC) (QUEIROZ;
CURY, 2000), an extension of the SCT, instead of synthesizing a single global supervisor
that satisfies the entire set of constraints, a local supervisor must be synthesized for each
constraint in {Cj|j ∈ J}. This leads to a set of local supervisors {Υj|j ∈ J}. Synthesis
of local supervisor Υj is performed considering corresponding local constraint Clj and
its corresponding local plant Glj. A local plant is obtained performing the synchronous
product of only those subsystems in {Gi|i ∈ I} sharing some event with corresponding
constraint and local constraint is obtained performing the synchronous product of automata
representing corresponding constraint and local plant (Clj = Glj||Cj). Automaton Υ/Glj
represents the optimal behaviour of local plant Glj under supervision of corresponding
local supervisor Υj. If at least one local supervisor in set {Υj|j ∈ J} disables an event,
the event is disabled in G. A sequence of events is recognized as an accomplished task if
all local supervisors agree with.

A limitation of LMC is that the behaviour obtained under the action of all local supervisors
may fail to be non-blocking, even if each modular supervisor is non-blocking. Blocking
in SCT occurs when all possible ways of continuing a sequence of events never lead to
a marked state. After synthesis of all local supervisors, it is necessary to verify whether
their control actions are free of conflicts. One way is confirming Υ/G = ||∀j ∈ JΥ/Glj.
In the worst case, such verification involves the same complexity as that found during
synthesis of the global supervisor (QUEIROZ; CURY, 2000). If this property is verified,
the behaviour obtained under the action of the entire set of local supervisors is identical
to the behaviour obtained under the action of a global supervisor.(WONG; WONHAM,
1996) proposes how to proceed if such property is not verified.

We believe that the Supervisory Control Theory (SCT) is a promising candidate for
modeling and execution of a constraint-based process. We highlight the following reasons:

• SCT uses automata as formalism to represent activities, constraints and the resulting
supervisor. This is a formal and explicit way of representing them;

• Using SCT, from modelling to synthesis and visualization, the formal notation is
always the same (automata), without the need to convert from one notation to
another (in DECLARE is necessary to convert LTL formulas to automata);
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• In SCT the state of each activity as well as each constraint may be easily visualized
and understood by the end user at run-time;

• SCT provides algorithms to perform a formal synthesis of supervisor (or the admissible
language of a constraint based process) instead of the usual manual and heuristic
procedures;

• The obtained solution is minimally restrained and also dead-lock free;

• New control actions may be rapidly and formally designed when modifications, such
as redefinition of constraints or activities arrangements, are necessary;

• The constraint-based processes can be made to behave optimally with respect to
a variety of criteria, where optimal means in minimally restrictive way (concern
to the admissible language of the process). This is a very strong characteristic of
the proposed approach. As far as we know, there is no approach that offer a better
solution related to the admissible language.

2.3 Modeling activities of constraint-based processes
The theory presented at previous section, together with a method of control implementation
(VIEIRA; CURY; QUEIROZ, 2006), have successfully been employed on the actual control
of DES with characteristics of the manufacturing industry (SILVA et al., 2011) (DIOGO
et al., 2012). In order to provide full support to control implementation in the context
of constrain-based processes, we propose first to analyze the modeling of activities and
constraints. This section presents how we propose to represent activities of constraint
based processes so that they may be coordinated by supervisors obtained applying SCT.

Suppose a process with a set of associated activities A = {ai|i ∈ I} where I is a set of
index uniquely identifying each activity. We propose that each activity is modelled as a
corresponding automaton Ai = (ΣAi, QAi, δAi, qAi

0 , QAi
m ), as shown in Fig. 2(a), resulting

in set {Ai|i ∈ I}. States on this automaton mean that activity is being performed (state
1) or is not being performed (state 0). Transition from state 0 to state 1 is due to event
start activity ai (si); transition from state 1 to state 0 is due to occurrence of event
successfully complete activity ai (ci) or cancel activity ai (xi). In SCT marked states are
those representing accomplishment of tasks, a state represented with a double line is a
marked state. In this model si is a controllable event while ci and xi are uncontrollable
events. It means that starting an activity by a resource may be disabled by a supervisor.
However, once it is under execution a supervisor is not allowed to avoid it to be cancelled or
completed successfully. The set of events of automaton Ai is ΣAi = {si, ci, xi}. Considering
the entire set of activities, the whole set of events is Σ = ⋃

∀i∈I ΣAi. It can be seen that all
pairs of automata in {Ai|i ∈ I} have disjoint alphabets of events (∀p, q ∈ I,ΣAp∩ΣAq = ∅),
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Figura 2 – Automata representing: (a)activity model and (b) uncoordinate behaviour
model of two activities

so this is a product system representation. If desired, a more detailed automaton may
be employed, including more states and events, it is also possible to apply a different
interpretation of events’ controllability. For example, it is possible to consider the activity
life cycle as stated in (HOFSTEDE et al., 2010) and (REICHERT; WEBER, 2012a). The
corresponding automaton may include states as allocated, suspended, failed, and events
as suspend, resume, allocate, as shown in (SANTOS et al., 2012) and (SANTOS et al.,
2013). The modeler has to choose which states and events will be considered based on the
relevant constraints to be imposed to the process under consideration.

Considering the whole set of activities, it is possible to have several activities being executed
at the same time. Performing synchronous product of all automata in {Ai|i ∈ I}, it results
on automaton A where the set of states represents all possible combinations of activities
being performed over a certain process instance. It is a subset of the cartesian product
of the set of states of all automata in {Ai|i ∈ I}. Since this set of automata is a product
system representation the number of states of A is 2n, where n is the number of automata.
Automaton A represents the uncoordinated behaviour of activities. In automaton A an
state is marked if and only if it corresponds to a combination of marked states of automata
in {Ai|i ∈ I}. For instance, considering a process with only two activities (A = {a1, a2}),
the synchronous product of corresponding automata (A = A1||A2) is the one shown in
Fig. 2. At this automaton each state is named as an ordered pair (state of A1, state of
A2).

2.4 Modeling constraints
According to (AALST et al., 2011), three main categories of constraints may be identified.
One category focuses on ensuring that each process instance is performed under specific
ordering of activities. The second category focuses on managing the allocation or usage of
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Figura 3 – Venn diagram of languages relation

resources that perform such activities. The third one focuses on the attributes of a process
instance. SCT may be employed to synthesize supervisors to enforce these constraints. This
paper is restricted on modelling activities compatible with constraints on the first category.
In this section we describe the procedure to represent a constraint using automata.

Consider automaton A representing the uncoordinated behaviour of a set of activities
{ai|i ∈ I} of a process. Language L(A) represents all sequences of events that may
be performed by these activities without any constraint, and Lm(A) is a subset of L(A)
representing accomplished activities. The basic premise is that a process contains sequences
of events in L(A) that are not acceptable because they violate some constraint. It is also
possible that certain states must be forbidden since they represent an unauthorized
concurrent execution of activities. These sequences and states must be avoided. Also, it is
possible that a sequence of events in Lm(A) does not correspond to an accomplished task
when the process instance is performed under supervision. Thus, that sequence needs to be
unmarked by supervisor. Consider automaton S/A, such that Lm(S/A) = supC(C,A), the
one that recognizes the supremal controllable language of constraint activities. (REICHERT;
WEBER, 2012a) define a supported traces as a sequence of events complying with all
mandatory constrains. This definition complies with the definition of a sequence of events
belonging to Lm(S/A). Fig. 3 shows the languages relation: the region 1 includes sequences
of events belonging to Lm(S/A) (or supported traces); the region 2 includes sequences
w such that w ∈ L(A), w ∈ Lm(A), w 63 L(S/A), w 63 Lm(S/A); the region 3 includes
sequences w ∈ L(A), w 63 Lm(A), w ∈ L(S/A), w 63 Lm(S/A), the region 4 includes
sequences w ∈ L(A), w ∈ Lm(A), w ∈ L(S/A), w 63 Lm(S/A).

To formally obtain the supervisor that restrains the uncoordinated behaviour of activities
it is necessary to express constraints in terms of automata. Usually, each constraint is
represented as an automaton resulting in set {Cj|j ∈ J}, where J is a set of index uniquely
identifying each constraint. When a process instance is performed under supervision of a
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Figura 4 – Automata representing constraint existence(a1, 1)

set of supervisors obtained employing SCT, the related constraints will never be violated
and there will always be at least one sequence of events leading to a marked state, i.e.,
there will always be the possibility of accomplishing a task.

Modelling constraints is based on sequence of events and unmarking states. Consider an
automaton Cz ∈ {Cj|j ∈ J}. Usually the alphabet of events of Cz is only a proper subset
of the whole set of events. Such alphabet contains the events strictly necessary to represent
the constraint and it is represented as ΣCz. If the occurrence of an event in ΣCz is not
represented at a certain state of Cz, either in self-loop leading to the same state or to
a different one, then the occurrence of this event will not be allowed after any sequence
of events leading to such state. If a state in Cz is not a marked one then the sequences
of events leading to it will not be considered as accomplished tasks, even if any of these
sequences lead to marked states in another automaton in {Cj|j ∈ J} or in automaton A.

The existence(a1, 1) model requires that activity a1 must occur at least once at every trace
(REICHERT; WEBER, 2012a)(PESIC, 2008). In order to facilitate the understanding of
our approach, we rewrite this constraint to activity a1 is successfully completed at least
once. Fig. 4 presents two possibilities of modelling this constraint. The first possibility is
through automaton C1. Initial state of C1 has a self-loop labelled as Σ − c1, meaning
that the occurrence of any event belonging to Σ but c1 keeps this state as the active
one. The active state is state 1 only after occurrence of event c1. This remains the active
state despite the occurrence of any event, as there is a self-loop labelled as Σ. Since the
only marked stated is state 1 then accomplishing a task is recognized only after first
occurrence of event c1. Alphabet of events of this automaton is the whole set of events
ΣC1 = Σ. Modelling a constraint through an automaton whose alphabet of events is
Σ has the advantage of clearly presenting the occurrence of all possible events. In the
case one employs this automaton as a constraint under the LMC approach, then the
corresponding local plant is automaton A and does not take advantage of this approach
in reducing computational complexity to synthesize a corresponding local supervisor.
Considering definition of synchronous product and algorithms for the synthesis of supremal
controllable language supC((A‖C1), A) (WONHAM, 2011), a more efficient representation
of a constraint is through an automaton employing only strictly necessary events.

The second possibility of representing existence(a1, 1) model is through automaton C1’,
where the alphabet of events is ΣC1′ = c1. In this case it is implicit that any event that does
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Figura 5 – Automata Sc1/A, Sc1’/A1 and Sc1r

not belong to ΣC1′ is always allowed to occur in accordance with automaton representing
the uncoordinated behaviour as automaton A. Adopting C1’ as a constraint, results that
corresponding local plant is automaton A1 alone. Thus computational complexity on
the synthesis of local supervisor and number of states of automaton representing it will
be smaller than in the first possibility. Fig. 5 presents automata Sc1/A and Sc1′/A1,
where Lm(Sc1/A) = supC((A‖C1), A) and Lm((Sc1′/A1) = supC((A1‖C1′), A1) may be
employed as supervisors enforcing constraint existence(a1, 1) over the set of activities
A = {a1, a2}. Control action of supervisors obtained in both possibilities will be equivalent.
Such control action is only unmarking sequences of events (recognizing accomplished tasks),
it will not disable events. Applying supervisor’s reduction algorithms (WONHAM, 2011)
on these supervisors results automaton Sc1r, also shown in Fig. 5. It can be seen from
automaton A (Fig. 2) that sequences w1 = ε (the empty sequence of events), w2 = s1x1,
w3 = s2c2, w4 = s1c1, among others, lead from initial state back to it and this is a marked
state so w1, w2, w3, w4 ∈ Lm(A). It can also be seen from automaton Sc1/A and Sc1′/A1
that while sequence w4 (region 1 according to Fig. 3) leads from initial state to a marked
state the same is not true for sequences w1, w2 and w3; this means that w4 ∈ Lm(Sc1/A)
but w1, w2, w3 63 Lm(Sc1/A) (region 4 according to Fig. 3). While w4 is a supported
trace, as defined by (REICHERT; WEBER, 2012a), w1, w2 and w3 are unsupported ones.
Language Lm(Sc1/A) contains all possible sequences of events recognized as accomplished
tasks under supervision. Thus, it contains all supported traces.

According to (REICHERT; WEBER, 2012a) and (PESIC, 2008), the constraint response(a1,
a2) states that if a1 is executed, a2 needs to be executed afterwards (but not directly after).
We may rewrite it replacing executed by completed. Fig. 6 shows the automaton C2 as a
possible model for representing this constraint employing only strictly necessary events,
where ΣC2 = {c1, c2}. In this automaton the state transition function is defined with the
occurrence of all events in ΣC2 at every state meaning that they are always allowed to occur.
While state 0 is a marked one, state 1 is not, meaning that sequences of events leading
to state 1 are not considered as accomplished tasks because there has been at least one
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Figura 6 – Automata C2, Sc2/A, and Sc2r

occurrence of c1 that was not followed by c2. In this case automaton A represents the local
plant since that constraint employs events of every activities. Automaton Sc2/A, where
Lm(Sc2/A) = supC((A‖C2, A), is a possible supervisor’s representation of a supervisor
enforcing this constraint, and automaton Sc2r is a reduced representation of it. Again,
supervisor’s control action is only unmarking sequences of events: the output map is
always empty, i.e. ∀q ∈ QSc2/A → (Φ(q) = ∅). As shown in (REICHERT; WEBER, 2012a),
< a1, a2 >, < a1, a1, a1, a2 > and < a2 > are supported traces while < a1 > is an
unsupported trace. In these cases it is only considered an abstraction of activities, i.e.,
only considered a single event representing the execution and completion of an activity.
Also, it is not considered the overlapping of activities, i.e., activities are only sequentially
executed. Sequences of events that may represent traces with start and complete events,
may be w5 = s1c1s2c2, w6 = s1c1s1c1s1c1s2c2, w7 = s2c2, w8 = s1c1. Considering trace
< a1, a2 > there are many other sequences of events, including overlapping activities. For
instance w9 = s1x1s1x1s1c1s2c2, w10 = s1s2c1c2, w11 = s1c1s2x2s2x2s2c2, all traces
belonging to Lm(Sc2/A). While w8 is an unsupported trace (region 4 in Fig. 3), w5, w6,
w7, w9, w10 and w11 are supported traces (region 1 in Fig. 3).

(REICHERT; WEBER, 2012a) and (PESIC, 2008) also present the constraint
precedence(a1, a2) as activity a2 needs to be preceded by activity a1. We may rewrite it
as a2 can be completed only after a1 has been completed at least once. Fig. 7 shows the
automaton C3 as a possible model for representing this constraint. Notice that both states
are marked, meaning that corresponding supervisor will not unmark sequence of events.
Since ΣC3 = {c1, c2} and state transition function is not defined with the occurrence of
c2 at state 0 than this event cannot occur at this state, i.e. prior to first occurrence of
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Figura 7 – Automata C3, Sc3/A, and Sc3r with c2 as an uncontrollable event

c1. Automaton Sc3/A, where Lm(Sc3/A) = supC((A ‖ C3), A), is a possible supervisor’s
representation. In this case supervisor’s control action is only disabling controllable events,
and corresponding output map specifies that event s2 is disabled at states 0 and 1
(Φ(0) = Φ(1) = {s2}, (∀q ∈ QSc3/A, q 6= 0, q 6= 1) → (Φ(q) = ∅)). The aim of this
supervisor is to avoid occurrence of event c2 prior to the first occurrence of c1. Since c2 is
considered to be an uncontrollable event then the supervisor needs to take an anticipatory
action disabling s2 (a controllable event).

Fig. 8 presents automata Sc3/A′ and Sc3r′ considering c2 as a controllable event. Notice
that automaton Sc3/A′ has two extra states due to occurrence of event s2 from state 0 and
from state 1. Also, supervisor’s control action is disabling occurrence of event c2 at these
extra states (6 and 7) instead of event s2 at states 0 and 1. As shown in (REICHERT;
WEBER, 2012a), < a1, a2 >, < a1, a2, a2, a2 > and < a1 > are supported traces while
< a2 > is an unsupported trace. Sequences of events that may represent such traces are,
respectively, w12 = s1c1s2c2, w13 = s1c1s2c2s2c2s2c2, w14 = s1c1, w15 = s2c2. While
w15 is an unsupported trace (region 2 in Fig. 3), w12, w13, w14 are supported traces
(region 1 in Fig. 3). Considering constraint precedence (a1, a2) and c2 as an uncontrollable
event, sequences in region 3 in Fig. 3 are w16 = s1 and w17 = s1c1s2; a sequence in region
5 is w18 = s2 and a sequence in region 6 is w19 = c1s1.

According to (REICHERT; WEBER, 2012a), constraint-based process models focus on
what should be done by describing the activities that may be performed and the constraints
prohibiting undesired execution behaviour. In the present paper we restrict our focus on
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Figura 8 – Automata Sc3/A’, and Sc3r’ with c2 as a controllable event

constraints aiming to ensure that each process instance is performed under an ordering of
activities and we use the same principle as proposed in (PESIC, 2008) and (SCHAIDT et
al., 2013), where is considered four groups of constraints: (1) existence, (2) relation, (3)
negation and (4) choice. Existence models specify how many times or when one activity
may be executed. Relation models define some relation between two (or more) activities.
Negation models define a negative relation between activities. Choice models can be used
to specify that one must choose between activities. Because the space limitation of this
paper, we only present some models of each group. Fig. 9 to Fig. 12 shows some constraint
models using automata.

2.5 Application example
Project management usually consists of various management processes, monitoring and
control activities. These processes are performed in different conditions for each new
project, which requires a flexible modeling. One of the most popular benchmarks for
project management is the PMBOK (Project Management Body of Knowledge). PMBOK
in its fourth version establishes a set of 42 macro-processes in nine knowledge areas. The
Collect Requirements process was selected for the implementation of declarative modeling
techniques and illustration of the approaches presented here. The goal of this process is to
identify the set of requirements of the final product of a project.

The PMBOK provides three stages for each process: Inputs, Tools and Techniques, and
Outputs. The inputs to this process are the documents Project Charter (PC) and Sta-
keholder Register (SR). The tools and techniques adopted for implementing this model are:
interviews, focus groups, facilitated workshops, questionnaires and surveys, prototypes and
brainstorm. The outputs suggested by PMBOK are Requirements Documentation (RD),
Requirements Management Plan (RMP) and Requirements Traceability Matrix (RTM).
For this work we selected the output Documentation Requirements. Thus, activities under
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Figura 9 – Automata representing the group existence

control are Review Project Charter and Stakeholders Register (a1), Brainstorm (a2), Focus
Groups (a3), Facilitated Workshops (a4), Questionnaires and Surveys (a5), Interviews
(a6), Prototypes (a7), and Requirements Documentation (a8). We assume each activity ai
(i=1,. . . ,8) is modeled as an automaton shown in Fig. 2 (a).

There are five constraints specified for this process: constraint C1 defines that Review
Project Charter and Stakeholders Register (a1) must be the first executed activity in an
instance; constraint C2 defines that at least one of the five activities Brainstorm (a2),
Focus Groups (a3), Facilitated Workshops (a4), Questionnaires and Surveys (a5) and
Interviews (a6) has to be executed, but all can be executed and each of them can be
executed an arbitrary number of times; constraint C3 defines that activities Focus Groups
(a3) and Facilitated Workshops (a4) have a not coexistence relation - only one can occur
in every trace; constraint C4 defines that activity Prototype (a7) needs to be preceded by
activity Interviews (a6); constraint C5 defines that activity Requirements Documentation
(a8) is executed at least once.
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Figura 10 – Automata representing the group relation
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Figura 11 – Automata representing the group negation

Figura 12 – Automata representing the group choice
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2.6 Executing the supervisory control
Once an executable process model has been deployed to a run-time environment, new
process instances can be created and executed according to this model. Generally, several
instances of the same process model may exist representing different business cases (e.g.,
projects of different products). Our proposal is that the supervisory control coordinates
the concurrent execution of these process instances.

When the preconditions for executing a particular activity are met during run-time, a
new instance of this activity is created. Hence, an activity instance represents a single
invocation of an activity during the execution of a particular process instance. Particularly,
when a human activity becomes enabled during the execution of a process instance, the
Process-Aware Information System (PAIS) first determines all resources qualifying for
this activity instance. For each potential resource, a work item referring to the activity
instance is created and added to his worklist. Work items related to a particular activity
instance may be added to different user worklists. Generally, a worklist comprises all work
items currently offered to, or processed by, a user (REICHERT; WEBER, 2012a).

Generally, resources (process participants or users) interact with a PAIS via worklists.
When a resource allocates a work item from his worklist, all work items related to the
same activity instance are removed from the worklists of other resources. Further, the
resource to whom the work item is allocated may then trigger the start of the application
service associated with the corresponding activity instance. The supervisory control must
ensure that activities are executed considering the specified constraints during run-time
(REICHERT; WEBER, 2012a). Fig. 13 shows three process instances PI1, PI2 and PI3

running on the process presented in Section 2.5. The depicted worklists of resources John,
Paul and George comprises work items related to these three process instances.

• Process instance PI1: Activities a1, a2, a3 and a6 have already been completed
but they are still enabled. This is because they may be executed any number of
times. Notice that these activities have been added to the worklists of John and Paul.
Activity a4 is disabled by the supervisory control and the activities a5,a7 and a8 are
enabled and they have not been executed yet. These activities have been added to
the worklists of John and George.

• Process instance PI2: Activities a1, a2 and a4 have already been completed but they
are still enabled. This is because they may be executed any number of times. Notice
that these activities have been added to the worklists of John and Paul. Activities
a3 and a7 are disabled by the supervisory control and the activities a5,a6 and a8
are enabled and they have not been executed yet. These activities have been added
to the worklists of Paul and George.
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Figura 13 – Project management process, process instances and users worlists

• Process instance I3: Only activity a1 is enabled (and it has not been executed yet).
Activities a2 to a8 are disabled by the supervisory control. Notice that in this state
the process has not been initiated. Activity a1 has been added to the worklist of
John.

According to our approach, during the execution of activities the supervisory control has to
disable activities in order to not violate the constraints. In terms of run-time environment,
the supervisory control cannot add an activity in any worklist if such activity is disabled
by the supervisor. As long as an event (si, ci or xi) occurs, the state of the supervisor
is updated and a new control action (a list of disabling activities) is established. Notice
that in our approach the activities may be executed without overlapping (sequentially
executed only) and with overlapping (executed in parallel). Fig. 14 illustrates the execution
of the process shown in Section 2.5 considering overlapping activities for a specific process
instance.

After creating a new process instance, only activity a1 is enabled, as the supervisor
disables the others to not violate the constraint C1. With the completion of activity a1,
the supervisor disables only the activity a7 (to not violate the constraint C4). This is
followed by event s2 resulting in activity instance state a2 running. Next activity a3
is started resulting in activity instance state a2 and a3 running. Then activity a2 is
completed. The set of disabled activities remains unaffected until the activity a3 has been
completed. At this point the supervisor disables the activity a4, in order to not violate
the constraint C3 (notice that the supervisor continues disabling the activity a7). After
a while the activity a6 is started, followed by the beginning of activity a8, resulting in
activity instance state a6 and a8 running. When the activity a6 is completed, the activity
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Figura 14 – Executing the project management process under supervision

a7 becomes enabled. However, the process instance is finished when the activity a8 is
completed.

2.7 Conclusion
We propose a new approach to deal with constraint-based processes. The proposed approach
is based on Supervisory Control Theory, a formal foundation for building supervisors for
DES. The supervisors proposed in this paper monitor and restrict execution sequences of
activities such that constraints are always obeyed. We demonstrate that our proposal can
be used as a declarative language for constraint-based processes. The proposed approach
works informing users which activities are not allowed after an observed trace of events at
run-time. Users can adopt this service as a guide to execute tasks with a guarantee that
constraints are followed and goals are met. SCT allows a formal synthesis of supervisors
that the constraints are not violated in a minimally restrictive way and ensures that this
behavior is non-blocking (i.e., there is always an event sequence available to complete a
task).
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3 Selection of process variants from pre-
specified processes based on supervisory
control theory

Abstract
Process models are often reused in different contexts, resulting in a large number of
related process model variants. Such process variants pursue the same or similar business
objective, but may differ in their logic (i.e., process logic) due to varying application
context at either design time or run-time. We propose a formal procedure to support the
selection and configuration of process variants. Our approach is based on Supervisory
Control Theory (SCT), which is a formal way to build supervisors for discrete-event
systems. In our approach, a questionnaire is used to support configuration and selection of
a process variant, and a formal procedure links the questionnaire to a set of constraints.
This questionnaire has a set of questions and a set of possible answers associated to each
question. After questionnaire answering, we propose a formal procedure to select a process
variant. Our idea is that a selected answer determines a set of tasks that have to appear
in the process model. The whole procedure is founded on SCT approach.

3.1 Introduction
There is a need for enterprises to adapt their processes in different application environments
in a fast and flexible way. However, designing business process models from scratch is
a time-consuming and costly task, besides process models usually vary over time which
makes this task even more challenge (REICHERT; WEBER, 2012a). Thus, the reuse of
process models is a crucial task to maintain competitiveness in business environments.
A process model may be used in different application contexts. They can also set some
variable attributes which are related to different circumstances. To reuse a process model
in different contexts can result in a wide range of related process model variants which
belongs to the same process family. These process variants are connected to the same
business objectives and they have several common points but also there are differences
due specific conditions of each context, for example, some activities can be required for a
context but entirely unnecessary for other.

Variability is the type of flexibility that permits a process model to be configured according
to a specific circumstance (ROSA et al., 2009). Process variability can be required in



52

different domains when processes need to be handled in function of a business process
context resulting different process variants (HALLERBACH; BAUER; REICHERT, 2010b).
Process variants are usually derived from the same process model and the concrete sequence
of actions vary for each variant (HALLERBACH; BAUER; REICHERT, 2008b). At least
four aspects that can generate a process variant: product and services, regulations and laws,
type of clients, and time (REICHERT; WEBER, 2012a). Product and service variability
is required because there can be concrete product variant in a only business. Differences
in regulations in different countries and regions can derive different process variants at
the same business. Variability might be also required from different types of customers
(premium or standard, for example) and due to temporal differences (seasonal changes, for
example). The real variant can often only be defined while the process is executed, but the
general model from which each variant shall be derived is known previously. A healthcare
process for emergency patient treatment can be an example of process variability. Before
each patient is treated an evaluation of his general condition is done resulting in a setting
of which actions must be executed and which must not be executed from a general process
model, the resultant is a process variant (LU et al., 2009) .

It is too expensive for companies to design and implement standardized business processes
for each context of the real world so there is a large interest in gathering common
process knowledge to use it as a reference process model and from this one can derive
all variants conformance with each context of application (HALLERBACH; BAUER;
REICHERT, 2010a; HALLERBACH; BAUER; REICHERT, 2008a; HALLERBACH;
BAUER; REICHERT, 2008c). So it is necessary a modeling approach to capture and
set the variability in a process model, this approach must be able to represent a family
of process variants in a compact, reusable, and maintainable way and it should allow
for easily configure a process family to a process variant that adequately represents the
requirements of a specific application environment (HOMAYOUNFAR, 2012).

In this context, the reference process model concept was developed. The reference process
model is reused and adapted in several ways to achieve different goals, by producing many
process variants from it. Thus, the reference process model take the form of libraries of
process models structured as hierarchies providing an alternative to designing process
models from scratch. Some examples of reference process models are the Supply Chain
Operations Reference (SCOR) model, ITIL for IT service management, SAP reference
models, or medical guidelines for patient treatment (FAQUIH; SBAÏ; FREDJ, 2015; SBAI;
FREDJ; KJIRI, 2012; FAQUIH; SBAÏ; FREDJ, 2014).

However, in general reference process models do not capture possible variations in a
systematic manner, so the variation points and configuration decisions are not represented
in these models. As result, analysts are given little guidance when model elements need to be
removed, added or modified to meet a given set of requirements. Besides, process modelling
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tools do not adequately support the handling of such process variants. These must be
prespecified either in terms of separate process models or by using one process model with
conditional branching. However, both approaches can result in model redundancies that
significantly aggravate model maintenance, and thus turn it into a time-consuming and
error-prone task (FAQUIH; SBAÏ; FREDJ, 2014; REICHERT; WEBER, 2012a; KAYMAK
et al., 2012).

In healthcare area the variability is very common due to certain characteristics of their
processes. In general the healthcare processes have the following characteristics:

• highly dynamic due to the constant arising of new drugs, procedures, treatments and
diseases healthcare processes are executed according to a wide range of distributed
activities, performed by the collaborative effort of professionals with different skills,
knowledge and organizational culture;

• highly variable due to its non-repetitive character, and to its non-deterministic order
of execution As a consequence of these is that it is not precisely known what happens
in a healthcare process for a group of patients with the same diagnosis. Considering
a group of patients with the same condition, a number of different examinations
and treatments may be required and the order in which they are conducted may
greatly vary (MANS et al., 2008; GUPTA, 2007; HOMAYOUNFAR, 2012; LENZ;
REICHERT, 2007).

This paper proposes an approach that builds a bridge connecting specialists of different
fields of knowledge, a process specialist (PS) and an information technology (IT) specialist,
such that, acting together and employing a common language they will be able to represent
a reference process model and select variants of it. Applying this approach will result
in a set of documents that will formally register requirements specifications of a project
involving a process’ specialist and an IT’ specialist employing a common language to both.
In a further step an IT’s specialist will be able to translate this specifications into a set of
automata allowing him to formally synthesize a reference process model and its variants
employing the SCT. This results allows one to develop an information system aiming to
manage and to supervise the execution of process variants instances. This last step is out
of the scope of this paper.

The aim of this work is to propose an approach to select a process variant from a reference
process model by using a questionnaire and a formal procedure based on Supervisory
Control Theory (SCT) (RAMADGE; WONHAM, 1989; RAMADGE; WONHAM, 1987).
A questionnaire is used to support configuration and selection of a process variant, and
a formal procedure links the questionnaire to a set of constraints. A process variant is
selected using the algorithms proposed by SCT approach. This questionnaire has a set
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of questions and a set of possible answers associated to each question. Basically, we add
control over questions sequence in order to obey a certain set of constraints. Thus, the
proposed approach restrains the space of allowed answers in order to prevent users from
making inconsistent selections during configuration. After questionnaire answering, we
propose a formal procedure to select a process variant. Our idea is that a selected answer
determines a set of tasks that have to appear in the process model.

The present paper is organized as follows: Section 2 presents the literature review related
to the proposed approach. Section 3 describes the Supervisory Control Theory, as the
fundamental concept of our approach. Section 4 presents the running example used to
explain the proposed approach. Section 5 describes in detail the formal procedure to select
a process variant from a reference process model. Section 6 concludes the paper.

3.2 Related Works
Several studies have been interested in different aspects of business processes variability.
We surveyed process variability research to discover the main approaches in this area. To
perform the research, were select papers containing the words ‘configurable process model’,
‘business process variability’, ‘business process flexibility’, ‘process family’, ‘reference
process model’ and ‘process variant’ as key-words or in the abstract. These works are
presented in the next two Tables. Table 1 present researches that approached topics related
to the (re)design, management, modeling, configuration and validation of the Configurable
Process Models (CPM).

Koschmider e Oberweis (2007) developed an algorithm for determining linguistic similarities
between business process model variants, thus facilitating process redesign. Kumar and
Yao, 2012 in Kumar e Yao (2012) proposed the design and management of flexible process
variants by applying business rules to a generic process template, which describes a very
basic and general process schema.

The CPM management and configuration were the topics most discussed between the
papers analyzed. Gottschalk, Aalst e Jansen-Vullers (2007) developed an approach for
configuring and managing process variant named Propov, which provides an operational
approach for managing process variants based on a single process model. In this approach,
process variants can be configured by applying a set of high-level change operations (e.g.,
to insert, delete or move process fragments) to a given process model. Reijers, Mans e
Toorn (2009) proposed simplify business process model management by combining the
business process model into aggregate models where the common part is included only
once and the unique parts from each of the separate models are preserved.

Focusing on the configuration, Rosa et al. (2009) developed a questionnaire-based fra-
mework for configuring reference process models. In this way, each question refers to a set
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Tabela 1 – Researches on business process variability aspects

Authors Description
Becker et al. [18], La Rosa et al. [19], Ognjanović
et al. [20], Santos et al. [21], La Rosa et al. [22],
Derguech and Bhiri [23]

CPM configuration

Gottschalk et al. [24] CPM modelling
Koschmider et al. [25], Pascalau et al. [26] CPM (re)design
Lapouchnian et al. [27] CPM (re)design, CPM

configuration
Hallerbach et al. [28] CPM management,

CPM configuration
Thomas [29], Lu et al. [30], Reijers et al. [31], Der-
guech et al. [32]

CPM management

Reichert et al. [33] CPM management,
CPM modelling

Reinhartz-Berger et al. [34], Gröner et al. [35] CPM validation
Mahmod and Chiew [36], Kumar and Yao [37] CPM (re)design, CPM

management
Pascalau et al. [38] CPM management

of facts that can be set to true or false. Facts encode the variability of the system, e.g.
optional features, values of configuration parameters, etc. The individualization of the
generic system is captured by means of actions. As the questionnaire is answered, values
are assigned to facts, and the resulting valuation of facts determines which actions should
be performed on the generic system to derive an individualized system.

Derguech e Bhiri (2011) proposed an algorithm that allows for merging a collection of
business process models to create a configurable process model. The algorithm ensures that
the resulting configurable model includes the behaviors of the original business process
variant by considering work nodes with identical labels and preserving the status of start
and end nodes.

Regarding to the modeling of configurable process models, Reichert et al. (2009) presents
an extension of the ARIS Business Architect to better cope with the high variability of
business process models in practice. This extension is based in the Provop framework
proposed by the authors to support the modeling and management of process variants.
Gottschalk, Aalst e Jansen-Vullers (2007) presented an analysis of configuration from
a theoretical perspective. Within the analysis a link is made to inheritance of dynamic
behavior and previously defined inheritance concepts. By applying these concepts to
process models the essence of configuration is determined, which enables the development
of more mature configurable process modeling languages.

Some authors focused in the aspects related to the validation of the configurable process
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model. Reinhartz-Berger, Soffer e Sturm (2009) applies the ADOM (Application-based
domain modelling) as a platform for organisational reference models, and introduced a
validation procedure to check the compliance of the specific processes with the organisatio-
nal reference model. Gröner et al. (2011) proposed a classification of interrelationships
between elements of business process models and demonstrate how this classification can
be used for the validation. The classification, specified in Description Logics (DL), is based
on an analysis of basic workflow patterns, a set of conceptual basis for process languages.

In Table 2 are presented some studies which focuses on topics such as process families,
reference process models, the syntactic and/or semantic correctness of CPM, the aspects
related to the business process variability and the literature review about business process
variability.

Tabela 2 – Researches on business process variability aspects

Author(s) Process families
von der Maßen and Lichter [43], Razavian and
Khosravi [50], Rolland and Nurcan [53], Nguyen et
al. [56], Ayora et al. [16], Yao and Sun [59], Mechrez
and Reinhartz-Berger [62]

Business process varia-
bility

Recker et al. [44], van der Aalst et al. [18], van der
Aalst et al. [54], van der Aalst et al. [58]

Syntactic/semantic
correctness of CPM

Reinhartz-Berger et al. [45], Rabe et al. [7], Lazovik
and Ludwig [47], Reinhartz-Berger et al. [52], Li et
al. [55]

Reference process mo-
dels

Giese et al. [46], Schonenberg et al. [48], La Rosa et
al. [49], Vergidis et al. [51], Ayora et al. [14], Torres
et al. [57], Ayora et al. [60]

Process families

Gröner et al. [61] Process families, Busi-
ness process variability

Valença et al. [4], Ayora et al. [11] Literature review

Some researches approached issues related to the process families. Gröner et al. (2013)
developed a validation algorithm ensuring that each member of a business process family
adheres to the core intended behaviour that is specified in the reference process model. The
proposed validation approach is based on modelling and reasoning in Description Logics,
variability is represented by using the Feature Models and behaviour of process models is
considered in terms of control flow patterns. Ayora et al. (2013b) proposed nine patterns
for dealing with changes in process families. The authors introduced a set of generic and
language-independent patterns that cover the specific needs of process families. When used
in combination with existing adaptation patterns, change patterns for process families will
enable the modelling and evolution of process families at a high-level of abstraction.

Focusing on reference process model, some topics addressed are the discovery of the
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reference process model, the adaptability and the customizability of the reference among
others. Reinhartz-Berger, Soffer e Sturm (2005) propose to utilize the ADOM, for specifying
and applying reference models. The benefits of utilizing the ADOM approach for specifying
business models are the provisioning of validation templates by the reference models and
the ability to apply the approach to various modelling languages and business process views.
Li, Reichert e Wombacher (2011) introduced, evaluated and compared two algorithms
(heuristic and clustering) for discovering a reference process model out of a collection of
block-structured process variants.

Ensuring the syntactical and/or semantic correctness of the process model is the focus of
some researches. Recker et al. (2005) have shown that the application of configurable EPCs
in the process of enterprise system reference model configuration leads to syntactic problems.
Thus, the authors outlined a XML schema-based approach using the EPCMarkup Language
for the syntactical validation of reference process model configuration. Aalst et al. (2008)
proposed a framework for configuring reference process models which includes a technique
to derive propositional logic constraints that, if satisfied by a configuration step, guarantee
the syntactic and semantic correctness of the resulting model.

Regarding the business process variability, Ayora et al. (2013a) presents an evaluation
framework that allows analysing and comparing the variability support provided by existing
proposals developed in the context of business process variability. Based on an in-depth
analysis of several large process model repositories from various domains, the framework
defines both a set of language requirements and variability support features needed for
properly dealing with BP variability. Mechrez e Reinhartz-Berger (2014) proposed a
two-dimensional framework that refers to granularity, namely, the variable elements, and
guidance, i.e., the creation of variants at design-time. The framework is used for evaluating
the expressiveness of 22 languages that support design-time variability modelling in
business processes.

Finally, related to the literature review the researches addressed approaches and challen-
ges related to process flexibility (SCHONENBERG et al., 2008; AYORA et al., 2012),
techniques for capturing variability and techniques to capture the domain parameters
that affect the variability (ROSA; DUMAS; HOFSTEDE, 2009), the business process
modelling, analysis and optimization vergidis2008business, comparison between C-EPC
and Propov approaches (TORRES et al., 2012), mapping of business process variability
(VALENÇA et al., 2013) and a framework for assessing and comparing process variability
approaches (AYORA et al., 2015).

Others aspects related to the business variability were also focused such as the automatic
creation of CPM (JIMÉNEZ-RAMÍREZ et al., 2013), the soundness of CPM (HALLER-
BACH; BAUER; REICHERT, 2009; SCHUNSELAAR et al., 2012b), CPM notations
(ROSA et al., 2013), to predict the complexity of CPM (VOGELAAR et al., 2011), the
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evolution of the CPM (SBAI; FREDJ; KJIRI, 2013), (SBAI; FREDJ; KJIRI, 2014) among
others.

Nevertheless, many of these approaches have several limitations due to the low level of
automation (REICHERT; WEBER, 2012a). Furthermore, an important issue concerned
with business process variability is the auto-verification of business process variants
obtained after configuration. Another need is to have a taxonomy for the variability of
business processes to facilitate the management of research, configuration and evolution of
these processes (FAQUIH; SBAÏ; FREDJ, 2015).

3.3 Supervisory Control Theory
Supervisory Control Theory (SCT) (RAMADGE; WONHAM, 1989; RAMADGE; WO-
NHAM, 1987) has been developed in recent decades as an expressive framework for the
synthesis of control for Discrete-Event systems (DES). According to SCT, the behaviour
of a DES may be represented by sequences of events corresponding to ordered execution
of activities. Among all possible sequences of events and due to the process rules and
constraints, some sequences of events are desirable while other sequences are not since they
violate these rules or constraints. Instead of defining a priori a specific sequence of events
to be enforced in order to satisfy the constraints, the core concept of SCT is to design a
maximal controllable language that, following the sequence of events while the process
evolves, specifies which events cannot occur in order to not violate the constraints. Thus,
after the occurrence of an event the system (or the DES) decides which event will occur
among those that are not disabled by a supervisor. SCT provides algorithms that, based
on a process model considering all feasible event sequences and the associated constraints,
allow one to design a maximal controllable language that represents a minimally restrictive
behavior over a DES under consideration.

Suppose a process with a set of associated activities A = {ai | i ∈ I} where I is a set of
index uniquely identifying each activity. We propose that each activity is modelled as a
corresponding automaton. Each automaton is represented by a 5-tuple Ai = (ΣAi , QAi ,
δAi , qAi

0 , QAi
m ), where ΣAi

is the alphabet (i.e., set) of events; QAi is the set of states; δAi :
(QAi x ΣAi) → QAi is the state transition function, which is typically partially defined;
qAi

0 is the initial state; and QAi
m ⊆ QAi is the set of marker states. Performing synchronous

product of all automata in A = {Ai | i ∈ I}, it results on automaton A where the set of
states represents all possible combinations of activities being performed over a certain
process instance.

Consider automaton A representing the uncoordinated behaviour of a set of activities A
= {ai | i ∈ I} of a process. Language L(A) represents all sequences of events that may
be performed by these activities without any constraint, and Lm(A) is a subset of L(A)
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representing accomplished activities. The basic premise is that a process contains sequences
of events in L(A) that are not acceptable because they violate some constraint. It is also
current execution of activities. These sequences and states must be avoided. Also, it is
possible that a sequence of events in Lm(A) does not correspond to an accomplished task
when the process instance is performed under supervision. Thus, that sequence needs to
be unmarked by supervisor. Consider automaton S/A, such that Lm(S/A) = supC(C/A),
the one that recognizes the supremal controllable language of constraint activities.

Ramadge e Wonham (1989) define a supported traces as a sequence of events complying
with all mandatory constrains. This definition complies with the definition of a sequence
of events belonging to the supremal controllable language supC(C/A).

Figure 15 shows the languages relation: the region 1 includes sequences of events belonging
to supC(C/A) = Lm(S/A) (or supported traces); the region 2 includes sequences w such
that w ∈ L(A), w ∈ Lm(A), w /∈ L(S/A), w /∈ Lm(S/A); the region 3 includes sequences
w ∈ L(A), w /∈ Lm(A), w ∈ L(S/A), w /∈ Lm(S/A), the region 4 includes sequences w ∈
L(A), w ∈ Lm(A), w ∈ L(S/A), w /∈ Lm(S/A).

Figura 15 – Venn diagram of languages relation.

According to SCT, one step to formally obtain the supremal controllable language it is to
express constraints in terms of automata. Usually, each constraint is represented as an
automaton resulting in set {Cj | j ∈ J}, where J is a set of index uniquely identifying each
constraint. Using the algorithms provided by SCT, the supremal controllable language
represents that all related constraints will never be violated and there will always be
at least one sequence of events leading to a marked state, i.e., there will always be the
possibility of accomplishing a task.

The proposed approach is founded on the Supervisory Control Theory (SCT). The SCT is
used as formalism to represent activities and constraints, so both modeled by automata.
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In or approach, the constraints ensures that each process instance is performed under
specific ordering of activities. Thus, depending on the selected constraints, it is possible to
select a process variant. Also, each process variant correspond to the supremal controllable
language obtained from SCT (and using specific constraints and activities automata
models). The reasoning of this procedure is the core of our approach.

We believe that the Supervisory Control Theory (SCT) is a promising candidate to
formalize the selection of process variant from a reference process model. We highlight the
following reasons:

• SCT uses automata as formalism to represent activities, constraints and the resulting
supremal controllable language. This is a formal and explicit way of representing
them;

• Using SCT, from modelling to synthesis and visualization, the formal notation is
used associated to a BPMN process model. Thus, at the same time we formalize the
procedure of process variants selections and use a very well-known process notation;

• In SCT the state of each activity as well as each constraint may be easily visualized
and understood by the end user at design-time;

• SCT provides algorithms to perform a formal synthesis of the supremal language
instead of the usual manual and heuristic procedures;

• The obtained solution is minimally restrained and also dead-lock free. It means each
selected process variant is correct by construction;

• New process variants may be rapidly and formally designed when modifications,
such as redefinition of constraints or activities arrangements, are necessary;

• The set of possible process variants can be made to behave optimally with respect
to a variety of criteria, where optimal means in minimally restrictive way (concern
to the admissible language of the process). This is a very strong characteristic of
the proposed approach. As far as we know, there is no approach that offer a better
solution related to the admissible language.

3.4 Running example
We use an adapted version the healthcare process for handling examination presented in
(REICHERT; WEBER, 2012a) and (AYORA et al., 2012) as running example to explain
our approach. This process covers a family of process variants for handling examinations,
including order handling, scheduling, transportation, and reporting. Figure 16 illustrated
the reference process model. The grey rectangle represents a point where we specify which
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tasks have to be included (and the possible sequences). The tasks in the white rectangles
represents common tasks that will appear in all variants.

We consider that a reference process model has two groups of tasks: (1) one group including
tasks that always are in the process model (therefore common to all variants) , and (2)
other one including tasks that are configurable (they may be in the model or not). In
fact, the second group corresponds to the parts being subject to variation, which are
commonly known as variation points (AYORA et al., 2012). Notice that in Figure 16 the
first group includes the tasks in white rectangles and the second includes the tasks in the
grey rectangle.

3.5 The proposed approach
This section presents the proposed approach that allows specialists of different fields of
knowledge to represent a reference process model and select variants of it. We employ
an adapted version of a health care process for handling medical examination which is
presented in (REICHERT; WEBER, 2012a) and (HOMAYOUNFAR, 2012) to illustrated
key concepts as well as this approach‘s application .

We consider that a reference process model is composed of a set of actions (A) such that
there is an ordering among then. For instance, the reference process model presented
at Figure 16 has 14 actions (A = a0, a1, . . . , a14), it specifies that action "a3 - Order
medical examination"may be performed only after action "a1 - Request emergency medical
examination"or "a2 - Request standard medical examination"have been completed. It also
specifies that actions "a7 - Prepare patient"and "a8 - Inform patient"may be performed
concurrently. This figure represents a reference process model employing Business Process
Modelling Notation (BPMN) (BPMN, 2011) which is a common notation employed in the
business management field.

We propose that, IT’ s and process’ specialists, acting together represent a reference
process model employing this notation. This notation, despite of being a formal way
of representing a business process is quite intuitive, so it is appropriated to serve as a
communication interface between two body of knowledge, the IT’s world and the process’
domain. An obtained BPMN graph formally describes the process specialist’s knowledge.

Configurable connectors are included between actions whenever there is a choice about
performing such actions. They specify logical relations, such as inclusive OR and exclusive
OR, among actions succeeding it. For instance "Configurable connector 1"preceding ac-
tions "a0 - Check-in for appointed medical examinationa1 - Request emergency medical
examination"and "a2 - Request standard medical examination"represents an "exclusive
OR"relation among them. In this case choosing to perform one action implies that the other
actions cannot be performed. Configurable connectors 2 and 4 have a similar meaning.
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Figura 16 – Reference Process model adapted from (REICHERT; WEBER, 2012a).

Configurable connectors 3 and 5 represent an "inclusive OR"relation. From configurable
connector 5 it is possible to choose to perform action "a7 - Prepare patient"and do not
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perform action "a8 - Inform patient", or to perform action a8 and do not perform action
a7, or even, to perform both actions a7 and a8. In the last case, actions a7 and a8 may be
performed in a strict sequence as, start and complete action a7 them start and complete
action a8, or they may be performed concurrently, such as, start action a7 them start
action a8, complete action a8 and finally complete action a7. A configurable connector
must be associated with closing connectors. In this figure, there are two closing connectors
associated with "Configurable connector 1", one following actions a1 and a2 and another
one following action a0. Such interconnection represents that, if any of the first two actions
(a1 or a2) is performed then they must be followed by action a3 and by some of the other
three actions succeeding "Configurable connector 2". On the other hand, if action a0 is
performed then none of the mentioned actions may be performed.

A reference process model includes all possible actions, and a process variant of it will
include only a subset of it. The set of actions may be partitioned into a subset of mandatory
actions (Am) and a subset of optional actions (Ao), A mandatory action will be present at
every variant while an optional action may or may not be present in a certain variant. In
Figure 16, mandatory actions are represented by white backgrounded boxes and optional
actions by grey backgrounded boxes. Actions "a10 - Perform medical examination"and "a13

- Create medical report"are the only mandatory ones in this reference process model.

In this approach, each action is a discrete event system, such that it may be represented as
an automaton. A reference process model as well as each variant of it is a composed system.
They are constituted by several subsystem (actions) that may be performed sequentially
and/or concurrently.

Each action must be represented by an automaton (which is a labeled transition system).
This is a common formalism employed in the computer science field as well as by the SCT.
Figure 17 illustrates some, among several, possibilities of representing an action employing
different levels of abstraction. Choosing one among them is based on the expected process
behavior. Automata in Figure 17-a and 17-b are the best choices whenever it is considered
that there never is the possibility of performing two or more actions concurrently and it
is not considered the possibility of pausing and resuming a corresponding action. This
is due to their simplicity as well as the resulting computational complexity involved in
performing operations on automata. These automata express that an action is executed
instantaneously. In automaton at Figure 17-a, initial state (circle with an incoming arrow)
numbered 0 means that a corresponding action is idle. State 1 means that action has been
performed. Arrow from state 0 to state 1 express that occurrence of event ei results in a
state transition (from 0 to 1). This event means instantly execute action ai. Automata
in Figure 17-c through 17-e allows representing concurrent execution of actions. State 1
in these automata means that a corresponding action is being performed. They employ
events si (start executing action) and ci (complete action).
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Automata in Figures 17-a, 17-c and 17-e specify that the corresponding action may be
performed only once in the process instance, while automata in Figures 17-b and 17-d
specify that the corresponding action may be performed several times in the same process
instance. In automaton at Figure 17-d it is possible to perform a sequence of events as "si

ci si ci si ci . . . "while in automaton in Figure 17-c it is not possible to perform neither si

neither ci after the sequence of events "si ci"has been performed. The set of states in an
automaton is partitioned into marked states (double lined circle) and unmarked (single
lined circle). Unmarked states express that something is pending to be accomplished.
Marked states express that there is nothing pending, i.e., a task has been accomplished.
Automata in Figure 17-c 17-d and 17-e express that once an action has been started (event
si happened) it must be completed (event ci needs to happen) to consider an accomplished
task. This is because state 1 (Figure 17-c and 17-d) and states 1 and 2 (Figure 17-e) are
not marked. Initial state in all automata are marked states, this means that even if the
action is not performed, a task has been accomplished. They may be employed to represent
optional actions. Mandatory actions must be represented with an unmarked initial state.

The SCT introduces the concept of event controllability. An event is considered controllable
if a control agent (a supervisor under SCT) may avoid or disable its occurrence, it is consi-
dered uncontrollable if its occurrence cannot be disabled. Specifying event controllability is
a modelling decision and influences the resulting system’s behaviour. In a process variant
only a subset of actions must be executed, so it is necessary to avoid start executing
remaining actions. Due to this, event start executing action must be a controllable event.
If it is not possible to avoid completing an action once it is being performed then event
complete action is uncontrollable. Different automata models may be employed to represent
actions of a certain reference process model. In this application example all actions have
been represented by automata with the structure as in Figure 17-c.

Figura 17 – Possible automata representing an action

A process’ specialist textually specifies ordering among actions as well as maximum number
of times a certain task may be performed in a reference process model. These constraints are
represented in a BPMN graph and translated into automata by an IT’s specialist. Events
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in these automata must be only those employed to represent actions. Figure 18 presents
automata employed to express constraints in the application example and corresponding
meaning.

Figura 18 – Automata representing constraints on ordering of actions

Performing the operation named synchronous product (CASSANDRAS; LAFORTUNE,
2009) of all automata representing actions results an automaton representing every pos-
sibility of performing actions without any constraint. Under the SCT it represents a
system’s uncoordinated behaviour, usually represented as G. Performing the synchronous
product of automaton G with all automata representing constraints results an automaton
representing a constrained behaviour of G, usually represented as E. This behaviour may
result uncontrollable and/or blocking. Automaton E is uncontrollable if, in order to satisfy
the set of constraints, it is required to prohibit the execution of an uncontrollable event.
It is blocking if reaching an unmarked state there is no possible event to be performed
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leading to a marked state. It is then necessary to obtain the supremal controllable language
(RAMADGE; WONHAM, 1989; RAMADGE; WONHAM, 1987) of E regarding G, which
is represented by automaton RPM = SupC(E,G), this represents a reference process model.
These operations on automata are performed employing software made available by the
SCT’s scientific community. Examples of software are XPTCT (WONHAM, 2013) UMDES
(RICKER; LAFORTUNE; GENC, 2006).

A total of 14 action automata and 8 constraint automata where employed in this application
example. The automaton representing the reference process model has a total of 945
(DERGUECH; VULCU; BHIRI, 2010). An indexing structure for maintaining configurable
process models. This figure allows one to compare a BPMN graph and a corresponding
automaton. While the first one is quite intuitive and compact, it omits details about
action’s behaviour and constraints among them. An automaton explicitly represents all
possible sequences of events and thus may have a huge number of states making impossible
to one to completely visualize it. On the other hand, it allows one to develop an information
system aiming to manage and to supervise the execution of process variants instances. In
this proposed approach, translating textual language into automata as well as performing
operations on automata may be left for an IT’s specialist avoiding to burden a process
specialist.

A process variant is obtained by imposing further constraints on the reference process
model specifying (non)existence of actions as well as refining ordering of actions and
number of times of performing actions. Such constraints cannot contradict or be less
restrictive than those already imposed to the reference process model, they can only be
more restrictive. As before, a configurable connector represents logical relations among
actions succeeding it. These relations lead to constraints to be imposed on a reference
process model. Choosing one constraint at each configurable connector results a process
variant. We propose that, while representing a BPMN graph representing a reference
process model, IT’s and process’ specialists, textually formulate the meaning of constraints
associated with configurable connectors. These will be translated into automata by an IT’s
specialist. Figure 19 presents the meaning of configurable connectors, associated constraints
and corresponding automata. For instance, in automaton c31 there is an arrow from state
0 (initial state) to state 1 labeled with event s8. Since state 1 is unmarked, this event will
be exclude from a process variant when performing those operations on automata. It will
avoid action a8 to be started. Since a marked state (state 2) is reached only after occurrence
of event c7 then an accomplished task is not recognized until completing action a7. In a
similar way in automaton c33, an accomplished task is not recognized until completing
both actions a7 and a8, doesn’t matter their relative order. Since events s9 and s10 appear
only after the occurrence of both c7 and c8 then actions a9 and a10 may start only upon
completing a7 as well as a8.
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Figura 19 – Constraints and automata associated with configurable connectors

In order to help properly selecting constraints leading to process variants, IT’s and
process’ specialists may formulate a questionnaire associating configurable connector’s
with questions. Each question may have several answering choices. Choosing exactly one
choice selects a subset of constraints to be further imposed on the reference process
model. It is possible that, in order to obtain coherent process variants, choices in different
questions become mutually exclusive. Correlation among choices must be specified during
questionnaire formulation. Due to these correlations it is possible that the number of
formulated questions results smaller than the number of configurable connectors. It is also
possible that, due to a selected choice in a question, a further question results meaningless
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and may be hidden from a responder. Table 3 presents the guided questionnaire associated
with the BPMN graph on Figure 16. Due to coherent process variants, it requires only
two questions. It can be seen that constraint c52 is never selected.

Tabela 3 – Guided questionnaire

Question Correlation among
choices and questions

Subset of constraints selected by
choice x

x ⊕ y : choice x and
choice y are mutually
exclusive.
x [ Z ] : choice x hides
question Z.

Q1) What kind of attendance is to be
performed?
1.1 - Emergency medical examination 1.1 ⊕ 2.1 { c1_1 , c2_3, c3_1 , c4_1, c5_3

}
1.2 - Appoint medical examination 1.1 ⊕ 2.2 { c1_2 }
1.3 - Check-in for appointed medical
examination

1.1 [ Q2 ] { c1_3, c3_1 , c4_2 , c5_1 }

1.3 ⊕ 2.1
1.3 ⊕ 2.2
1.3 [ Q2 ]

Q2) Is immediate attendance availa-
ble?
2.1 - No 2.1 { c2_1 , c3_2 , c4_3 }
2.2 - Yes 2.2 { c2_2 , c3_3, c4_2, c5_1 }

Answering a questionnaire selects a subset of constraints. Performing the synchronous
product of automaton RPM with all selected automata results an automaton representing
a constrained behavior of RPM, it may be represented by EP V . Again, this behavior may
result uncontrollable and/or blocking. It is necessary to obtain the supremal controllable
language of EP V regarding RPM, which is represented by automaton PV = SupC(EP V ,
RPM). This automaton represents the behavior of the corresponding process variant.
Different answers on the questionnaire will select different subsets of constraints thus
resulting different process variants.

There are four coherent process variants associated with reference process on Figure 16.
Selecting choice 1.1 or 1.3 at question Q1 selects all necessary constraints to be imposed on
the reference process model in order to obtain two of its variants, so question Q2 may be
hidden from a responder. Selecting choice 1.2 at question Q1 selects a single constraint and
it is necessary to answer question Q2. The constraints to be imposed in order to obtain the
other two variants are selected at question Q2. Without a guided questionnaire one would
be able to select a combination of constraints leading to an uncoherent process variant, for
instance selecting c11 (request emergency medical examination) together with c21 (arrange
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appointment for medical examination). Figure 20 presents automaton representing a
process variant obtained selecting "1.2 - Appoint medical examination"at question Q1 and
"2.2 - Yes"at question Q2. It also presents a corresponding BPMN graph.

Figura 20 – Process variant representing an emergency medical examination

3.6 Conclusion
This paper presented a formal approach for dealing with variability in BPM. The appro-
ach relies on a questionnaire composed of questions and answers associated to a set of
constraints. To do this, we propose a formal method to connect the questionnaire with
the process models variants. We do that associating each answers to a set of tasks that
have to exist, and a set of tasks that have to not exist in a certain process. Then we
define a supervisor that restrains the behavior of the reference process model according to
existence and non-existence constraints types, thus deriving an individualized version of
such reference process. The development of the approach has been motivated by the need
to support the configuration of business process models variants, and our contribution is
to provide a formal procedure to do it.

We point out that it would be possible to develop a software package that guides the
process of questionnaire answering, signaling that a certain choice is not allowed to be
selected or automatically selecting choices based on previously selected choices. Upon
completing a questionnaire’s answering, it may also automatically perform operations on
automata in order to synthesize the automaton representing a process variant. However, it
is out of the scope of this paper to discuss this implementation.

A BPMN graph, textual meaning actions’ behaviour, textual meaning of constraints
on configurable connectors, and a questionnaire, will formally document requirements
specifications of a project involving a process’ specialist and an IT’ specialist employing
a common language to both. Corresponding automata will allow an IT’s specialist to
formally synthesize a reference process model and its variants employing SCT. Thus, we
believe that both specialists executing a project using a common language will benefit
both and the whole project process.
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4 Simple Declarative Language (SDL): a con-
ceptual framework to model constraint ba-
sed processes

Abstract
Constraint-based processes have received increased interest for featuring non-standardized
settings. In these processes, the control flow is defined implicitly as a set of constraints or
rules, and any possibility that is not in violation of any of the constraints set is allowed to
be executed. A constraint-based process model specifies the tasks that must be performed
to produce the expected results but does not establish exactly how these tasks should
be performed, i.e. any tasks can be performed provided the constraints are not violated,
with user preferences driving process execution. Constraint based processes are better
modeled by declarative languages. Declare and DCR graphs are examples of frameworks
applied in modelling constraint based models by using declarative languages. The SCT
approach for modeling constraint based processes is an example of formalism intended
to model constraint based models by using declarative language. This paper presents
some of the main features of the Declare, DCR graphs and SCT approaches. This paper’s
main contribution is introduced after presenting the Declare, DCR graphs and SCT
approaches for modeling constraint based processes: the Simple Declarative Language
(SDL) framework, a new conceptual framework for modeling constraint based processes.

Keywords: Constraint based processes, Declare / Linear Temporal Logic, Dynamic
Condition Response graphs, Supervisory Control Theory, soundness.

4.1 Introduction
There has been an increased interest in constraint-based processes because of having non-
standardized settings (REIJERS; SLAATS; STAHL, 2013). Non-standardized settings
provide users the power to choose tasks, procedures and methods to be executed in a
given process (MERTENS; GAILLY; POELS, 2015b). In general, users make these choices
according to their professional expertise and the context in which the process is being
performed (UNGER; LEOPOLD; MENDLING, 2015). Another important characteristic
of constraint-based processes is that they permit easy identification of business rules or
constraints with which the process must be compliant (GOEDERTIER; VANTHIENEN;
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CARON, 2015).

Declarative languages are better suited for modeling constraint-based processes because
they facilitate the formal declaration of constraints or business rules (HAISJACKL et al.,
2013). These languages define the tasks that must be performed to produce the expected
results but not establish exactly how these activities should be performed (MERTENS;
GAILLY; POELS, 2015a).

Thus, despite process execution being user-choice driven, users can only choose task
sequences that do not violate any process constraints (SLAATS et al., 2013). In constraint-
based processes, set of constraints defines implicitly the control flow (LY et al., 2015).
Constraint based process are modeled by environments that provide some kind of support
tool for users to model and run the process. Users model the process when designing it.
The time when users run the process is known as the process run time.

These environments that provide some kind of support tool to model and run processes are
called constraint based process modeling frameworks. Figure 21 shows a very simplified
process design and run framework.

Figura 21 – Very simplified framework to design and run a process

There are at least two important frameworks intended to model constraint based process:
Declare (PESIC, 2008; MONTALI et al., 2013; CICCIO et al., 2015), and DCR graphs
(MUKKAMALA, 2012).

Declare is a framework that provides templates of tasks and constraints for modeling and
performing constraint-based processes, each template is defined by a Linear Temporal
Logic (LTL) expression (MAGGI, 2013; AALST; PESIC; SCHONENBERG, 2009; PEŠIĆ;
BOŠNAČKI; AALST, 2010; PESIC, 2008; MONTALI et al., 2013).

Dynamic Condition Response (DCR) graphs is a framework that provides sets of events
and relations for modeling and performing constraint-based processes, each task can
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be represented as an event (MUKKAMALA, 2012; MUKKAMALA; HILDEBRANDT;
SLAATS, 2013; HILDEBRANDT et al., 2013; DEBOIS; HILDEBRANDT; SLAATS, 2015;
ESHUIS et al., 2016; DEBOIS et al., 2016).

The Supervisory Control Theory (SCT) is mathematical formalism for synthesis of optimal
discrete event systems (DES) controllers (RAMADGE; WONHAM, 1987). SCT presumes
that a set of tasks may display uncontrollable behaviors that might violate some of the
required properties (WONHAM; RAMADGE, 1987). This behavior must be modified
through an agent, the supervisor, in order to deliver a set of specifications or to ensure that
certain restrictions are not violated (RAMADGE; WONHAM, 1989). The SCT approach
for modeling constraint based processes (SANTOS et al., 2014) is based on the Supervisory
Control Theory and provides a set of automata to represent business process task and
constraint modeling (SANTOS et al., 2011; SANTOS et al., 2014; SCHAIDT et al., 2013;
CESTARI et al., 2014; SCHAIDT et al., 2013).

There are several important concepts that are common to constraint based processes.
This paper deals with four of them: soundness (AALST et al., 2011), enabled events
(HILDEBRANDT et al., 2013), pending events (MUKKAMALA, 2012) and violation of
constraints (PESIC; SCHONENBERG; AALST, 2007).

Soundness can be described as the combination of three behaviors in a process model:
option to complete, proper completion and no dead activity (AALST et al., 2011). When
a process fulfills the option to complete, this means that the process will always reach
completion. When a process fulfills proper completion, this means that whenever the
process is completed, all its tasks are completed and no tasks are left running. When a
process fulfills no dead task, this means that every task in the process may be completed
at least once (AALST, 2015; MONTALI; CALVANESE, 2016; AALST et al., 2011).

The concept of soundness is important in semantic process analysis (AALST et al., 2011;
FAVRE; FAHLAND; VÖLZER, 2015). For example, if a process violates option to complete
there is a sequence of events in this process that will lead to a deadlock, i.e. a state in which
it is impossible to finish the process properly. Declare (MAGGI et al., 2011; MAGGI et
al., 2011; MAGGI; MOOIJ; AALST, 2011; PEŠIĆ; BOŠNAČKI; AALST, 2010) and DCR
(MUKKAMALA, 2012; HILDEBRANDT et al., 2013; HILDEBRANDT; MUKKAMALA,
2011) are frameworks that offer tools enabled to perform process analysis by checking for
violation of soundness requirements. These approaches identify and inform the requirements
that have been violated.

An event is enabled at a state of the process if this event can be executed in this state
of the process. Declare (MAGGI et al., 2011; MAGGI et al., 2011; MAGGI; MOOIJ;
AALST, 2011; PEŠIĆ; BOŠNAČKI; AALST, 2010) and DCR (MUKKAMALA, 2012;
HILDEBRANDT et al., 2013; HILDEBRANDT; MUKKAMALA, 2011) are frameworks
that provide support for enabled events.
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An event is pending in a state of the process if executing this event is mandatory in this
state of the process. DCR framework (MUKKAMALA, 2012; HILDEBRANDT et al.,
2013; HILDEBRANDT; MUKKAMALA, 2011) informs users the pending events in the
process.

A constraint is a rule of the process, if this rule is not obeyed, then it has been violated.
Declare frameworks (MAGGI et al., 2011; MAGGI et al., 2011; MAGGI; MOOIJ; AALST,
2011; PEŠIĆ; BOŠNAČKI; AALST, 2010) inform users the constraints that have been
violated in the process.

This paper presents how the Declare and DCR graphs frameworks deal with soundness,
enabled events, pending events and constraint violations. The main grounds for the SCT
constraint based process modeling approach are also introduced.

The main contribution of this paper is introduced after the Declare, DCR graphs and SCT
approach for modeling constraint based processes are presented: the Simple Declarative
Language (SDL) framework. The Simple Declarative Language (SDL) framework is a
new conceptual framework for modeling constraint based processes. The SDL framework
provides models of tasks and constraints to be deployed in modeling constraint based
processes. Tasks and constraints in SDL frameworks are based on SCT approach models.
The SDL framework offers a set of three constraints only. At design time, the SDL
framework provides support in designing soundness compliant constraint based processes.
At run time, the SDL framework provides support to enabled and pending events.

This paper is divided into five sections. Section 2 provides the foundations for soundness.
The imperative Workflow Net language is used to conceptually present soundness. Section
3 provides the foundations of Declare. Section 4 provides the foundations of DCR graphs.
Section 5 provides the foundations of SCT approach. Section 6 provides foundations of
SDL frameworks. Section 7 sets out the conclusions.

4.2 Soundness
Soundness can be described as the combination of three behaviors in a process: option to
complete, proper completion and no dead activity (AALST, 2015; MONTALI; CALVANESE,
2016; AALST et al., 2011). When a process fulfills the option to complete, this means that
the process will always reach completion. When a process fulfills proper completion, this
means that whenever the process is completed, all its tasks are completed and no tasks
are left running. When a process fulfills no dead task, this means that every task in the
process may be completed at least once (AALST, 2015; MONTALI; CALVANESE, 2016;
AALST et al., 2011).

There are studies about methods to verify soundness in business processes (CLEMPNER,
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2014a; CLEMPNER, 2014b; ESPARZA; HOFFMANN, 2016; KHERBOUCHE; AHMAD;
BASSON, 2013; AALST; HIRNSCHALL; VERBEEK, 2002; LIU; JIANG, 2015; LIU
et al., 2014). The concepts of soundness are often used in business processes generated
by imperative languages. In fact, these concepts were initially defined for this class of
processes.

Business processes generated by imperative languages are called imperative, rigid or
highly structured processes. Imperative languages are better suited for modeling these
processes because, unlike declarative languages, they define exactly how a set of tasks
should be performed. Thus, a model that explicitly defines the order and execution of
activities is required. Examples of imperative languages are Business Process Model and
Notation (BPMN) (CHINOSI; TROMBETTA, 2012) and Event-driven Process Chain
(EPC) (MENDLING; NEUMANN; NÜTTGENS, 2015), among others.

So before presenting three examples of soundness violations, we will introduce the basic con-
cepts of Workflow Net (AALST, 2000; SALIMIFARD; WRIGHT, 2001; GIRAULT; VALK,
2013). WorkFlow Net is a particular type of Petri Nets (MURATA, 1989) that can be used
to model imperative business processes (AALST, 2000; SALIMIFARD; WRIGHT, 2001;
GIRAULT; VALK, 2013). WorkFlow Net is the imperative language used in this section
to present examples of soundness violations (FLENDER; FREYTAG, 2006; FAHLAND et
al., 2009a; AALST, 2000). Definitions of Petri Net and Workflow Net are presented next.

A process is syntactically correct when it fulfills the syntax rules of the language that
models it. For a process represented by a workflow net, the definitions of Petri Net and
Workflow Net must be known the since these definitions establish the syntax rules for any
workflow net. Below, the definitions of Petri Net (MURATA, 1989) and Workflow Net
(AALST, 2000) are presented.

Definition 4.2.1. A Petri net is a triple PN = (P, T, F), such that:

• P is a finite set of places

• T is a finite set of transitions (P ∩ T = ∅),

• F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation).

Definition 4.2.2. Let PN = (P, T, F) be a Petri net and F* be the reflexive transitive
closure of F. PN is a Workflow net (WF-net) iff:

• there exists exactly one input place: ∃!pI∈P, •pI = ∅.

• there exists exactly one output place: ∃!pO∈P, pO• = ∅.

• each node is on a directed path from the input place to the output place: ∀n ∈ P ∪
T [(pI , n) ∈ F ∗ ∧ (n, pO) ∈ F ∗].

In Definition 4.2.2, notations •pI and pO• represent, respectively, the pre-set of the input
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place and post-set of the output place. This notation is general, i.e. •pi and pi• represent
respectively the pre-set of any place i and post-set of any place i. The pre-set of place i
is composed by all transitions coming into place i. The post-set of place i is composed
by all the transitions coming out from place i. In Definition 4.2.2, a node is a place or a
transition.

Definition 4.2.1 and 4.2.2 establish the syntax for a Petri net and that a workflow net is a
Petri net with only a single input and a single output place, and, for every node, (place
or transition) there is a path from the input place to the node and from the node to the
output place. These conditions must be obeyed in order to fulfill the syntax of a workflow
net. For example, Figure 22(a) presents a syntactically correct workflow net having only
one input place and one output place, and for every place or transition that pertains to
the process, there is at least one sequence of places and transitions from the input place
pI to this place or transition, and at least one sequence of places and transitions from
this place or transition to the output place pO. Figure 22(b) presents a non-syntactically
correct workflow net in which there is no sequence of places and transitions from t3 and p3

to output place pO. Figure 22(c) presents other non-syntactically correct workflow nets
where there is no sequence of the places or transitions from input place pi up to p2 or t3.

(a) A syntactically correct workflow net (b) A non syntactically correct workflow
net

(c) A non syntactically correct workflow
net

Figura 22 – Example of syntactically correct and incorrect workflow nets

The definition of soundness workflow net (AALST, 2015; MONTALI; CALVANESE, 2016;
AALST et al., 2011) is presented. A Workflow Net that complies with soundness is called
a semantically correct Workflow Net (ROSA, 2009).

Definition 4.2.3. The workflow net complies with soundness if it complies with three
requirements:
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• option to complete: the token in the initial place can always reach the output place, for
any sequence of transitions firing from the initial place.

• proper completion: the token reaches the output place then there is not token at any
other place.

• no dead activity: every transition can be enabled in order to fire the tokens in its incoming
places.

Figures 22(b) and 22(c) show two examples of syntax violation, but they are also two
examples of soundness violation. The workflow net in Figure 22(b) is non-sound because
sequence pi.t3.p2 violates option to complete. The workflow net in Figure 22(c) is non-sound
because transition t3 is never enabled to fire its incoming tokens, so t3 is a dead transition
and the no dead task requirement is violated. Figures 22(b) and 22(c) demonstrate that if
the syntax of a workflow net is violated, then the soundness can be also violated. However,
it is not always true that if the syntax of a workflow net is not violated then the soundness
is not violated. Syntax correctness is a required, but not sufficient condition, to guarantee
that a workflow net is behaviorally sound. The other requirement that workflow nets
must comply with, to be behaviorally sound, is free-choice. The definition of a free-choice
workflow net is shown below (AALST, 1997).

Definition 4.2.4. Let N = (P, T, F) be a Petri net. N is free-choice (FC) if for every
couple of places the transitions in their postset are exactly the same or totally different.
Formally:

∀ pI ,pO ∈ P [p1•
⋂
p2• 6= ∅] ⇒ p1• = p2•].

For example, the process represented by the workflow net in Figure 3(a) is syntactically,
but not semantically correct, this happens because this workflow net is not free-choice,
i.e. p1•

⋂
p3• = {t3} 6= ∅, p1• = {t2, t3} , p3• = {t3}, p1• 6= p3•, violating the free-choice

condition . The consequence of the workflow net in Figure 23(a) not being free-choice is
presented next. If t1 is executed, then t2 and t3 are enabled. If t2 is fired before t3, then
t3 is permanently disabled. If t3 is fired before t2, then t2 is permanently disabled. As t2
and t3 are mutually exclusive, t4 will never be fired and the process cannot be completed.
Thus option to complete is violated and the process is not sound. Figures 23(b) shows the
way to turn the process in Figure 23(a) into a behaviorally sound one. In Figure 23(b),
the pathway from p1 to t3 was removed such that p1• ∩ p3• = ∅.
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(a) A syntactically correct but semantically incorrect
workflow net

(b) A syntactically and semantically correct workflow
net

Figura 23 – Example of semantically correct and incorrect workflow nets

4.3 Declare
Declare is a framework for modeling and performing constraint-based processes. This
section presents the main grounds of the Declare framework and how it deals with soundness,
enabled events and pending events.

4.3.1 Tasks and constraints in Declare

Declare provides templates of tasks and constraints. Each task is divided into three events:
start (s), complete (c) and cancel (x). Figure 24 shows the transition system of a task
in Declare, after a task is started (s is executed), it may be completed or canceled (c or
x may be performed), if the task is completed (c is executed) then it was successfully
executed, but if the task is canceled (x is executed) then its execution has failed (PESIC,
2008). Events s, c and x are indexed according to the tasks to which they pertain, so
events si, ci and xi pertain to task ti, events sj , cj and xj pertain to the task tj , and so on.

Figura 24 – Automaton that represents a task in Declare framework

Declare offers four sets of constraints: existence, relation, choice and negation. Existence
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models specify how often or when a task can be performed. Relation models define some
relation between two (or more) tasks. Negation models define a negative relation between
tasks. Choice models are used to specify that one must choose between two or more tasks.
Examples of existence models are existence(ti), existence2 (ti), absence2 (ti), exactly1 (ti).
Examples of relation models are responded existence(ti,tj), coexistence(ti,tj), response(ti,tj),
precedence(ti,tj). Example of choice model is exclusive 1of2 (ti,tj). Examples of negation
models are not responded existence(ti,tj) and not coexistence(ti,tj) (PESIC, 2008). Table 4
presents some constraints with their descriptions.

Tabela 4 – Constraints from Declare and their description

Name of the constraint Description
existence(ti) the event ci must be performed at least once
existence2 (ti) the event ci must be performed at least twice
absence2 (ti) the event ci must be performed at most once
exactly1 (ti) the event ci must be performed exactly once

responded existence(ti, tj) if the event ci is performed then
the event cj must be performed

coexistence(ti, tj) if the event ci is performed then
the event cj must be performed and vice versa

response(ti, tj) every time the event ci is performed
the event cj must be performed afterward

precedence(ti, tj) event ci must be performed one time before
any instance of the event cj be performed

exclusive 1of2 (ti, tj) the event ci or exclusively
the event cj must be performed

not responded existence(ti, tj) if the event ci is performed then
the event cj must not be performed

not co existence(ti, tj) if the event ci is performed then the event cj

must not be performed and vice versa

In Declare, each constraint is defined by a Linear Temporal Logic (LTL) expression
(KESTEN; PNUELI; RAVIV, 1998). There are five temporal operators defined in LTL:
operator always (G(p)), operator next (X(p)), operator eventually (F(p)), operator until
(pUq), operator weak until (pWq). Operator G(p) defines that p has to hold true throughout
the entire subsequent path. Operator X(p) defines that p has to hold true at the next state.
Operator F(p) defines that p eventually has to hold true somewhere on the subsequent
path. Operator pUq defines that p has to hold true at least until q, which holds true at the
current or a future position. Operator pWq is similar to operator until (U ), but it does not
require that q ever become true (SISTLA; CLARKE, 1985; GERTH et al., 1996; MAGGI
et al., 2011). Table 5 presents the constraints from the Table 4 with their LTL expressions.
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Tabela 5 – Constraints from Declare and their LTL expressions

Name of the constraint LTL expression
existence(ti) F (ti, ci)
existence2 (ti) F ((ti, ci) ∧ X(existence(ti)))
absence2 (ti) ¬existence2 (ti)
exactly1 (ti) existence(ti) ∧ absence2(ti)

responded existence(ti, tj) F (ti, ci) ⇒ F (tj, cj)
coexistence(ti, tj) F (ti, ci) ⇔ F (tj, cj)
response(ti, tj) G((ti, ci) ) ⇒ F (tj, cj))
precedence(ti, tj) (¬((tj, sj ) ∨ (tj, cj) ∨ (tj, xj)))W (ti, ci)

exclusive 1of2 (ti, tj) (F (ti, ci) ∧ ¬F (tj, cj)) ∨ (¬F (ti, ci) ∧ F (tj, cj))
not responded existence(ti, tj) F (ti, ci)) ⇒ ¬(F (tj, cj))

not co existence(ti, tj) not responded existence(ti, tj) ∧
not responded existence(tj, ti)

4.3.2 Soundness in Declare

Declare can perform process check to identify whether the process violates option to
complete and no dead task (MAGGI et al., 2011; MAGGI et al., 2011; MAGGI; MOOIJ;
AALST, 2011; PEŠIĆ; BOŠNAČKI; AALST, 2010; PESIC; SCHONENBERG; AALST,
2007; PEŠIĆ; BOŠNAČKI; AALST, 2010). Figure 25(a) presents process Example1 mode-
led in Declare. This process has four tasks: t1, t2, t3, t4; and four constraints: response(t1,t2),
exclusive choice(t1,t2), existence(t3), existence(t4). The constraint response(t1,t2) defines
that if t1 is completed then t2 must be completed afterward, the constraint exclusive
choice(t3,t4) makes completing either exclusively t3 or t4 mandatory, but never both of
them. However, constraint existence(t3) defines that t3 must be completed at least once
and constraint existence(t4) defines that t4 must be completed at least once, resulting
in a conflict between constraints exclusive choice(t3,t4), existence(t3) and existence(t4).
Given that the conflict existing among constraints means there is no sequence of events
that complies with the complete set of constraints, this results in a violation of option to
complete. This violation is notified by a There is a conflict message. Figure 25(b) presents
process Example1 at a simulation interface. Since process Example1 violates option to
complete, no sequence of events can comply fully with set of constraints, so no sequence
of events is enabled and this is notified by displaying the graphics that represent the
constraints in red.

Figure 26(a) presents process Example2 modeled in Declare. This process has four tasks:
t1, t2, t3, t4; and three constraints: response(t1,t2), exclusive choice(t3,t4), existence(t3).
Constraint response(t1,t2) defines that if t1 is completed then t2 must be completed
after that, constraint exclusive choice(t3,t4) makes completing exclusively either t3 or
t4, but never both of them, mandatory and constraint existence(t3) defines that t3 must
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(a) Process Example1 (b) Process Example1 at simulation interface

Figura 25 – Process Example1 at simulation interface

be completed at least once. The combination of constraints exclusive choice(t3,t4) and
existence(t3) make it impossible to complete t4 . If t4 is part of the process but cannot
be completed, then t4 is a dead task, so the no dead task is violated and this violation is
notified by an Activity t4 is dead message. Figure 26(b) presents process Example2 at the
simulation interface. As in process Example2, t4 is a dead task that cannot be completed,
so this condition is notified, at the simulation interface, by putting in a gray triangle in
the squares inside the box that represents a task.

(a) Process Example2 modeled by Declare (b) Process Example2 at simulation interface

Figura 26 – Process Example2 modeled by Declare and at simulation interface

Figure 27(a) presents process Example3 modeled in Declare. This process has four tasks,
t1, t2, t3, t4, and two constraints, response(t1,t2), exclusive choice(t3,t4). Constraint res-
ponse(t1,t2) defines that, if t1 is completed, then t2 must be completed afterward, constraint
exclusive choice(t3,t4) makes completing either t3 or t4 mandatory, but never both of them.
The combination of constraints response(t1,t2) and exclusive choice(t3,t4) does not violate
option to complete and no dead task and this non-violation status is informed by a message
of No errors were detected. Figure 27(b) presents a state at the simulation interface of
process Example3. In the state of process Example3 displayed in Figure 27(b), t3 must be
completed and thus exclusive choice(t3,t4) is violated, this means that option to complete
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is being violated and this violation is notified by inserting an orange graphic representing
constraint exclusive choice(t3,t4). Also, should users try to finish this instance of Example3,
since option to complete is being violated, this action is not allowed and this is informed by
a Cannot close assignment 1: new model because some the constraints are violated message.
Figure 27(c) presents another state of process Example3 at the interface simulation. In
the state of process Example3 displayed in Figure 27(c), t3 was started but has not been
not completed or canceled yet, this means that proper completion is being violated. At
same time that proper completion is being violated, the user tries finish the instance of
Example3, this action of finishing the process is allowed by Declare and the user is advised
by a Are you sure you want to close assignment 1: new model? message. If the user chooses
YES, Example3 is finished.

(a) Process Example3 modeled by Declare

(b) Process Example3 at simulation interface
(option to complete is not violated)

(c) Process Example3 at simulation
interface (proper completion can be
violated)

Figura 27 – Process Example3 modeled by Declare and at simulation interface

4.3.3 Constraint violation and enabled events in Declare

At the simulation interface, Declare does not advise the tasks pending in complying with
the constraints, instead it informs constraints that have been complied with and those in
violation. Declare does this by putting respectively in green and in orange, the graphics
that represent them (PESIC; SCHONENBERG; AALST, 2007). Figures 25(b) and 26(b)
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show this condition. Also, at the interface simulation, Declare informs the enabled and
disabled events in a process. To inform the enabled and disabled events Declare uses
triangles and squares placed inside the box that represents the task in case in point. The
triangle represents the task start event and the square represents the task complete or
cancel event. If the graphic is in blue, the respective event has been enabled. If the graphic
is in gray, the respective event has been disabled. For example, in Figure 27(c), events
start t1, complete t1 cancel t1, start t2 and start t3 are enabled and the events complete t2
cancel t2, complete t3 cancel t3, start t4, complete t4, cancel t4 have been disabled.

4.4 DCR graphs
This subsection presents the main grounds of the DCR graphs framework and how it deals
with soundness, enabled events and pending events.

4.4.1 Tasks and constraints in DCR graphs

Dynamic Condition Response (DCR) graphs is a formalism based on discrete event systems
applied in modeling constraint-based processes (MUKKAMALA, 2012). The structures
defined in DCR allow sets of events and sets of relations among them to be defined. The
sequences of events must follow set of relations, i.e. only the sequences that obey the
relations are allowed to occur. DCR formalism is based on a collection of three sets: Include
(In), Response (Re) and Executed (Ex). These three sets define the process markers. After
the execution of an event, these sets may be changed and, consequently, new markers
reached. There are three relations that make changes in these sets: include, exclude, and
response. Relation a include b (a→+b) defines that if event a is executed, then event b is
inserted into the set In. Relation a exclude b (a→%b) defines that if event a is executed,
then event b is excluded from set In. Relation a response b (a• →b) defines that if event
a is executed, then event b is inserted into set Re. Events in set Re are pending events.
Relation a condition b (a→•b) defines that event a in set Ex is a necessary (but not
sufficient) condition to enable event b. Relation a milestone b (a→�b) defines that if event
a is in set In, then event b can be executed only after event a is executed. Relation exclude
a (%a) defines that event a is excluded from set In at the process onset marking. Relation
response a (!a) defines that event a is inserted into set Re at the process onset marking.
Table 6 presents the seven DCR relations with their representations, LTL expressions and
description.

Event e is enabled at some markers if e is in set In and the intersection of set of events
that precedes e (→•e) and set In is contained in set Ex, as demonstrated by the following
expression:

event e is enabled ⇔ (e ∈ In) ∧ ((In ∩ →•e) ⊆ Ex).
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Tabela 6 – Five relations from DCR Graphs

Relation Representation Description Expression
a include b a→+b If the event a is execu-

ted then the event b is
inserted into the set In

In = In ∪ {b}.

a exclude b a→%b If the event a is execu-
ted then the event b is
excluded from the set
In

In = In \ {b}.

a condition b a→•b a ∈ Ex is necessary
(but not sufficient) con-
dition to the event b to
be enabled.

—–

a response b a•→b if the event a is execu-
ted then the event b is
inserted in the set Re.

Re = Re ∪ {b}.

a milestone b a→�b if the event a is in the
set In ∩ Re then the
event b can be execu-
ted only after the event
a is executed.

—–

exclude a %a The event a does not
pertain to the set In at
the initial marking

a /∈ In, at the ini-
tial marking.

response a !a The event a pertains
to the set Re at the ini-
tial marking

a ∈ Re, at the ini-
tial marking.

Event e is pending (mandatory execution) at some marker, if e is in the intersection of
sets In and Re, as shown by the following expression:

event e is pendent ⇔ e ∈ Re ∩ In.

The execution of an event e defines that event e is inserted in set Ex and event e is
excluded from set Re:

event e is the last one that was executed ⇔ (Ex = Ex ∪ {e}) ∧ (Re = Re \ {e}).

Every relation or logical condition for every event e is valid only if event e is in set In (e
∈ In), if event e is not in set In (e /∈ In) then all of its relations or logical conditions are
annulled.
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4.4.2 Soundness in DCR graphs

DCR frameworks can perform process checks in order to identify whether the process
violates option to complete and no dead task.

Figure 28(a) presents process Example4 modeled in DCR. This process has three tasks: t1,
t2, t3; and three constraints: response(t1,t2) (t1•→t2), condition(t3,t3) (t3→•t3), response(t3)
(!t3). Constraint response(t1,t2) defines that, if t1 is completed, then t2 must be completed
after that, constraint condition(t3,t3) defines that t3 must be executed before t3, constraint
response(t3) defines that t3 pertains to set Re at the initial marking. The consequence of
constraint condition(t3,t3) is that t3 will never be executed. But t3 pertains to set In at
the initial marking and constraint response(t3) defines that t3 pertains to set Re at the
initial marking, then t3 pertains to the intersection of Re and In (t3 ∈ Re ∩ In) and thus
execution of t3 is mandatory. So the general condition is such that t3 will never be executed
because of constraint condition(t3,t3), and at same time, execution of t3 is mandatory
because of constraint response(t3). The result is a conflict. There is no sequence of events
capable of complying with this set of constraints and, therefore, there is an option to
complete violation. This is notified by message System is in initial deadlock . Figure 28(b)
presents process Example4 at the simulation interface which also allows checking process
Example4 and obtaining the System is in initial deadlock message again (MUKKAMALA,
2012).

Figure 29(a) shows process Example5 modeled by DCR. This process has three tasks: t1, t2,
t3; and two constraints: response(t1,t2), condition(t3,t3). Constraint response(t1,t2) defines
that, if t1 is completed, then t2 must be completed after that, constraint condition(t3,t3)
defines that t3 must be executed before t3. The consequence of constraint condition(t3,t3)
is that t3 will never be executed. Since t3 cannot be executed, t3 is a dead task and
this results in a no dead task violation. This is displayed by the graphical user interface,
by putting using gray lines around the box that represents the task. Since there is no
violation of option to complete, the framework displays a This graph cannot reach a
dead-end message. Figure 29(b) presents process Example5 at the simulation interface.
The simulation interface also enables checking process Example5 and obtaining a This
graph cannot reach a dead-end message again (MUKKAMALA, 2012).

4.4.3 Enabled and pendent events in DCR graphs

In order to inform any existing pending and enabled events, DCR uses the list of events
that is at the right side of the simulation window. If the task is enabled then the green
button Execute is displayed next to the name of the task. If the task is not enabled, no
button is displayed. If the task is pending, the symbol "!"is displayed next to the name
of the task. If the task is not pending, no symbol is shown (MUKKAMALA, 2012). For
example, in Figure 28(b), tasks t1, t2 are enabled but are not pending, whereas task t3 is
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(a) Process Example4 modeled by DCR

(b) Process Example4 at simulation interface

Figura 28 – Process Example4 modeled by DCR and at simulation interface

not enabled, but is pendent.

4.5 SCT approach
The Supervisory Control Theory (SCT) is mathematical formalism for automatic synthesis
of optimal controllers for discrete event systems (DES) (RAMADGE; WONHAM, 1987;
RAMADGE; WONHAM, 1989; WONHAM; RAMADGE, 1987). SCT presumes that a set
of tasks may have an uncontrollable behavior that might violate some of the properties
required. This behavior must be modified through an agent, the supervisor, in order to
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(a) Process Example5 modeled by DCR

(b) Process Example5 at simulation interface

Figura 29 – Process Example5 modeled by DCR and at simulation interface

achieve a set of specifications or to ensure that certain restrictions are not violated. The
supervisor acts on the set of tasks specified by preventing the generation of some events
and allowing others. The supervisors are obtained through a set of logical operations. The
techniques used in SCT to obtain supervisors also may be used for modeling constraint
based processes in such a way the supervisor is equivalent to the process modeled (SANTOS
et al., 2014).
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4.5.1 Tasks and constraints in SCT approach

SCT approach provides a set of automata to represent task behaviors in a process and
the constraints that must be imposed on them (SANTOS et al., 2011; SANTOS et al.,
2014; SCHAIDT et al., 2013; CESTARI et al., 2014; SCHAIDT et al., 2013). Figure 30
presents a task automaton in the SCT approach. The automaton shown in Figure 30 has
three events: start the task (s), complete the task (c) and cancel the task (x), if the task
is started (s is executed), then either completing the task (executing c) or canceling it
(executing x) is mandatory, but not both of them. With respect to controllability of events,
the start event is controllable, but the complete and cancel events are not. Controllable
events are those that users have the power to decide whether they must be executed or
not. Uncontrollable events are those that users do not have the power to decide whether
they must be executed or not. Figure 31 presents some of constraints provided in the SCT
approach. The behavior of each constraint in Figure 31 has already been described in
Table 4.

Figura 30 – Task model proposed by (SANTOS et al., 2014): event start (s) is controllable,
and events complete (c) and cancel (x) are uncontrollable

(a) existence1 (b) existence2 (c) exactly1

(d) exactly2 (e) atmost1 (f) atmost2

(g) response (h) precedence (i) exclusive1of2

Figura 31 – Constraints SCT
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Figure 32 shows the sequence of operations to synthesize the supervisor automaton.
Initially there is a set with m tasks (t1...tm) and another with n constraints (r1...rn). The
synchronous product of the set of tasks generates Process without constraints, and the
synchronous product of the set of constraints generates constraints. The synchronous
product of Process without constraints and constraints generates Process with constraints.
The method to exclude blocking states and the method to exclude bad states make
successive comparisons between Process without constraints and Process with constraints
to generate the supervisor. The supervisor automaton is equivalent to the automaton of
the process that obeys constraints and does not have blocking nor bad states.

Figura 32 – Sequence of operations for reaching the supervisor

The formal definition of synchronous product (parallel composition) will be presented next.
Consider the two automata

G1 = {Q1,Σ1, δ1,Γ1, q01, Qm1}

G2 = {Q2,Σ2, δ2,Γ2, q02, Qm2}

The parallel composition (or synchronous product) of G1 and G2 is the automaton

G1||G2 := (Q1 ×Q2,Σ1 ∪ Σ2, δ12, (q01, q02), Qm1 ×Qm2), where

δ12 ((q1, q2) , e) :=



(δ1 (q1, e) , δ2 (q2, e)) if e ∈ Γ1 (q1) ∩ Γ2 (q2)
(δ1 (q1, e) , q2) if e ∈ Γ1 (q1) \Σ2

(q1, δ2 (q2, e)) if e ∈ Γ2 (q2) \Σ1

undefined, otherwise

(4.1)

In parallel composition, a common event, that is, an event in Σ1∩Σ2, can only be executed
if both automata execute it simultaneously. Thus, the two automata are "synchronized"for
events in common. Private events, that is, those in (Σ2\Σ1) ∪ (Σ1\Σ2), are not subject to
this constraint and can be executed whenever possible. In this kind of interconnection,
a component can execute its private events without requiring participation of the other
component; however, a common event can only happen if both components can execute
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it. If Σ1 = Σ2, then all transitions must be synchronized. If Σ1 ∩ Σ2 = ∅, then there are
no synchronized transitions and G1||G2 is the concurrent behavior of G1 and G2. This is
often termed the G1 and G2 shuffle.

The method to exclude blocking states identifies the states for which there is no sequence
of events that allows reaching a marker state and excludes these states and the events that
lead to them. The method to exclude bad states identifies the states where uncontrollable
events are being disabled and excludes these states and the events that lead to them. The
methods to exclude blocking states and to exclude bad states works in alternation until
there be are no blocking states and no bad states left (RAMADGE; WONHAM, 1987;
WONHAM; RAMADGE, 1987; RAMADGE; WONHAM, 1989).

4.5.2 Soundness, Enabled and pendent events in SCT approach

Since the SCT approach is not a framework, just a mathematical formalism, the paper will
not analyze soundness properties and enabled and pendent events in the SCT approach.

4.6 Simple Declarative Language (SDL)
This section introduces the Simple Declarative Language (SDL), a conceptual framework
for modeling constraint based processes. The SDL framework provides a single task model
that is used in every process modeled. This task model is the same as in the SCT approach.
Figure 30 shows the task automaton in SDL. The behavior of the task automaton model is
described in Section 5. The SDL framework provides for controllable task start, complete
and cancel events. SDL does not provide uncontrollable events. The SDL framework
provides a set of three constraints: existence, precedence, and response. These constraints
models are the same as in the SCT approach. Figures 31(a), 31(g) and 31(h), respectively,
show the automata for atleast1 (ti), response(ti,tj), precedence(ti,tj) used in SDL. The
behavior of constraints automata models are described in Table 4. The next items introduce
the features of an SDL framework in design and run times.

4.6.1 Design time

At design time, the SDL framework checks compliance of sets of tasks and constraints
with the syntactic and semantics rules defined in the SDL language. To this end, the SDL
framework provides the Method to check syntax and semantics of SDL language. Figure 33
shows the block diagram with the Method to check syntax and semantics of SDL language.

The syntax rules in SDL are described in section 4.6.3. Method to check syntax and
semantics of SDL language checks whether given Set of tasks and constraints fulfills the
conditions described in section 4.6.3. If those conditions are met by the Set of tasks
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and constraints then the process is syntactically correct, otherwise the process is not
syntactically correct.

The semantics rules in SDL are described in section 4.6.4. The method to check syntax and
semantics of SDL language checks whether a given Set of tasks and constraints fulfills the
conditions described in section 4.6.4. If those conditions are met by the set of tasks and
constraints, the process is semantically correct, otherwise the process is not semantically
correct.

If the syntactic and semantic rules are followed correctly, the Set of tasks and constraints
is valid. Otherwise the Set of tasks and constraints is not valid. In other words, in SDL
frameworks, a process is valid if, and only if, the Set of tasks and constraints comprising
the process is syntactically and semantically correct.

Figura 33 – The single method of SDL framework at design time

4.6.2 Run time

Next, the sequence of operation performed by an SDL framework at run time is explained.
Figure 34 shows the block diagram of the operations at run time in an SDL framework.

At run time, the Valid set of tasks and constraints is the input for the Method to calculate
pendent events and Method synchronous product. The Method to calculate pending events
is set out in section 4.6.6. The Method synchronous product is presented in section 4.5.1.
The Method to calculate pending events applies the valid Set of tasks and constraints to
calculate the process’s set of pending events. The Method synchronous product applies
the Set of tasks and constraints to calculate the process’s set of enabled events. From
Set of enabled events, users choose whether to execute a given event. When users choose
to execute an event, Method to update sequence of events executed updates its outputs:
Sequence of events executed and Last event executed.

Method to update the current state in the automata takes the Last event executed to
update the current state of each automata in the Set of tasks and constraints. After the
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current state of each automaton in the Set of tasks and constraints has been updated,
a new iteration is started, i.e. Method to calculate pendent events takes set of tasks and
constraints to calculate Set of pending events of the process. Method synchronous product
applies the Set of tasks and constraints to calculate Set of enabled events of the process.
This procedure continues until the process is finished.

Figura 34 – The three methods of SDL framework at run time

4.6.3 Syntax in SDL

A process modeled by SDL is syntactically correct when it complies with Definition 4.6.1
that is presented next.

Definition 4.6.1. A process modeled by SDL is a pair P = (T, R), such that

• T = {t1,...,tn} is a finite set of tasks.

• R = {r | r = atleast1(ti) or r = response(ti,tj) or r = precedence(ti,tj)}, or R = ∅, is a
finite set of constraints.

• If atleast1(ti) ∈ R then ti ∈ T.

• If response(ti,tj) ∈ R then ti ∈ T, tj ∈ T, ti 6= tj.



92

• If precedence(ti,tj) ∈ R then ti ∈ T, tj ∈ T, ti 6= tj.

The behavior of constraints response(ti,tj) and precedence(ti,tj) when ti = tj is presented
next. To do this, the tasks and constraints shown in Figure 35 will be used.

(a) task tm (b) task tn (c) r1 = precedence(tm,tm) (d) r2 = response(tm,tm)

Figura 35 – Some tasks and constraints

Considering task tm and constraint r1 = precedence(tm,tm), Figures 35(a) and 35(c), such
that tm ∈ T and r1 ∈ R. The synchronous product of tm and r1 is automaton tm||r1 in
Figure 36. The minimization of tm||r1 is the automaton tm in Figure 35(a). So tm||r1 does
not impose any change in process behavior, merely increasing the number of states in the
process, which is not desirable. Thus, precedence(tm,tm) is not a valid constraint in SDL
framework.

Figura 36 – tm||r1

Considering task tm and constraint r2 = response(tm,tm), Figures 35(a) and 35(d), such
that tm ∈ T and r2 ∈ R. The synchronous product of tm and r2 is automaton tm||r2 in
Figure 37. The minimization of tm||r2 is automaton tm in Figure 35(a). So tm||r2 does
not impose any change in process behavior, merely increasing the number of states in the
process, which is not desirable. Thus, response(tm,tm) is not a valid constraint in SDL
framework.

Figura 37 – tm||r2
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Example 4.6.1 with 3 processes that violate the syntax rules of the Definition 6.1. is shown
next.

Example 4.6.1. The process with T = {t1, t2, t3, t4} and R = atleast1(t1), response(t2,t3),
exclude(t3,t4)} is syntactically incorrect because exclude(t3,t4) is not a valid constraint
in SDL. The process with T = {t1, t2, t3, t4} and R = {atleast1(t5), response(t2,t3),
precedence(t3,t4)} is syntactically incorrect because t5 is not a task in T. The process with
T = {t1, t2, t3, t4} and R = {atleast1(t1), response(t2,t3), precedence(t4,t4)} is syntactically
incorrect because ti = tj in precedence(t4,t4)}.

4.6.4 Semantics in SDL

Semantics in SDL is related to soundness. An SDL process is semantically correct if, and
only if, it complies with soundness, which is Definition 4.6.2 presented next.

Definition 4.6.2. A SDL process is semantically correct if, and only if, it complies with
soundness.

So, it becomes necessary to define the concept of soundness in SDL processes. Definition
4.2.3 establishes the concept of soundness for workflow nets. In Definition 4.2.3, the
requirements option to complete, no dead task and proper completion are described in
terms of transitions and places since they are the basic constructs in workflow nets.
Although the fundamentals of soundness are the same for any language, the requirements
must be described in terms of the language that is being used to model the process.
Therefore Definition 4.2.3 must be drafted in terms of SDL constructs. SDL frameworks
have four basic constructs: task, atleast1, precedence and response. Each of these constructs
is represented by an automaton. This implies in the need to rewrite Definition 4.2.3 in
terms of the SDL automata in order to define the soundness concept as applicable to the
SDL language. Definition 4.6.3 does this and is set out next.

Definition 4.6.3. A SDL process complies with soundness if and only if it complies with
three requirements:

• option to complete: From any state of the process is possible to reach a marked state.

• no dead task: For each task in the process, there is a sequence of events in which the
task can be completed.

• proper completion: If a marked state is reached then every task in the process is not
started or is completed or canceled.
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After defining soundness requirements for the SDL language, it becomes necessary to inves-
tigate which SDL automata influences which soundness requirements. This is demonstrated
in the following subsection.

4.6.4.1 SDL automata and soundness requirements

SDL frameworks apply the method synchronous product to generate the sequences of
events in run time. In SDL frameworks, the inputs of the method synchronous product
are the automata task, atleast1, precedence and response. Therefore, it becomes necessary
to understand how these automata influence option to complete, no dead task and proper
completion in the sequences of events generated by the method synchronous product. This
is described in the following section.

The method synchronous product was introduced in section 4.5. The method synchronous
product receives a set of automata as input and produces sequences of events as output.
For each combination of states of the automata in the input, the synchronous product
defines a single state in the output. The method synchronous product defines if the state
in the output is marked or not marked and defines which set of enabled events applies to
this state.

In synchronous product, for each combination of states of the automata in the input,
when all the states in the combination are marked, the state in the output is also marked.
Otherwise, the state in the output is not marked. There are some unmarked states in the
output if, and only if, there are some unmarked states in the method inputs.

Thus, in SDL frameworks, the sequence of events in the output of the method synchronous
product can violate option to complete if, and only if, there is an automaton in the input
that provides an unmarked state. This is the case of task, atleast1 and response.

In synchronous product, for each combination of states of the automata in the input, if
an event is enabled in all the automata in which it is present in set of events, then this
event is enabled in the state of the output. Otherwise, this event is not enabled in the
state of the output. There may be disabled events in a state of the output if, and only if,
this same event is disabled in some automaton in the input.

Thus, in SDL frameworks, the sequence of events in the output of the method synchronous
product can violate no dead task if, and only if, there is an automaton in the input that
provides a state in which an event complete is disabled. This is the case of task and
precedence.

In SDL frameworks, the sequence of events in the output of the method synchronous
product can violate proper completion if, and only if, there is an automaton providing the
event start in the input of the method synchronous product. This is the case of task.

Table 7 presents the soundness requirements that can be affected by each of the SDL
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automata.

Tabela 7 – SDL automata and the soundness requirements that they affect

automaton option to complete no dead task proper completion
task X X X

atleast1 X
response X

precedence X

After identifying the SDL automata that influence the soundness requirements, the
way synchronous products of SDL automata influence soundness requirements must be
investigated. This is demonstrated in the following subsection.

4.6.4.2 Synchronous product of SDL automata and its influence on soundness requirements

This subsection investigated the behavior of synchronous products of the automata on
the soundness requirements they affect. This investigation will be performed in two parts.
First, the synchronous product of the automata of the task is investigated separately.
Second, constraints automata are investigated. The investigation is carried out in this way
because the synchronous product of tasks represent the behavior of the process without
constraints, and the synchronous products of constraints represent the behavior of process
constraints. Thus, tasks and constraints can be investigated separately.

Next, the synchronous product of tasks with respect to option to complete, no dead task
and proper completion is investigated.

4.6.4.2.1 Influence of synchronous product of tasks on option to complete, no dead task and
proper completion

Each automaton in task complies with one of the following: option to complete, no dead
task and proper completion. This happens because in task automata: 1) a marked state
can be reached from any other state, 2) there is a sequence of events in which the task can
be completed, 3) if the marked state is reached then either the task is not started, or it is
completed or canceled.

The synchronous product of a set of tasks produces sequences of events that also comply
with option to complete, no dead task and proper completion. This happens because the
automata of tasks do not have common events among them. Therefore, the synchronous
product of a set of tasks does not change the behavior of each task separately. The result
is that each task automaton complies with option to complete, no dead task and proper
completion and, consequently, the synchronous product of all the tasks also complies with
option to complete, no dead task and proper completion.
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The synchronous product of a set of tasks guarantees that proper completion is achieved
for any set of tasks but also for any set of constraints. This happens because the task
automaton establishes that an unmarked state is reached whenever a start event is executed.
So, the synchronous product of a set of tasks and any set of constraints always produces
sequences of events in which, whenever a start event is executed, an unmarked state is
reached.

After investigating the soundness requirements that can be affected by the synchronous
product of the SDL tasks, the synchronous product of the SDL constraints must be
investigated with respect to the soundness requirements they can affect. This is done in
the following subsections.

4.6.4.2.2 Influence of synchronous product of constraints precedence on no dead task

Every automaton of constraint precedence complies with no dead task. This happens
because for any task related to a precedence automaton, there is a sequence of events in
which the task can be completed.

It is possible for a complete event to be common to two different precedence constraints.
Therefore, a set of precedence constraints can drive two kinds of combination: sequence
of precedences and loop of precedences. Next, Definitions 4.6.4 and 4.6.5 present these
combinations.

Definition 4.6.4. Let P = {T,R} be a SDL process. A sequence of constraints precedence
is a set Sp ⊆ R, such that

• if |Sp| = 1 then Sp = {precedence(ti,tj)}.

• if |Sp| = 2 then Sp = {precedence(ti,tj), precedence(tj,tk)}.

• if |Sp| = 3 then Sp = {precedence(ti,tj), precedence(tj,tk), precedence(tk,tl)}.

• etc...

Definition 4.6.5. Let P = {T,R} be a SDL process. A loop of constraints precedence is
a set Lp ⊆ R, such that

• if |Lp| = 2 then Lp = {precedence(ti,tj), precedence(tj,ti)}.

• if |Lp| = 3 then Lp = {precedence(ti,tj), precedence(tj,tk), precedence(tk,ti)}.

• etc...

The synchronous product from automata in sequences of constraints precedence produces
sequences of events in which each task can be completed at least once. For example, if
|Sp| = 3 then Sp = precedence(ti,tj), precedence(tj,tk), precedence(tk,tl). The synchronous
product of Sp establishes that the sequence to complete the tasks is ti, tj , tk, tl. After ti is
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completed for the first time, ti can be completed infinite times and tj can be completed
for the first time. After tj is completed for the first time, ti, tj can be completed infinite
times and tk can be completed for the first time. After tk is completed for the first time, ti,
tj , tk can be completed infinite times and tl can be completed for the first time. After tl is
completed for the first time, ti, tj , tk, tl can be completed infinite times. This reasoning is
valid for any Sp. So, the synchronous product from sequences of precedence constraints
comply with no dead task. Thus, sequences of precedence constraints are allowed to exist
in the process.

The synchronous product from automata in loops of precedence constraints produces
sequences of events in which the tasks cannot be completed. For example, if |Lp| = 3
then Lp = precedence(ti,tj), precedence(tj,tk), precedence(tk,ti) can be presumed. The
synchronous product of Lp defines that ti must precede tj, tj must precede tk, tk must
precede ti. In other words, no task in Lp can be completed because the execution of the
complete event for every task must be preceded by the execution of a complete event in
some other task. There is no "free"complete event to be executed before all the others.
This reasoning is valid for any Lp. This means the synchronous product from loops of
precedence constraints violate no dead task. Thus, loops of precedence constraints must be
avoided.

4.6.4.2.3 Influence of synchronous product of constraints response on option to complete

Each automaton of constraint response complies with option to complete. This happens
because from any state of the response automaton, it is possible to reach a marked state.

A complete event can be common to two different response constraints. So a set of response
constraints can make two kinds of combination: sequence of responses and loop of responses.
In the following, Definitions 4.6.6 and 4.6.7 present these combinations.

Definition 4.6.6. Let P = {T,R} be a SDL process. A sequence of constraints response
is a set Sr ⊆ R, such that

• if |Sr| = 1 then Sr = {response(ti,tj)}.

• if |Sr| = 2 then Sr = {response(ti,tj), response(tj,tk)}.

• if |Sr| = 3 then Sr = {response(ti,tj), response(tj,tk), response(tk,tl)}.

• etc...

Definition 4.6.7. Let P = {T,R} be a SDL process. A loop of constraints response is a
set Lr ⊆ R, such that

• if |Lr| = 2 then Lr = {response(ti,tj), response(tj,ti)}.

• if |Lr| = 3 then Lr = {response(ti,tj), response(tj,tk), response(tk,ti)}.
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• etc...

The synchronous product from automata of sequences of response constraints produces
sequences of events wherein a marked state can always be reached from any state of the
automaton. For example, supposing |Sr| = 3 then Sr = response(ti,tj), response(tj,tk),
response(tk,tl). If no task in Lr is completed, then a marked state is reached. If ti is
completed, then the marked state is reached from any state of the synchronous product
automaton after tj ,tk,tl are completed. If tj is completed, then the marked state is reached
from any state of the synchronous product automaton after tk , tl are completed. If tk is
completed then the marked state is reached from any state of the synchronous product
automaton after tl is completed. This reasoning is valid for any Sr. So, the synchronous
product from sequences of response constraints comply with option to complete. Thus,
sequences of response constraints are allowed to exist in the process.

The synchronous product from automata of loops of response constraints produces se-
quences of events wherein it is impossible to reach a marked state from any state of the
automaton. For example, one supposes |Lr| = 3 then Lr = response(ti,tj), response(tj,tk),
response(tk,ti). If ti is completed then tj must be completed. If tj is completed then tk
must be completed. If tk is completed then ti must be completed and then returns to first
execution of complete events, i.e all the tasks must be completed again. This behavior is
endless, making it impossible to reach a marked sate in the process because there is always
a task to be completed. So, the synchronous product from loop of response constraints
violates option to complete. Thus, loops of response constraints must be avoided.

4.6.4.2.4 Influence of synchronous product of constraints atleast1 on option to complete

Every atleast1 automaton complies with option to complete. This happens because in the
task automaton a marked state can be reached from any state.

The synchronous product of a set of atleast1 automata produces sequences of events that
are also compliant with option to complete. This happens because atleast1 automata
do not have events in common among them. So, the synchronous product of a set of
atleast1 automata does not change the individual behavior of each atleast1 automaton.
The result is that each atleast1 automaton remains compliant with option to complete and,
consequently, the synchronous product of any set of atleast1 automata is also compliant
with option to complete.

4.6.4.2.5 Influence of synchronous product of constraints response and atleast1 on option to
complete

The synchronous product of a sequence of response constraints complies with option to
complete. The synchronous product from a set of atleast1 automata complies with option
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to complete. The synchronous product of a sequence of response constraints and a set of
atleast1 is also compliant with option to complete. For example, supposing |Sr| = 3 then
Sr = response(ti,tj), response(tj,tk), response(tk,tl). If atleast1 (ti) is in set atleast1, then
the marked state is reached from any state of the synchronous product automaton after
ti, tj, tk, tl are completed in this order. If atleast1 (tj) is in set atleast1, then the marked
state is reached from any state of the synchronous product automaton after tj, tk, tl are
completed in this order. If atleast1 (tk) is in set atleast1, then the marked state is reached
from any state of the synchronous product automaton after tk, tl are completed in this
order. If atleast1 (tl) is in set atleast1, then the marked state is reached from any state
of the synchronous product automaton after tl is completed. This reasoning is valid for
any Sr and any set of atleast1. So, the synchronous product from a sequence of response
constraints and a set of atleast1 complies with option to complete. Thus, sequence of
response constraints and set of atleast1 are allowed to exist together in the process.

4.6.4.3 Conditions to SDL processes comply with soundness requirements

The previous subsections demonstrated that there are six types of sets that can serve
as input for the synchronous product in SDL frameworks: set of tasks, set of atleast1,
sequences of precedence constraints, loops of precedence constraints, sequences of response
constraints and loops of response constraints.

Theorem 4.6.1. Every syntactically correct SDL process complies with proper completion.

Proof: In SDL frameworks, if a set of process tasks and constraints is valid then the process
is syntactically correct. This is Definition 4.6.1. In SDL frameworks, a syntactically correct
process is comprised of a set of tasks and a set of constraints. This is also Definition 4.6.1.
The synchronous product from the set of tasks guarantees that proper completion is always
fulfilled for any set of tasks and constraints. This is demonstrated in section 4.6.4.2.1. So,
it is possible to establish that if an SDL process is syntactically correct, then it is compliant
with proper completion.

Theorem 4.6.2. Let P = {T,R} be a syntactically correct SDL process. Let Lp ⊆ R,
Lr ⊆ R be, respectively, any loop of constraints precedence and any loop of constraints
response. P complies with option to complete and no dead tasks iff

• option to complete: Lr = ∅

• no dead tasks: Lp = ∅

Proof: Sections 4.6.4.2.1 and 4.6.4.2.2 demonstrated that no dead task is violated solely by
loops of precedence constraints. Therefore, it is possible to establish that SDL processes are
not compliant with no dead task if, and only if, they do not have any precedence constraints
loops. Sections 4.6.4.2.1, 4.6.4.2.3, 4.6.4.2.4 and 4.6.4.2.5 demonstrated that option to
complete is violated only by loops of response constraints. So, it is possible to establish
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that SDL processes comply with option to complete if, and only if, they do not contain any
response constraints loops.

Corollary 4.6.1. From Theorem 4.6.1 and Theorem 4.6.2, it is possible to define that a
SDL process is semantically correct, if and only if, the loop of constraints precedence is
empty (Lp = ∅), and the loop of constraints response is empty (Lr = ∅), in this process.

In Example 4.6.2 are presented two examples of processes that violate the semantic rules
of Corollary 4.6.1.

Example 4.6.2. The process with T = {t1, t2, t3, t4} and R = precedence(t1, t2),
precedence(t2, t1) is semantically incorrect because Lp = 2. The process with T = {t1, t2,
t3, t4} and R = response(t1,t2), response(t2,t3), response(t3,t1) is semantically incorrect
because |Lr| = 3.

In accordance to Corollary 4.6.1, the semantic correctness of a SDL process is guaranteed
just by checking if Lp = ∅ and Lr = ∅. If Lp = ∅ and Lr = ∅ are true then it is guaranteed
set of constraints is valid. In other words, the process modeled by this set of constraints
fulfills option to complete, no dead task, and proper completion. Figure 38 shows the
procedure for verifying whether a set of constraints is valid. Set of constraints defined
by the user is checked in order to identify if there is some loop of constraints precedence
and response. If there is not any loop of constraints precedence nor response then set
of constraints is valid and the process of verifying is finished. If there is some loop of
constraints precedence or response then the user can choose to redefine set of constraints
or to finish the process of defining/verifying set of constraints.

4.6.5 Other definitions to SDL processes

The previous subsections presented the conditions required to fulfill the syntax and
semantics requirements in SDL frameworks. This section introduces the relations of union,
equality, and subset in SDL processes. Then, the relations between syntax and semantics
in SDL processes is shown.

Lemma 4.6.1. Let A = {TA, RA} and B = {TB, RB} be two SDL processes. A ∪ B =
(TA ∪ TB, RA ∪ RB).
Proof: TA and TB are sets from tasks and RA and RB are sets of constraints. The resulting
process from A ∪ B must be the union between sets from the same nature. So A ∪ B =
(TA ∪ TB, RA ∪ RB).

Lemma 4.6.2. Let A = {TA, RA} and B = {TB, RB} be two SDL processes. A = B iff
TA = TB and RA = RB.
Proof: TA and TB are sets from tasks and RA and RB are sets of constraints. The
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Figura 38 – Procedure for verifying if a set of constraints is valid.

comparison between two SDL process, to check if they are the same, must be made among
the sets from the same nature. So A = B iff TA = TB and RA = RB.

Lemma 4.6.3. Let A = {TA, RA} and B = {TB, RB} be two SDL processes. A ⊆ B iff
TA ⊆ TB and RA ⊆ RB.
Proof: TA and TB are sets from tasks and RA and RB are sets of constraints. The
comparison between two SDL process, to check if one of them is contained in the other,
must be made among the sets from the same nature. So A ⊆ B iff TA ⊆ TB and RA ⊆ RB.

Semantics correctness of a SDL process is checked only after syntactic correctness is
guaranteed. So if a SDL process is semantically correct then it is syntactically correct.
This is Theorem 4.6.3.

Theorem 4.6.3. Let A be a SDL process. If A is semantically correct then A is syntactically
correct.
Proof: The method to verify whether a set of constraints is valid, presented in Figure 38,
imposes that, only after the syntactic correctness has been guaranteed, is the semantic
correctness guaranteed.

If two SDL processes are joined and both of them are syntactically correct then their



102

resulting union is a syntactically correct SDL process. This is Theorem 4.6.4.

Theorem 4.6.4. if A and B are two syntactically correct SDL processes then A ∪ B is a
syntactically correct SDL process.
Proof. Hypothesis: A = (TA, RA) and B = (TB, RB) are two syntactically correct SDL
processes and A ∪ B = (TA∪TB, RA∪RB) is a syntactically incorrect SDL process. The
hypothesis to be checked is: if A∪B is syntactically incorrect, then one of the following six
cases (C1 to C6) is true:

C1: (r is a constraint) ∧ (r ∈ RA∪RB) ∧ (r 6= atleast1(ti)) ∧ (r 6= response(ti,tj)) ∧ (r 6=
precedence(ti,tj)).
If C1 is true, then P1 is true.
P1: (r ∈ RA) ∨ (r ∈ RB).
So, if C1 is true, A or B is syntactically incorrect, and this makes hypothesis to be checked
be false.

C2: (atleast1(ti) ∈ RA∪RB) ∧ (ti /∈ TA∪TB).
If C2 is true, then P2 is true.
P2: ((atleast1(ti) ∈ RA) ∨ (atleast1(ti) ∈ RB)) ∧ (ti /∈ TA) ∧ (ti /∈ TB).
So, if C2 is true, A or B is syntactically incorrect, and this makes hypothesis to be checked
be false.

C3: (response(ti,tj) ∈ RA∪RB) ∧ (ti /∈ TA∪TB ∨ tj /∈ TA∪TB).
If C3 is true, then P3 is true.
P3: ((response(ti,tj) ∈ RA) ∨ (response(ti,tj) ∈ RB)) ∧ (((ti /∈ TA) ∧ (ti /∈ TB)) ∨ ((tj
/∈ TA) ∧ (tj /∈ TB))).
So, if C3 is true, A or B is syntactically incorrect, and this makes hypothesis to be checked
be false.

C4: response(ti,ti) ∈ RA∪RB.
If C4 is true, then P4 is true.
P4: (response(ti,ti) ∈ RA) ∨ (response(ti,ti) ∈ RB).
So, if C4 is true, A or B is syntactically incorrect, and this makes hypothesis to be checked
be false.

C5: (precedence(ti,tj) ∈ RA∪RB) ∧ ((ti /∈ TA∪TB) ∨ (tj /∈ TA∪TB)).
If C5 is true, then P5 is true.
P5: ((precedence(ti,tj) ∈ RA) ∨ (precedence(ti,tj) ∈ RB)) ∧ ((ti /∈ TA ∧ ti /∈ TB) ∨ (tj
/∈ TA ∧ tj /∈ TB)).
So, if C5 is true, A or B is syntactically incorrect, and this makes hypothesis to be checked
false.

C6: (precedence(ti,ti) ∈ RA∪RB).
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If C6 is true, then P6 is true.
P6: ((precedence(ti,ti) ∈ RA) ∨ (precedence(ti,ti) ∈ RB)) .
So, if C6 is true, A or B is syntactically incorrect, and this makes hypothesis to be checked
be false.

If a syntactic correct SDL process is contained in a semantically correct SDL process then
this process is also semantically correct. This is Theorem 4.6.5.

Theorem 4.6.5. Let A be a semantically correct SDL process. Let B be a syntactically
correct SDL process. If B ⊆ A then B is semantically correct.

Proof. Hypothesis: Let A be a semantically correct SDL process. Let B be a syntactically
correct SDL process. B ⊆ A, and B is semantically incorrect.
If B is semantically incorrect then there is a loop of precedence constraints (Lp) in B, or
there is a loop of response constraints (Lr) in B. If there is a loop Lp in B or there is a
loop Lr in B, then there is a loop Lp in A, or there is a loop Lr in A, since B ⊆ A. But if
there is a loop Lp in A or there is a loop Lr in A, then A is semantically incorrect, and the
Hypothesis is false. With the Hypothesis being false, Theorem 4.6.5 is proven to be true.

4.6.6 Enabled and pendent events in SDL

In SDL, a marker is a sequence of numbers where each number represents the current
state of one automaton in the process. For example, Figures 39(a), 39(b) and 39(c) show
the automata of the tasks t1 and t2 and constraint r1 = response(t1,t2), each state of these
automata is identified by a number, so the marker for this set of tasks and constraints
can be established as M = (i,j,k) where i is the number of the current state of t1, j is the
number of the current state of t2, and k is the current state of r1. Figures 39(d) shows the
synchronous product of t1, t2 and r1 and the marker at each state of the automaton.

The set of enabled events for each marking is calculated by the synchronous product
method. In automaton in Figure 39(d), in the marking M = (1,1,1), s1 and s2 are enabled.
In marking M = (2,1,1), c1, x1 and s2 are enabled, and so on. The set of pendent events for
each marking is calculated as demonstrated in the following. To each state of the automaton
of a task or constraint is associated a set P of pendent events, the Table 9 shows the set P
for every state of the automata of task and constraints atleast1 (ti), precedence(ti,tj) and
response(ti,tj) presented in Figures 30, 31(a), 31(g) and 31(h). C(P) is the collection of
all the sets P of all the automata at each marking. Table 8 presents the three cases that
must be checked to identify what are the pendent events of a task. So, the method to
identify a pendent event of a task just consists in checking which of these three cases is
true.
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(a) t1 (b) t2 (c) r1 = response(t1,t2)

(d) t1||t2||r1

Figura 39 – Markers for the synchronous product of t1, t2 and r1

Tabela 8 – Three cases to check the pendent events in a task

Case 1: {ci} ∈ C (P) pendent event = ci

Case 2: {ci} /∈ C (P) and {ci, xi} ∈ C (P) pendent event = ci or xi

Case 3: {ci} /∈ C (P) and {ci, xi} /∈ C (P) no event is pendent

Tabela 9 – Pendent events in automata task, atleast1 (ti), precedence(ti,tj) and res-
ponse(ti,tj)

Automaton state 1 state 2
task P = ∅ P = {c, x}

atleast1 (ti) P = {ci} P = ∅
precedence(ti, tj) P = ∅ P = ∅
response(ti, tj) P = ∅ P = {cj}

Table 10 shows the pendent events for automaton t1||t2||r1 in Figure 39(d).

4.6.7 An example

This section presents an example of process design and run using an SDL framework.

At design time, the user designs process EXAMPLE = (T, R), such that T = {t1, t2, t3}
and R = {r1 = atleast1 (t2), r2 = precedence(t1, t2), r3 =response(t3, t1)}. After the user
has designed the process, it must be checked applying procedure for verifying if a set of
constraints is valid, shown in Figure 38. First, the procedure in Figure 38 checks process
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Tabela 10 – Pendent events for automaton t1||t2||r1.

Marking C (P) Pendent events
1,1,1 {∅, ∅, ∅} none
1,2,1 {∅, {c2, x2}, ∅} c2 or x2
2,1,1 {{c1, x1}, ∅, ∅} c1 or x1
2,2,1 {{c1, x1}, {c2, x2}, ∅} (c1 or x1) and (c2 or x2)
1,1,2 {∅, ∅, {c2}} c2
1,2,2 {∅, {c2, x2}, {c2}} c2
2,1,2 {{c1, x1}, ∅, {c2}} (c1 or x1) and c2
2,2,2 {{c1, x1}, {c2, x2}, {c2}} (c1 or x1) and c2

compliance with the rules for a syntactically correct process. These rules are shown in
Definition 4.6.1. Since the process is compliant with the rules stated in Definition 4.6.1, it
is syntactically correct. After that, the procedure in Figure 38 checks process compliance
with the rules for a semantically correct process. These rules are stated in Corollary 4.6.1.
Since the process is compliant with the rules stated in Corollary 4.6.1, it is semantically
correct. Since the process is syntactically and semantically correct, it is a valid SDL process.
The set of tasks and constraints comprising process P is the output of design time. Figure
40 exhibits the sets of tasks and constraints for process EXAMPLE.

(a) t1 (b) t2 (c) t3

(d) atleast1 (t2) (e) precedence(t1,t2) (f) response(t3,t1)

Figura 40 – Tasks and constraints of the process EXAMPLE

At run time, the SDL framework takes sets of valid tasks and constraints, generated during
design time, and compiles Table 11. Table 11 displays the sets of pending events (P) to
the automata of process EXAMPLE. Table 11 is prepared from the templates shown in
Table 9.

The next step is providing the initial marker of the running process. The markers are
defined by the number of the state for each process automata. The order of the automata
that defines the markers is t1, t2, t3, r1, r2, r3. So, the initial marker in process EXAMPLE
is M1 = 111111.

The next step is providing sets of enabled and pending events to M1.
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Tabela 11 – Sets of pendents events (P) to each construct of the process EXAMPLE

Construct Automaton state 1 state 2
t1 task Pt1 = ∅ Pt1 = {c1, x1}
t2 task Pt2 = ∅ Pt2 = {c2, x2}
t3 task Pt3 = ∅ Pt3 = {c3, x3}
r1 atleast1 (t2) Pr1 = {c2} Pr1 = ∅
r2 precedence(t1, t2) Pr2 = ∅ Pr2 = ∅
r3 response(t3, t1) Pr3 = ∅ Pr3 = {c1}

The set of enabled events, for each marker, is calculated applying a synchronous product
operation. The synchronous product operation is explained in Section 4.5.1. For marker
M1, the set of enabled events is E = {s1, s2, s3}.

The set of pending events, for every marker, is calculated applying the method set out in
Section 4.6.6. So, the collection of sets of pending events (C(P )) for every marker must be
calculated for each marker in process EXAMPLE, (C(P )) = {Pt1 , Pt2 , Pt3 , Pr1 , Pr2 , Pr3}.
From (C(P )), in each marker, the true case out of the three presented in Table 8 must be
determined.

So, in M1, C(P ) = {∅, ∅, ∅, {c2}, ∅, ∅}, and, consequently, the set of pending events is P
= {c2}.

FromM1, the user chooses to execute event s3. Now, the method to update the current state
in the automata takes event executed s3 and updates the state in each process automata.
Section 4.6.2 shows the method to update the current state in the automata. This update
causes automaton t3 to change from state 1 to state 2. Automata t1, t2, r1, r2, and r3 do
not change their respective states.

Since the state of automaton t3 has changed, a new marker is reached – marker M2. So,
M2 = 112111. In M2, the set of pending events is E = {s1, s2, c3, x3}. In M2, C(P ) = {∅,
∅, {c3, x3}, {c2}, ∅, ∅}. Consequently, in M2, set of pending events is P = {c2, c3 ou x3}.

FromM2, the user chooses to execute event s1. Now, the method to update the current state
in the automata takes the event executed s1 and updates the state in each of the process
automata. This updates changes automaton t1 from the state 1 to state 2. Automata t2,
t3, r1, r2, and r3 do not change their respective states.

Since the state of automaton t1 has changed, a new marker is reached – marker M3. So,
M3 = 212111. In M3, set of enabled events is E = {c1, x1, s2, c3, x3}. In M3, C(P ) =
{{c1, x1}, ∅, {c3, x3}, {c2}, ∅, ∅}. Consequently, in M3, the set of pending events is P =
{c1 ou x1, c2, c3 ou x3}.

FromM3, the user chooses to execute event c3. Now, the method to update the current state
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in the automata takes the event executed c3 and updates the state in each of the process
automata. This update changes automaton t3 from state 2 to state 1 and automaton r3

changes from state 1 to state 2. Automata t1, t2, r1, and r2 do not change their respective
states.

Since the state of automata t3 and r3 has changed, a new marker is reached - marker M4.
So, M4 = 211112. In M4, the set of enabled events is E = {c1, x1, s2, s3}. In M4, C(P ) =
{{c1, x1}, ∅, ∅, {c2}, ∅, {c1}}. Consequently, in M4, set of pending events is P = {c1, c2}.

From M4, the user chooses to execute event s2. Now, the method to update the current
state in the automata takes event executed s2 and updates the state in each of the process
automata. This update changes automaton t2 from state 1 to state 2. Automata t1, t3, r1,
r2, and r3 do not change their respective states.

Since the state of the automaton t2 has changed, a new marker is reached – marker M5. So,
M5 = 221112. In M5, set of enabled is E = {c1, x1, c2, x2, s3}. In M5, C(P ) = {{c1, x1},
{c2, x2}, ∅, {c2}, ∅, {c1}}. Consequently, in M5, the set of pending events is P = {c1, c2}.

From M5, the user chooses to execute event c1. Now, the method to update the current
state in the automata takes event executed c1 and updates the state in each of the process
automata. This update changes automata t1 from state 2 to state 1, r2 changes from state
1 to state 2, and r3 changes from state 2 to state 1. Automata t2, t3, r1, and r2 do not
change their respective states.

Since the state of automata t1, r2 and r3 has changed, a new marker is reached - marker
M6. So, M6 = 121121. In M6, the set of enabled events is E = {s1, c2, x2, s3}. In M6,
C(P ) = {{c1, x1}, {c2, x2}, ∅, {c2}, ∅, ∅}. Consequently, in M6, the set of pending events
is P = {c2}.

From M6, the user chooses to execute event c2. Now, the method to update the current
state in the automata takes event executed c2 and updates the state in each of the process
automata. This update changes automata t2 from state 2 to state 1, and r1 changes from
state 1 to state 2. Automata t1, t3, r2, r3 do not change their respective states.

Since the state of automata t2, and r1 has changed, a new marker is reached - marker M7.
So, M7 = 111221. In M7, set of enabled is E = {s1, s2, s3}. In M7, C(P ) = {∅, ∅, ∅, ∅, ∅,
∅}. Consequently, in M7, set of pending events is P = ∅.

In M7 there are no pending events. So, in M7, the user can choose to continue or finish
the process.

Figure 41 shows markers M1 to M7 that are reached through the sequence of events
s3.s1.c3.s2.c1.c2.
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Figura 41 – Markers that are reached after the sequence s3.s1.c3.s2.c1.c2 is executed .

4.7 Conclusion
This paper introduces Simple Declarative Language (SDL), a conceptual framework for
modeling constraint based processes.

SDL frameworks provide a single task model that is used in every process modeled. This
task model is the same as in the SCT approach. SDL frameworks provide a set of only
three constraints: existence, precedence, and response. These models of constraints are the
same as in the SCT approach.

SDL provides controllable event start, complete and cancel tasks. SDL does not provide
uncontrollable events.

At design time, the SDL framework provides a method to check SDL language syntax
and semantics. This method checks compliance of sets of tasks and constraints with the
applicable syntactic and semantics rules defined for the SDL language. Semantic rules in
SDL frameworks relate to soundness. If an SDL process is semantically correct, then it is
compliant with the respective soundness requirements. The output of design time is only
a set of tasks and constraints. No sequence of events is calculated in design time.

The syntax rules in SDL frameworks are described in section 4.6.3. If the set of tasks and
constraints is compliant with the conditions described in section 4.6.3, then the process is
syntactically correct, otherwise the process is not syntactically correct.

Section 4.6.4 describes the semantics rules used in SDL frameworks. If the set of tasks and
constraints is compliant with the conditions described in section 4.6.4. then the process is
semantically correct, otherwise the process is not semantically correct.

At run time, SDL frameworks provide four methods. Valid set of tasks and constraints is
the input to Method to calculate pending events and Method synchronous product. Method
to calculate pending events takes the valid set of tasks and constraints to calculate set
of pending events in the process. Method synchronous product takes set of tasks and
constraints to calculate set of enabled events for the process. From the set of enabled events,
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the user chooses to execute an event. When the user chooses to execute an event, Method
to update sequence of executed events updates its outputs: Sequence of events executed and
Last event executed.

The main limitation of SDL frameworks is its language. The SDL language provides only
three constraints. This can be very restrictive in cases where, for example, it is necessary
to model processes with constraints that provide for the exclusion of events.

4.7.1 Future work

The next step in developing SDL is providing it with constraint exclude. This will increase
the power of SDL enabling modeling a greater number of constraint based processes.
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5 A conceptual framework to select variants
from constraint based processes

Abstract
Different process models may be used in varying contexts of the same application if
components in these processes can be partially modified. These process models can be also
set in accordance with attributes related to different circumstances. Variability is the type
of flexibility that permits configuring a process model to address specific circumstances.
Process variability may be a requirement in different domains when processes need to be
handled as a function of different business process contexts driving the need for different
process variants. Designing and implementing standardized business processes for each
context of the real world becomes too expensive for businesses. So, there is a high level of
interest in gathering common process knowledge for deployment as a reference process
model, and, consequently, derive all variants in alignment with each different application
context. Most of the studies on selection of business process variants focus on imperative
languages. There are few studies about selection of variants with declarative languages.
Therefore, the objective of this paper is to propose a business process variant selection
framework modeled using Simple Declarative Language (SDL)- a conceptual framework
for modeling constraints based processes.

Keywords: Variability, selection of variants, configurable process model, imperative
languages, declarative languages.

5.1 Introduction
Different process models may be used in varying contexts of the same application if
components in these processes can be partially modified (REICHERT; WEBER, 2012a).
These process models can be also set in accordance with attributes related to different
circumstances (REICHERT; HALLERBACH; BAUER, 2015). These conditions allow some
types of process to be reused in different contexts or circumstances as long as the necessary
changes to some of their components are carried out (ROSA et al., 2013). Reusing a process
model in different contexts can result in a wide range of related process model variants
belonging to the same process family (MILANI et al., 2016). These process variants are
connected to the same business objectives and have several points in common (ROSA et
al., 2013). But there are also differences due specific conditions found in each context,
for example, some activities may be required for a given context, but, may be entirely
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unnecessary for other contexts (SCHUNSELAAR et al., 2014).

Variability is the type of flexibility that permits configuring a process model to address
specific circumstances (MECHREZ; REINHARTZ-BERGER, 2014). Process variability
may be a requirement in different domains when processes need to be handled as a
function of different business process contexts driving the need for different process
variants (BERGER et al., 2013; HUANG et al., 2013). Process variants are usually derived
from the same process model with the actual sequence of actions varying for each variant
(AALST, 2013).

At least four aspects can generate process variants: products and services, regulations
and laws, type of clients, and time(REICHERT; WEBER, 2012a). Product and service
variability are required because there may be effective product variants in the same
business. Differences in regulations in different countries and regions can also drive the
need for different process variants in the same company. Variability might be also required
in addressing different types of customers (premium or standard, for example) as well as
due to temporal differences (seasonal changes, for example). The actual variant can be
defined while the process is being executed, but the configurable process model from which
each variant is derived must be known previously. Health-care processes for emergency
patient treatment are examples of process variability (LENZ; PELEG; REICHERT, 2012).
Before each patient is treated, his/her general condition is evaluated resulting in a scenario
used in defining which actions must be executed, and which must not, from a configurable
process model standpoint, and the resulting behavior is a process variant.

Designing and implementing standardized business processes for each context of the real
world becomes too expensive for businesses (AYORA et al., 2012). This results in a high
level of interest in gathering common process knowledge to use as a reference process
model, and, consequently, derive all variants in aligning with each context of application
(AYORA et al., 2013b). Thus, an approach to capture and set the variability in a process
model is needed. This approach must be able to represent a family of process variants
in a compact, reusable, and maintainable way, as well as allowing configuring a process
family in such a way that every process variant represents, correctly, the requirements of a
specific environment for the application (AYORA et al., 2015).

The adoption of process-aware information systems (PAISs) (REICHERT; WEBER, 2012b)
such as workflow management systems (DUMAS et al., 2013; AALST; WESKE, 2013),
enterprise resource planning systems (SHAUL; TAUBER, 2013; MONK; WAGNER, 2012),
or case management systems (MOTAHARI-NEZHAD; SWENSON, 2013) is increasing due
to the high variability in business processes (e.g., sales processes may vary depending on the
respective products and countries). Dealing with process families properly constitutes the
main challenge in reducing development and maintenance costs in large process repositories
(DIJKMAN; ROSA; REIJERS, 2012). Designing and implementing each process variant
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from scratch and maintaining it separately would be inefficient and costly for companies
(TEALEB; AWAD; GALAL-EDEEN, 2014; YAN; DIJKMAN; GREFEN, 2012).

Thus, there is a great interest in capturing common process knowledge only once and
re-using it as reference for process models, e.g., ITIL in IT service management (IDEN;
EIKEBROKK, 2013; TRUSSON; DOHERTY; HISLOP, 2014; MARRONE et al., 2014),
reference processes in SAP ERP systems (LORENC; SZKODA, 2015; GÖTZFRIED et
al., 2013; YANG; SEN; PING, 2013), or medical guidelines (HERZBERG; KIRCHNER;
WESKE, 2014; ROJAS et al., 2016). Even though these proposals promote the reuse
of common process knowledge, typically, they lack comprehensive support in explicitly
describing variations (AYORA et al., 2013a).

More specifically, a business process variant selection framework requires sets of procedures
and data that allow merging processes from the same domain application in order to
facilitate process management for them (AYORA et al., 2015; YAN; DIJKMAN; GREFEN,
2012).

The data structure where processes from the same application domain are merged is
called Configurable Process Model (ASSY; GAALOUL, 2015; JIMÉNEZ-RAMÍREZ et
al., 2015; SHARMA; RAO et al., 2015). Configurable Process Model is essential part in a
variant selection procedure (DÖHRING; REIJERS; SMIRNOV, 2014). Each process that
is merged in the Configurable Process Model is a variant (COGNINI et al., 2014; ASADI
et al., 2014; SCHUNSELAAR et al., 2014b). Context-specific variants can be selected
from the Configurable Process Model (MURGUZUR et al., 2014; ASSY; GAALOUL, 2014;
TEALEB; AWAD; GALAL-EDEEN, 2015; HACHICHA et al., 2016).

Variants must be syntactically and semantically correct before they can be merged into
a Configurable Process Model, and each variant selected from the Configurable Process
Model must be syntactically and semantically correct (ROSA, 2009; ROSA et al., 2013;
TORRES et al., 2012). This requires defining the syntax and semantics rules of the
language that is used to model the process variants.

In order to facilitate the variant selection procedure, some types of support for selection
of process variants can be implemented (REICHERT; WEBER, 2012a; ROSA et al., 2013;
AYORA et al., 2012). There are, at least, four support techniques to help with selecting
of process variants: questionnaire-driven configurations, feature models, goal models and
decision tables (AYORA et al., 2012). This paper concentrates on questionnaire-driven
configurations (also called questionnaire-based framework). In questionnaire-based fra-
meworks, the questionnaire acts as user interface enabling domain-specific representations
of configuration decisions. The questionnaire model comprises a set of domain facts corres-
ponding to the answers of a set of questions in natural language (REICHERT; WEBER,
2012a). Each domain fact corresponds to a Boolean variable representing a particular
feature of the domain. These feature may be enabled or disabled depending on the given
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application context (ROSA et al., 2013).

In recent years, a number proposals have been made to deal with selection of variants from
process families. In the BP management field, model-driven techniques provide diverse
solutions for managing process variants, i.e. for modeling, configuring, executing, and
monitoring a process family (ZHANG; HAN; OUYANG, 2014; ASSY; CHAN; GAALOUL,
2015; YONGSIRIWIT; ASSY; GAALOUL, 2016). However, most of the studies on selecting
business process variants, developed to date, concentrate on imperative languages (AYORA
et al., 2015). These studies have introduced frameworks intended to support procedures in
making and selecting variants from configurable process models by using processes that
are modeled using imperative languages. There are few studies about selecting variants
using declarative languages (SCHUNSELAAR et al., 2012a) There is a dearth of studies
on frameworks intended to generate configurable process models in which the variants are
modeled using declarative languages.

Thus, this paper’s main objective is to propose a framework to merge and select variants
from the configurable process model in which the processes are modeled through a decla-
rative language. In this framework, the variants are created syntactically and semantically
correct and, when a variant is selected, its syntactic and semantic correctness is preserved.
The variant selection process is supported by a questionnaire based approach. Figure 42
presents the simplified diagram for this framework. At design time, users are provided
with User support framework at design time. This framework provides all the necessary
tools users can apply User support framework at configure time. At configure time, User
support framework at configure time all necessary tools are provided for users to generate
variants (an SDL process). At run time, User support framework at run time all necessary
tools for users to run the variant are provided.

Figura 42 – Simplified representation of the framework proposed in this work
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5.2 Configurable process model
If there is a set of processes related to the same knowledge domain and, each of these
processes is syntactically and semantically correct, then this set of processes is called a
family of process. The processes in a given family can be merged into larger processes
called configurable process model (REICHERT; HALLERBACH; BAUER, 2015; SCHUN-
SELAAR et al., 2014a; BUIJS; DONGEN; AALST, 2013; AYORA et al., 2013b). From a
configurable process model, procedures and methods can be defined enabling users to select
one of the processes in the process family. Each process selected from the configurable
process model is called a variant. The configurable process model must be also syntactically
and semantically correct in order to guarantee that every variant remains syntactically
and semantically correct after the selection procedure has been performed (AYORA et al.,
2015). An advantage of configurable process models is avoiding redundant work (ROSA et
al., 2013). For example, if some change must be made in a given task, then all the processes
in the family that share that task will be modified with a single procedure, waiving the
need to make the same change in each process individually.

Figure 43(a) to 43(d) presents four process variants for a hypothetical domain. Variant
1 has 6 tasks (t1, t2, t3, t4, t5, t6). In variant 2, t5 is hidden, i.e. t5 is skipped by the
transition skip t5. In variant 3, t2 is hidden, i.e. t2 is skipped by the transition skip t2. In
variant 4, t2 and t5 are hidden, i.e. t2 and t5 are skipped by the transitions skip t2 and
skip t5. A skip transition is a silent transition. A silent transition allows firing the tokens
in their incoming points but, differently from a transition that represents a task, it does
not produce any effect on the process. The four variants are merged in a single process
shown in Figure Figure 43(e). The process in Figure Figure 43(e) is a free-choice workflow
net, thus it is syntactically and semantically correct. So, the process in Figure 43(e) can
be used as a configurable process model.

In a configurable process model, there variation point is a limited region of the process
that offers a limited amount of process configuration options. Each option at a variation
point is also called a process fact (ROSA, 2009). There are two variation points in the
configurable process model shown in Figure 43(e): variation point 1 and variation point
2. The variation point 1 is the region comprised between points p1 and p2, and variation
point 2 is the region comprised between points p5 and p6.

In variation point 1 there are two process facts: process fact 1 and process fact 2. In variation
point 2 there are two process facts: process fact 3 and process fact 4. Table 12 shows the
variation points and process facts for the configurable process model in Figure 43(e). The
process fact 1 is equivalent to t2 is allowed. The process fact 2 is equivalent to t2 is hidden.
The process fact 3 is equivalent to t5 is allowed. The process fact 4 is equivalent to t5 is
hidden.
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(a) Variant 1

(b) Variant 2

(c) Variant 3

(d) Variant 4

(e) Merge of the Variant 1, Variant 2, Variant 3 and Variant 4

Figura 43 – Four variants and their mergers
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Tabela 12 – Variation points and process facts to the configurable process model in Fi-
gure 43(e)

vp1: pf1 ⇔ t2 is allowed
pf2 ⇔ t2 is hidden

vp2: pf3 ⇔ t5 is allowed
pf4 ⇔ t5 is hidden

5.3 Domain facts and questionnaire
The process fact choosing activity when selecting variants for a configurable process model
may not be so intuitive, and, therefore, may be complex and confusing for users. In order to
render the variant selection process from a configurable process model more intuitive and
easier, each process fact is bound to a set of domain facts. A domain fact is a description,
in natural language, of a particular feature in the application domain of the configurable
process model (REICHERT; WEBER, 2012a; ROSA, 2009).

For example, for a configurable process model in the health-care domain, the type of the
medical examination could be defined by two domain facts: Emergency Medical Examination
and Standard Medical Examination (REICHERT; WEBER, 2012a). Choosing one of those
domain facts would define the process facts (options) that should be chosen in order to
perform the appropriate actions in the respective process. Users do not need to know the
details of the process structure to be able to select the correct variant. They just need to
know the domain of the process (in this case, health-care) to select the correct variant.

For the configurable process model in Figure 43(e) 4 hypothetical domain facts have been
defined. Each of these hypothetical domain facts corresponds to a hypothetical features
as shown in Table 13. Each process fact must be bound to a logical expression defined
through domain facts. Table 14 shows the process facts of the configurable process model
in Figure 43(e) with their logical expressions. For example, if domain fact 1 and domain
fact 3 are true then the process fact 1 is true and consequently t2 is allowed is true.

Tabela 13 – Correspondence between domain facts and features

domainfact correspondent feature
f1 feature 1
f2 feature 2
f3 feature 3
f4 feature 4
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Tabela 14 – Process facts from Figure 43(e) with their logical expressions

process fact 1 ⇔ f1 ∧ f3
process fact 2 ⇔ f2 ∧ f3
process fact 3 ⇔ f1 ∧ f4
process fact 4 ⇔ f3 ∧ f4

5.3.1 Grouping domain facts into questions

The domain facts can be grouped in individual questions in a questionnaire. This is
known as the questionnaire-based approach. The questionnaire-based approach is one of
several support approaches applicable in selecting variants for a business process (AYORA
et al., 2015). The questions are also stated in natural language. Thus, by answering a
questionnaire, users can select the pertinent process facts, and, accordingly, the appropriate
process variant, from the configurable process model. This approach is very useful since
it provides a more user friendly interface when selecting a process variant (REICHERT;
WEBER, 2012a; ROSA, 2009).

Figure 44 shows a partial example of a variant selection questionnaire for use with configu-
rable process model in the health-care domain. Fact 1 (Emergency Medical Examination)
and fact 2 (Standard Medical Examination) are bound to question Q1 (Shall a standard or
an emergency medical examination be handled?). Fact 1, fact 2 and question Q1 support
users in defining the type of the medical examination to be performed on the patient. Fact
3 (Appointment Required) and fact 4 (Simple Registration Sufficient) are bound to question
Q2 (Does an appointment for the standard medical examination have to be arranged?). Fact
3, fact 4 and question Q1 support users in defining whether an appointment is required
for the standard medical examination.

Figura 44 – Part of a questionnaire for selection of variants in the health-care domain

Binding domain facts and questions provide users with a friendly interface. The questions
help users to think about the context in which the facts (options) are inserted. For example,
Q1 helps users to establish whether the context of the facts to be chosen (f1 and f2)
is related to the type of examination, whereas Q2 helps users to establish whether the
context of the facts to be chosen (f3 and f4) is related to making (or not) an appointment
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for a Standard Medical Examination. For the configurable process model in Figure 43(e),
the 4 domain facts are grouped into 2 questions as shown in Figure 45.

Figura 45 – Domain facts from Figure 43(e) grouped in two questions

5.3.2 Domain fact constraints and order dependencies

After defining the domain facts, there may be constraints that must be imposed on
them (REICHERT; WEBER, 2012a; ROSA, 2009; AYORA et al., 2015). For example,
for domain facts Emergency Medical Examination and Standard Medical Examination,
mentioned previously, a constraint to be imposed is that they are mutually exclusive. If
these domain facts are respectively fi and fj then that constraint can be represented by
the logical expression fi ⊕ fj. In the configurable process model in Figure 43(e) 4 domain
fact constraints are defined. These constraints are shown in Table 15. The constraints in
Table 15 avoid non-valid variants from being selected from the configurable process model
in Figure 43(e).

Tabela 15 – Constraints avoid a non-valid variant from being selected from Figure 43(e)

description of the constraint logical expression
exclusively f1 or exclusively f2 must be true f1 ⊕ f2
exclusively f3 or exclusively f4 must be true f3 ⊕ f4

Domain facts may also require order dependency among them. There may be some
requirement between two facts such that one of them should always be performed before
the other. For example, for the domain facts in Figure 44, the type of medical examination
to be performed must be established (f1 and f2) before defining how to arrange the
Standard Medical Examination (f3 and f4). So f1 and f2 must be set before f3 and f4.
So f1 and f2 must precede f3 and f4. Accordingly, since questions Q1 and Q2 inherit the
order dependency from their facts, Q1 must precede Q2. The hypothetical application
domain of the configurable process model in Figure 43(e) requires that f1 and f2 be the
first ones to be set, and that f3 and f4 be set before f5 and f6. Once the questions inherit
the order dependency from their facts, the order in which the questions must be answered
is Q1, Q2.
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5.4 Selection of Variants with Simple Declarative Language (SVSDL)
This section presents Selection of Variants with Simple Declarative Language (SVSDL).
SVSDL is a conceptual framework to variants selection from constraint based processes
modeled by Simple Declarative Language (SDL). SVSDL covers three different times:
design time, configuring time, and run time. At design time, SVSDL provides user with
User support framework at design time. At configure time, SVSDL provides user with User
support framework at configure time. At run time, SVSDL provides user with User support
framework at run time. User support framework at run time is the same one provided by
SDL framework at run time(SCHAIDT; SANTOS, 2017b). Figure 57 and 58 present these
frameworks.

In the next section, User support framework at design time and User support framework at
configure time are presented in more details. Since User support framework at run time is
the same one provided by the SDL framework, this section only presents a brief description
of this framework.

5.4.1 Design time

At design time, SVSDL provides users with User support framework at design time. User
support framework at design time makes User support framework at configure time. Next,
the User support framework at design time methods, as well as the fundamentals they are
based on, are introduced.

5.4.1.1 Method to define Function

This method gets no input from other methods. The output from this method is Function.
Function can have one of two values: Exactly.one or Atleast.one. The value of Function
defines the way the variants are selected in SVSDL. Figure 48 shows the Method to define
Function. This method is very simple, consisting in merely asking the user attribute of
one of the two values (Exactly.one or Atleast.one) for Function.

If Function = Exactly.one then, in configure time, users can only select one variant from
Configurable Process Model. After one variant has been selected from Configurable Process
Model, the procedure to select variants is finished. If Function = Atleast.one then, in
configure time, users can select more than one variant from Configurable Process Model.
After one variant has been selected from Configurable Process Model, the procedure to
select variants is finished only if users choose this. In fact, if Function = Atleast.one then
the "final variant"to be executed in run time is the inion of the variants selected by users
during configure time. This matter is discussed in more detail in section 5.4.1.4.
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Figura 46 – User support framework at design time and User support framework at
configure time
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Figura 47 – User support framework at design time

Figura 48 – Method to make Function



122

5.4.1.2 Method to make Set of Features

This method gets no input from other methods. The output from this method is Set of
Features (SF). SF is defined by the modeler. A feature is a pair (SD, LD), where SD and
LD are respectively the short description and the long description for the feature. Each
feature is bound to a domain fact. A domain fact is a logical variable. So, if the modeler
defines n ≥ 1 features for the process then SF is described by

SF = { (SD1, LD1) ⇔ df1, ... , (SDn, LDn) ⇔ dfn }

where (SDi, LDi) ⇔ dfi describes the logic equivalence between feature i and domain fact
i. Thus, feature i is true if, and only if, domain facts i is true . Figure 49 presents Method
to make Set of Features. Table 16 describes the steps of Method to make Set of Features.

Figura 49 – Method to make Set of Features

Tabela 16 – Description of Method to make Set of Features

Step 1 : User defines the feature in few words. This is the short description of
feature.

Step 2 : User provides longer definition of the feature. This is the long description
of the feature.

Step 3 : SVSDL binds a domain fact (variable) to the structure comprised by the
short and long descriptions.

Step 4 : Users can choose to insert other features or finish the method.

Example 5.4.1. Let P be a process. Process P produces a given item that can have three
different sizes: big, medium, small - with 30mm, 20mm and 10mm, respectively. The colors
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can be black, gray, or white, respectively. And the amount to be produced is 100, 70, and
30, respectively. The short descriptions can be "big", "medium", and "small", and the long
description contains the other information. Since there are three features to be inserted,
Method to make Set of domain facts makes three domain facts (variables): df1, df2, and
df3. Thus, the output from Method to make Set of Features is the set SF:

SF = { (SD: big, LD: size = 30mm, color = black, amount = 100) ⇔ df1,

(SD: medium, LD: size = 20mm, color = gray, amount = 70) ⇔ df2,

(SD: small, LD: size = 10mm, color = white, amount = 30) ⇔ df3 }

5.4.1.3 Method to make Set of Domain Constraints

The input to this method is Set of features. The output from this method is Set of domain
constraints. Set of domain constraints is a set of constraints defined for features. Domain
constraints are set by using propositional logic expressions.

Example 5.4.2. Let SF = {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11, df12, df13,
df14, df15} be the set of domain facts (features) taken by Method to make Set of constraints
for features. For these domain facts, the user defines Set of domain constraints = {DC1,
DC2, DC3, DC4} such that

DC1 : df1 ∨ df2 ∨ df3

DC2 : df3 Y df4 Y df6 Y df7

DC3 : ¬df5 ∧ df10 ⇔ ¬(df8 ∨ df9)

DC4 : ¬df2 ∧ df7 ⇒ (df11 Y df12)

5.4.1.4 Method to make Reference Process Model

The input to this method is Function. Function can have one of these two values: Exactly.one
or Atleast.one. The output from this method is Reference Process Model (RPM). RPM
is a process modeled using Simple Declarative Language (SDL) (SCHAIDT; SANTOS,
2017b). SVSDL variants are selected From RPM. A variant from RPM is a syntactically
and semantically correct SDL process. This is Definition 5.4.1 presented following.

Definition 5.4.1. Let A be the RPM in a SVSDL. Let B be a SDL process. B is a variant
from A if B⊆A and B are syntactically and semantically correct.
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Example 5.4.3. Let A be the RPM in a SVSDL so that TA = {t1,t2} and RA =
{precedence(t1,t2), precedence(t2,t1)} are the sets of tasks and constraints in A. Let B, C,
D and E be four SDL processes such that TB = {t1,t2,t3} and RB = {precedence(t1,t2),
precedence(t2,t1)}, TC = {t1,t2} and RC = {precedence(t1,t2), response(t1,t2)}, TD

= {t1,t2} and RD = {precedence(t1,t2), precedence(t2,t1)}, TE = {t1,t2} and RE =
{precedence(t1,t2)}. B is a syntactically and semantically correct SDL process but TB

6⊆ TA, thus B is not a variant in A. C is a syntactically and semantically correct SDL
process but RC 6⊆ RA, thus C is not a variant in A. TD ⊆ TA and RD ⊆ RA but D is a
not semantically correct SDL process, thus D is not a variant in A. E is a syntactically
and semantically correct SDL process and TE ⊆ TA and RE ⊆ RA, thus E is a variant in A.

The set of variants defined from RPM is named Vrpm. The union of the variants in Vrpm is
a subset of RPM. The maximum set of variants that can be generated from Vrpm is named
Vgen. Vgen is the maximum set of variants from Vrpmthat, in fact, can be executed. Vgen is
a function of Vrpm. Vrpm and Vgen are related to each other and this relation is defined by
Function. Vrpm, Vgen and their relation, defined by Function, is shown in Definitions 5.4.2,
5.4.3 and 5.4.4.

Definition 5.4.2. The set of variants defined from RPM is named Vrpm. The union of
variants in Vrpm must be a subset of RPM.

Definition 5.4.3. Vgen is the maximum set of variants that can be generated from Vrpm.

Definition 5.4.4. Vgen and Vrpm are related through Function. If Function = Exactly.one,
then Vgen = Exactly.one(Vrpm). If Function = Atleast.one, then Vgen = Atleast.one(Vrpm).
If Vgen = Exactly.one(Vrpm) then Vgen = Vrpm. If Vgen = Atleast.one(Vrpm) then Vgen =
P(Vrpm) \ ∅, where P(Vrpm) is the power set of Vrpm.

Definitions 5.4.2, 5.4.3 and 5.4.4 are used in Examples 5.4.4 and 5.4.5.

Example 5.4.4. Let A = (TA, RA) be a RPM, such that

TA = {t1, t2, t3}, RA = {atleast(t1), precedence(t1,t2), response(t2, t3)}.

From A the user defines two variants: V1, V2.
V1 = (T1, R1), such that

T1 = {t1, t2}, R1 = {atleast(t1)},

V2 = (T2, R2), such that

T2 = {t2, t3}, R2 = {response(t2, t3)}.

So, Vrpm = {V1, V2}, and the union of the sets in Vrpm is

TU = {t1, t2, t3}, RU = {atleast(t1), response(t2, t3)}.
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Since (TU , RU) ⊆ (TA, RA), Vrpm is valid.

Example 5.4.5. Let A be the RPM in a SVSDL. Let B, C and D be the three va-
riants in A. So Vrpm = {B, C, D} in A. If Function = Atleast.one then Vgen =
Atleast.one(Vrpm). If Vgen = Exactly.one(Vrpm) then Vgen = {B, C, D}. In other words,
if Vgen = Exactly.one(Vrpm) then there are three variants (B, C, D) that can be selected
by the user during configure time. If Vgen = Atleast.one(Vrpm) then Vgen = {B, C, D,
B ∪C, B ∪D, C ∪D, B ∪C ∪D}. In other words, if Vgen = Atleast.one(Vrpm) then there
are seven variants (B, C, D, B, B ∪D, C ∪D, B ∪ C ∪D) that can be selected by the
user during configure time.

Next, we present the Theorems 5.4.1 and 5.4.2. These theorems demonstrate the relations
between Function and RPM.

Theorem 5.4.1. Let A be the RPM in a SVSDL. If Vgen = Exactly.one(Vrpm) then it is
not mandatory for A to be semantically correct.

Proof: If Vgen = Exactly.one(Vrpm) then two or more variants of Vrpm cannot be joined
to make a variant in Vgen. So, a variant in Vgen is always equal to a single variant in
Vrpm. But, Definition 5.4.1 defines that a variant in Vrpm is syntactically and semantically
correct. Therefore, every variant in Vgen is always syntactically and semantically correct
even if A is semantically correct.

Theorem 5.4.2. Let A be the RPM in a SVSDL. If Vgen = Atleast.one(Vrpm) then A
must be semantically correct.

Proof: If Vgen = Atleast.one(Vrpm) then two or more variants from Vrpm can be joined to
make a variant in Vgen. So, a variant in Vgen can be equal to a single variant in Vrpm,
but, a variant in Vgen can be also equals to a union of variants from Vrpm. Every union of
variants from Vrpm is contained in Vrpm. At the same time, the SDL framework (SCHAIDT;
SANTOS, 2017b) guarantees that if an SDL process A is syntactically and semantically
correct then every process B, that is syntactically correct and is contained in A, is also
semantically correct. Thus, the only way to guarantee that every union of variants from
Vrpm is semantically correct is Making RPM semantically correct.

After presenting Definitions 5.4.1 to 5.4.4, the sequence of steps for making RPM in SVSDL
can be shown. Figure 50 exhibits the sequence of steps for making RPM in SVSDL. Table
17 explains each step of that sequence.

Example 5.4.6. Let A be the RPM in a SVSDL. Let TA and RA be the sets of tasks
and constraints of A. Initially, A is empty, thus TA = ∅ and RA = ∅. Let Vgen =
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Figura 50 – Method to make a Reference Process Model
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Tabela 17 – Description of Method to make a Reference Process Model.

Step 1 : User defines the sets of tasks and constraints using SDL
Step 2 : The process defined in step 1 is checked for being syntactically correct, in

accordance with Definition 5.4.1. If the check performed in step 2 identifies
that the process is not syntactically correct, then the sequence moves
to step 3. If the check performed in step 2 identifies that the process is
syntactically correct, then the method goes to step 4.

Step 3 : Users are then asked if they want to correct the syntax of the process.
Should users chooses not to correct the syntax of the process, the method
comes to an end. If users choose to correct the syntax of the process, then
the method returns to step 1.

Step 4 : The process defined in step 1 is checked for being semantically correct, in
accordance with Definition 5.4.1. If the check performed in step 4 identifies
that the process is not semantically correct, then the sequence moves
to step 5. If the check performed in step 4 identifies that the process is
syntactically correct, then the method goes to step 6.

Step 5 : Users are then asked if they want to correct the semantics of the process.
Should users chooses not to correct the semantics of the process, the
method comes to an end. If users choose to correct the syntax of the
process, then the method returns to step 1.

Step 6 : The existence of the process defined in step 1 in RPM is checked. Initially,
RPM = ∅. If the check performed in step 6 identifies that the process is
equal to an existing process in RPM, the sequence moves to step 7. If the
check performed in step 6 identifies that the process is not equal to any
existing process in RPM, the sequence moves to step 8.

Step 7 : Users are asked if they want to change the process. Should users choose
not to change the process, then the method comes to an end. If users
choose to change the process, the method returns to step 1.

Step 8 : If Vgen = Atleast.one(Vrpm) or Vgen = Exactly.one(Vrpm) is then checked.
If Vgen = Atleast.one(Vrpm), the sequence goes on to step 9. If Vgen =
Exactly.one(Vrpm), it moves to step 12.

Step 9 : A temporary process, called TEMP, is created. TEMP is the union of
RPM and the process. After step 9, the sequence carries on to step 10.

Step 10 : TEMP is checked for being semantically correct. If the check performed
in step 10 identifies that TEMP is not semantically correct, the sequence
goes to step 11. If the check performed in step 10 identifies that TEMP
is semantically correct, then the method proceeds to step 12.

Step 11 : Users are asked if they want to correct the process. Should users chooses
not to correct the process, then the method comes to an end. If users
choose to correct the process, the method returns to step 1.

Step 12 : The process is joined to the RPM. After step 12, the method is concluded.
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Exactly.one(Vrpm) be the function bound to A. As Vgen = Exactly.one(Vrpm), A can
be semantically incorrect.

The first process candidate to being in the RPM is P1 = {T1, R1}, where T1 = {t1}, R1

= ∅}. P1 is syntactically and semantically correct so the checks performed in steps 2 and
4 result in ’YES’. P1 is not in the RPM yet, so the check carried out in step 6 results in
’No’. Since Vgen = Exactly.one(Vrpm) the check performed in step 8 results in ’Exactly.one’.
Thus, the method goes to step 12 where ’RPM = RPM ∪ process’. Making the substitutions
results in A = {TA ∪ T1, RA ∪ R1 }. By continuing, one gets A = {∅ ∪ {t1}, ∅ ∪ ∅}.
And finally, A = {{t1}, ∅}.

The second process candidate to being in the RPM is P2 = {T2, R2}, where T2 = {t2}, R2

= ∅. P2 is syntactically and semantically correct so the checks performed in steps 2 and
4 result in ’YES’. P2 is not in the RPM yet, so the check carried out in step 6 results in
’No’. Since Vgen = Exactly.one(Vrpm) the check performed in step 8 results in ’Exactly.one’.
Thus, the method goes to step 12 where ’RPM = RPM ∪ process’. Making the substitutions
results in A = {TA ∪ T2, RA ∪ R2 }. By continuing, one gets A = {{t1} ∪ {t2}, ∅ ∪ ∅}.
And finally, A = {{t1, t2}, ∅}.

The third process candidate to being in the RPM is P3 = {T3, R3}, where T3 = {t1, t2},
R3 = {precedence(t1, t2)}. P3 is syntactically and semantically correct so the checks
performed in steps 2 and 4 result in ’YES’. P3 is not in the RPM yet, so the check carried
out in step 6 results in ’No’. Since Vgen = Exactly.one(Vrpm) the check made in step 8
results in ’Exactly.one’. Thus, the method goes to step 12 where ’RPM = RPM ∪ process’.
Making the substitutions results in A = {TA ∪ T3, RA ∪ R3 }. Continuing, one gets A =
{t1, t2} ∪ {t1, t2}, ∅ ∪ {precedence(t1, t2)}}. And finally, A = {{t1, t2}, {precedence(t1,
t2)}}.

The fourth process candidate to being in the RPM is P4 = {T4, R4}, where T4 = {t1,
t2}, R4 = {precedence(t2, t1)}. P4 is syntactically and semantically correct so the checks
performed in steps 2 and 4 result in ’YES’. P4 is not in the RPM yet, so the check carried
out in step 6 results in ’No’. Since Vgen = Exactly.one(Vrpm) the check made in step 8
results in ’Exactly.one’. Thus, the method goes to step 12 where ’RPM = RPM ∪ process’.
Making the substitutions results in A = {TA ∪ T4, RA ∪ R4 }. Continuing, one gets A =
{t1, t2} ∪ {t1, t2}, {precedence(t1, t2)} ∪ {precedence(t2, t1)}}. And finally, A = {{t1,
t2}, {precedence(t1, t2), precedence(t2, t1)}}.

So A = {{t1, t2}, {precedence(t1, t2), precedence(t2, t1)}}. Now, the variants in A must
be defined. There are 5 possible variants in A: Variant 1 = {{t1}, ∅}, Variant 2 = {{t2},
∅}, Variant 3 = {{t1, t2}, ∅}, Variant 4 = {{t1, t2}, {precedence(t1, t2)}}, and Variant
5 = {{t1, t2}, {precedence(t2, t1)}}. In this example, all five variants are defined as a
variant in A. So Vrpm = {Variant 1, Variant 2, Variant 3, Variant 4, Variant 5}. Since
Vgen = Exactly.one(Vrpm), we have Vgen = Vrpm. So Vgen = {Variant 1, Variant 2, Variant
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3, Variant 4, Variant 5}. This means that users can choose only one variant from Vrpm to
be performed.

Example 5.4.7. Let A be the RPM in a SVSDL. Let TA and RA be the sets of tasks
and constraints of A. Initially, A is empty, thus TA = ∅ and RA = ∅. Let Vgen =
Atleast.one(Vrpm) be the function bound to A. As Vgen = Atleast.one(Vrpm), A must
be syntactically and semantically correct.

The first process candidate to being in A is P1 = {T1, R1}, where T1 = {t1, t2}, R1 =
{precedence(t1, t2)}. P1 is syntactically and semantically correct so the checks carried
out in steps 2 and 4 result in ’YES’. P1 is not in the RPM yet, so the check performed
in step 6 results in ’No’. Since Vgen = Atleast.one(Vrpm) the check performed in step 8
results in ’Atleast.one’. Thus, the method goes to step 9 where TEMP = RPM ∪ process.
Making the substitutions results in A = {TA ∪ T1, RA ∪ R1 }, and consequently A = {{t1,
t2}, {precedence(t1, t2)}}. As A is semantically correct, the checks performed in step 10
result in ’YES’. The method goes to step 12 where RPM = RPM ∪ process. Making the
substitutions results in RPM = {∅ ∪ {t1, t2}, ∅ ∪ {precedence(t1, t2)}, and consequently
RPM = {{t1, t2}, {precedence(t1, t2)}.

The second process candidate to being in A is P2 = {T2, R2}, where T2 = {t1, t2}, R2 =
{precedence(t2, t1)}. P2 is syntactically and semantically correct so the checks carried out in
steps 2 and 4 result in ’YES’. P2 is not in A yet, so the check performed in step 6 results in
’No’. Since Vgen = Atleast.one(Vrpm) the check performed in step 8 results in ’Atleast.one’.
Thus, the method goes to step 9 where TEMP = RPM ∪ process. Making the substitutions
results in A = {TA ∪ T1, RA ∪ R1}, TEMP = {{t1, t2} ∪ {t1, t2}, {precedence(t1, t2)}
∪ {precedence(t2, t1)}, TEMP = {{t1, t2}, {precedence(t1, t2), precedence(t2, t1)}. As
TEMP is semantically incorrect, the checks performed in step 10 result in ’NO’. Since no
changes will be made in P2, the method comes to an end and P2 is not inserted in A.

So A = {{t1, t2}, {precedence(t1, t2)}}. Now, the variants in A must be defined. There are
4 possible variants in A: Variant 1 = {{t1}, ∅}, Variant 2 = {{t2}, ∅}, Variant 3 = {{t1,
t2}, ∅}, Variant 4 = {{t1, t2}, {precedence(t1, t2)}}. In this example, all four variants
are defined as a variant in A. So Vrpm = {Variant 1, Variant 2, Variant 3, Variant 4}.
Since Vgen = Atleast.one(Vrpm), we have Vgen = P(Vrpm) \ ∅, where P(Vrpm) is the power
set of Vrpm.

So Vgen = {Variant 1, Variant 2, Variant 3, Variant 4, Variant 1 ∪ Variant 2, Variant
1 ∪ Variant 3, Variant 1 ∪ Variant 4, Variant 2 ∪ Variant 3, Variant 2 ∪ Variant 4,
Variant 3 ∪ Variant 4, Variant 1 ∪ Variant 2 ∪ Variant 3, Variant 1 ∪ Variant 2 ∪
Variant 4, Variant 1 ∪ Variant 3 ∪ Variant 4, Variant 2 ∪ Variant 3 ∪ Variant 4, Variant
1 ∪ Variant 2 ∪ Variant 3 ∪ Variant 4}. This means the user can choose more than one
variant from Vrpm to make the "final variant"to be performed.
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5.4.1.5 Method to make Set of Variants (Vrpm)

The input to this method is Reference Process Model (RPM). The output from this method
is Vrpm. Vrpm is the set of variants defined from RPM. Vrpm is defined by the modeler.

A variant is a pair (T,R), where T and R are respectively a set of SDL tasks and a set
of SDL constraints, and (T,R) is syntactically and semantically correct. Each variant is
bound to a process fact. A process fact is a logical variable. So, if the modeler defines n ≥
2 variants to Vrpm then |Vrpm| = n, and is described by

Vrpm = { (T1, R1) ⇔ df1, ... , (Tn, Tn) ⇔ dfn }

where (Ti, Ri) ⇔ dfi describes the logic equivalence between variant i and process fact i.
Thus, variant i is selected if, and only if, process fact i is true. Figure 51 presents Method
to make Vrpm. Table 18 describes the steps of Method to make Vrpm.

Example 5.4.8. Let A = (T,R) be the RPM in a SVSDL, so that T = {t1, t2, t3, t4}
and R = {atleast(t2), atleast(t3), precedence(t3,t1), precedence(t2,t4), response(t3,t2),
response(t1,t4)}. Four variants are defined in A, so Vrpm = : ({t1}, ∅), ({t2}, ∅), ({t1,
t2}, ∅), and ({t1, t2}, {precedence(t1, t2)}). So, Vrpm = {({t1}, ∅), ({t2}, ∅), ({t1, t2},
∅), ({t1, t2}, {precedence(t1, t2)})}. Since there are four variants in Vrpm, Method to Map
Process Facts to Variants makes three process facts (variables): pf1, pf2, and pf3. Thus,
the output from Method to Map Process Facts to Variants is the set MPFV presented in
the following:

MPFV = { pf1 → ({t1, t2, t3, t4}, {atleast(t2), precedence(t3,t1), precedence(t2,t4),
response(t3,t2), response(t1,t4)}),

pf2 → ({t1, t2, t3, t4}, {atleast(t3), precedence(t3,t1), response(t1,t4)}),
pf3 → ({t1, t2, t3 }, ∅) }

5.4.1.6 Method to Map from Features to Variants

The inputs to this method are Function, Set of Variants (Vrpm), Set of Features, and Set
of Domain Constraints. The output of this method is Map from Features to Variants. Map
from Features to Variants is a set of maps from features in Set of Features to variants in
Set of Variants.

The equivalences among domain facts and process facts must obey some conditions. These
conditions are presented in Definitions 5.4.6 and 5.4.6, and Lemmas 5.4.1 and 5.4.2.

Definition 5.4.5. Every process fact is logically equivalent to a disjunction of conjunctions
of domain facts.
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Tabela 18 – Description of Method to make a Set of variants Vrpm.

Step 1 : Users define the set of tasks and constraints of the SDL process from
RPM.

Step 2 : The SDL process defined in step 1 is checked for syntactic correctness.
This check is carried out based on SDL syntax definitions (SCHAIDT;
SANTOS, 2017b). If the check performed in step 2 identifies that the
process is not syntactically correct, the sequence moves to step 3. If
the check performed in step 2 identifies that the process is syntactically
correct, the sequence moves to step 4.

Step 3 : Users are asked if they want to correct the syntax of the process. Should
users choose not to correct the syntax of the process, the method comes
to an end. If users choose to correct the syntax of the process, the method
returns to step 1.

Step 4 : The process defined in step 1 is checked for semantic correctness. This
check is carried out based on SDL semantic definitions (SCHAIDT; SAN-
TOS, 2017b). If the check performed in step 4 identifies that the process
is not semantically correct, the sequence moves to step 5. If the check
performed in step 4 identifies that the process is semantically correct, the
sequence moves to step 6.

Step 5 : Users are asked if they want to correct the semantics of the process.
Should users choose not to correct the semantics of the process, the
method comes to an end. If users choose to correct the semantics of the
process, the method returns to step 1.

Step 6 : The process defined in step 1 is checked for already being a variant in
RPM. If the check carried out in step 6 identifies that the process is
already a variant in RPM, then the sequence goes to step 7. If the check
carried out in step 6 identifies the process is not a variant in Vrpm yet,
then the sequence goes to step 8.

Step 7 : Users are asked if they want to change the process. Should users choose
not to change the process, the method comes to an end. If users choose
to change the process, the method returns to step 1.

Step 8 : A process fact is bound to an SDL process in Vrpm. This SDL process is
now a SDL variant in Vrpm. After this step, this method comes to an end.
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Figura 51 – Method to make a Set of variants (Vrpm)

Example 5.4.9. Let A be an RPM. The modeler defines three variants from RPM, so
|Vrpm| = {variant 1, variant 2, variant3}. This results in making three process facts: pf1,
pf2, and pf3. Each process fact is bound to a variant. The modeler defines six features
for the variants in Vrpm. The features are feature 1, feature 2, feature 3, feature 4, feature
5, feature 6. So, six domain facts are made: df1, df2, df3, df4, df5, df6. Each domain fact
is bound to a feature. The modeler defines the following mapping from features (domain
facts) to variants (process facts):

(df1 ∧ ¬df2) ∨ (df3 ∧ df4)⇔ pf1

(df2 ∧ df5) ∨ (df3 ∧ df6)⇔ pf2

df5 ∧ ¬df6 ⇔ pf3
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If feature 1 (df1) is TRUE and feature 2 (df2) is FALSE, or if feature 3 (df3) and feature
4 (df4) are TRUE, then pf1 is TRUE. If pf1 is TRUE, then variant 1 is selected. This
reasoning is valid for all other links between domain facts and process facts.

Definition 5.4.6. The set of conjunctions of domain facts that are logically equivalent to
process facts must be compliant with Set of Domain Constraints.

Example 5.4.10. Let SF and DC be the Set of features and Set of domain constrains
defined in example 5.4.2. The modeler then defines the following set of equivalences between
domain facts and process facts

df1 ∧ df2 ∧ df10 ⇔ pf1

df4 ∧ df6 ∧ ¬df15 ⇔ pf2

¬df5 ∧ df13 ∧ df14 ⇔ pf3

However, this set of equivalences is not valid because conjunction df4 ∧ df6 ∧ ¬df15 conflicts
with df3 Y df4 Y df6 Y df7 (DC2). Thus, the modeler must be redefine the set of equivalences
to avoid this conflict.

Lemma 5.4.1. If a domain fact is declared in all the conjunctions then there must be
a conjunction in which this domain fact is negated, and a conjunction in which it is not
negated.

Demonstração. If a domain fact is declared in all the conjunctions and the domain fact is
negated in all conjunctions, or is not negated in all conjunctions, then this domain fact is
not a logical variable, it is a constant.

Example 5.4.11. Let DF = {df1, df2, df3, df4, df5, df6, df7} be the set of domain facts. Let
pf1, pf2, pf3 be three process facts. Let

(df1 ∧ df2) ∨ (df1 ∧ df3)⇔ pf1,
(df1 ∧ df4) ∨ (df1 ∧ df5)⇔ pf2,
(df1 ∧ df6) ∨ (df1 ∧ df7)⇔ pf3

be the equivalences between domain facts and process facts. But df1 is in all conjunctions
and df1 is not negated in all of them. Thus, df1 is not a variable, it a is constant. Therefore,
df1 must be excluded from DF . If df1 is excluded from DF then the equivalences become

df2 ∨ df3 ⇔ pf1,
df4 ∨ df5 ⇔ pf2,
df6 ∨ df7 ⇔ pf3.

Now, let
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(¬df1 ∧ ¬df2) ∨ (¬df2 ∧ df3)⇔ pf1,
(¬df2 ∧ df4) ∨ (¬df2 ∧ df5)⇔ pf2,
(¬df2 ∧ df6) ∨ (¬df2 ∧ df7)⇔ pf3

be the equivalences between domain facts and process facts. Then df2 is negated in all
conjunctions. Thus df2 is not a variable, it is constant. Therefore, df2 must be excluded
from DF . If df2 is excluded from DF , the equivalences become

¬df1 ∨ df3 ⇔ pf1,
df4 ∨ df5 ⇔ pf2,
df6 ∨ df7 ⇔ pf3.

Lemma 5.4.2. If Vgen = Exclusive.one(Vrpm) then a conjunction cannot be logically
equivalent to more than one process fact.

Demonstração. If a conjunction is logically equivalent to more than one process fact, it is
possible for two variants to be selected to be executed, and this can violate the rules of
semantics.

Example 5.4.12. Let DF = {df1, df2, df3} be the set of domain facts. Let PF = {pf1,
pf2} and Vgen = Exclusive.one(Vrpm). The bindings

pf1 ⇔ df1 ∧ df2

pf2 ⇔ df1 ∧ df2 ∧ df3

are examples of bindings not allowed because, if df1 ∧ df2 ∧ df3 is TRUE, then pf1 and
pf2 are TRUE, and this condition violates function Vgen = Exclusive.one(Vrpm).

After presenting Definitions 5.4.6 and 5.4.6, and Lemmas 5.4.1 and 5.4.2 , Method to
Map from Features to Variants can be presented. Figure 52 presents Method to Map from
Features to Variants. Table 19 explains the steps for Method to Map from Features to
Variants.

5.4.1.7 Method to make a Set of Feature Precedence Relations

The inputs to this method are Set of Features and Set of Domain Constraints. The output
from this method is Set of Feature Precedence Relations. Set of Feature Precedence Relations
comprises relations that define the order in which features must be set. For defining the
relations of precedence among features, this paper proposes function precedence(set A, set
B). This function defines that features in set A must be set before setting features in set B.

Example 5.4.13. Let precedence({df2, df5, df6}, {df1, df3, df4}) be the precedence relation
for features df1, df2, df3, df4, df5, df6. So, at configure time, features df2, df5 and df6 must
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Figura 52 – Method to Map from Features to Variants

be set before features df1, df3, df4 .

5.4.1.8 Method to make a Set of Questions

The input to this method is Set of Features. The output from this method is Map from
Questions to Features. Set of Questions is a set of maps from questions to features.

Questions should express contexts in which the features (domain facts) are related. The
following example 5.4.14 presents an example of mapping among questions and features.

Example 5.4.14. Let DF = {df1, df2, df3, df4, df5, df6, df7, df8} be the set of domain facts
of a process. There are four contexts that relate these eight domain facts: context 1, context
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Tabela 19 – Description of Method to Map from Features to Variants

Step 1 : Users define the logic equivalence between a variant and a set of features.
Users specify conjunctions of features that are logically equivalent to
variants

Step 2 : The equivalence logic is checked for compliance with Set of domain
constraints. If the equivalence logic does not comply with Set of domain
constraints, the sequence moves to step 3. If the equivalence logic is
compliant with Set of domain constraints, the sequence moves to step 4.

Step 3 : Users are asked if they want to redefine the equivalence logic in order to
achieve compliance with Set of domain constraints. Should users choose
not to redefine equivalence logic, the method comes to an end. If users
choose to redefine equivalence logics, the method returns to step 1.

Step 4 : Equivalence logic is checked for compliance with Lemma 5.4.1 . If equiva-
lence logic is not compliant with Lemma 5.4.1, the method moves to step
5. If equivalence logic is compliant with Lemma, the sequence goes on to
step 6.

Step 5 : Users are asked if they want to redefine equivalence logic in order to
achieve compliance with Lemma 5.4.1. Should users chooses not to redefine
equivalence logics, the method comes to an end. If users choose to redefine
equivalence logics, the method returns to step 1.

Step 6 : Equivalence logics are checked for compliance with Lemma 5.4.2. If
equivalence logic is not compliant with Lemma 5.4.2, the process goes to
step 7. If logic equivalence is compliant with Lemma 5.4.2, the process
moves to step 8.

Step 7 : Users are asked if they want to redefine equivalence logic in order to
achieve compliance with Lemma 5.4.2. Should users chooses not to redefine
equivalence logics, the method comes to an end. If users choose to redefine
equivalence logics, the method returns to step 1.

Step 8 : A set of maps from features to variants is compiled. Each map is repre-
sented by a logic equivalence among features (domain facts) and variants
(process facts).

2, context 3 and context 4. Context 1 relates domain facts df1 and df2. Context 2 relates
domain facts df3 and df4. Context 3 relates domain facts df5 and df6. Context 4 relates
domain facts f7 and f8. Thus, the four contexts bring up four questions in such a way that
the mapping between questions and domain facts is:

Question 1:
{In context 1, what are the true features and false features?} −→ {df1, df2}

Question 2:
{In context 2, what are the true features and false features?} −→ {df3, df4}

Question 3:
{In context 3, what are the true features and false features?} −→ {df5, df6}
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Question 4:
{In context 4, what are the true features and false features?} −→ {df7, df8}

In SVSDL, according to Definition 5.4.7, a domain fact cannot be bound to more than
one questions.

Definition 5.4.7. A domain fact is bound to only one question.

Example 5.4.15. Let DF = {df1, df2, df3, df4, df5} be the set of domain facts of a process.
There are 3 contexts that relate these eight domain facts: context 1, context 2, context
3. Context 1 relates domain facts df1 and df2. Context 2 relates domain facts df2 and
df3. Context 3 relates domain facts df4 and df5. Thus, the three contexts bring up three
questions so that the mapping between questions and domain facts is:

Question 1:
{In context 1, what are the true features and false features?} −→ {df1, df2}

Question 2:
{In context 2, what are the true features and false features?} −→ {df2, df3}

Question 3:
{In context 3, what are the true features and false features?} −→ {df4, df5}

But this mapping is not allowed since domain fact df2 is bound to two questions (Question 1
and Question 2). Thus, the mapping shown in this example must be changed to be permitted.

The sequence to set the questions must follow the sequence to set domain facts. In other
words, the questions setting sequence inherits all the precedence relations from domain
facts.

Example 5.4.16. Example 5.4.14 provides Question 1 (Q1), Question 2 (Q2), Question
3 (Q3), and Question 4 (Q4). The assumption is that df4 and df5 must be set before df1

and df2. So every questions sequence provides for answering Q3 before Q1 is permitted.
The sequences that do not provide for Q3 being answered before Q1 are not permitted.

Figure 53 presents Method to make a Set of questions. Table 20 explains the steps for
Method to make a Set of questions.

5.4.1.9 Method for Assembly

The inputs for this method are Set of variants, Map from Features to Variants, Map from
Questions to Features, Set of Relations of Precedence of Features. The output from this
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Figura 53 – Method to to make a Set of questions.

method is User support framework at configure time.

Method for Assembly is the only method at design time that does not require user interaction.
This method takes all its inputs and automatically make its input. It depends on software
routines that run without user participation. However, these software routines are not
in the scope of this paper. So, nothing is presented in this section about this method,
procedure or routine. Nonetheless, User support framework at configure time methods are
explained in the following section.

5.4.2 Configure time

At configure time, SVSDL provides users with User support framework at configure time.
User support framework at configure time produces syntactically and semantically Correct
SDL Processes. User support framework at configure time is composed by three methods:
Method User Interface, Method Logic Control 1, Method Logic Control 2. These methods
are described next.
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Tabela 20 – Description of Method to make a Set of questions.

Step 1 : Users define maps from question to features by binding a question to a
set of features.

Step 2 : The maps are checked for two different questions bound to same feature. If
two different questions are bound to the same feature, the process moves
to step 3. If no two questions are bound to same feature, the process
moves to step 4.

Step 3 : Users are asked if they want to correct the bindings in order to avoid two
questions from being bound to the same feature. Should users choose not
to correct the bindings, the method comes to an end. If users choose to
correct the bindings, the method returns to step 1.

Step 4 : Features are checked for being bound to one question. If any feature is
not bound to a question, the method moves to step 5. If every feature is
bound to a question, the method moves forward to step 6.

Step 5 : Users are asked if they want to bind the missing features. Should users
choose not to bind the missing features, the method comes to an end. If
users choose to bind the missing features, the method returns to step 1.

Step 6 : A set of maps from features to variants is compiled. Each map is repre-
sented by a link between a given question and a set of features.

5.4.2.1 Method User Interface

This method provides a user interface for selection of domain facts (features). After users
select a domain fact (feature), the domain fact is sent to Method Logic Control 1. Figure
54 presents Method User Interface. Table 21 explains the steps from Method User Interface.

5.4.2.2 Method Logic Control 1

This method receives a domain fact from Method User Interface and checks if a process
fact (variant) has been selected. If a process fact (variant) has been selected, the process
fact is sent to Method Logic Control 2. Figure 55 shows Method Logic Control 1. Table 22
explains the steps for Method Logic Control 1.

5.4.2.3 Method Logic Control 2

This method receives a process fact from Method Logic Control 1 and selects the variant
(SDL process) that is bound to this process fact. Figure 56 presents the steps in Method
Logic Control 2. Table 23 describes the steps of Method Logic Control 2.

5.4.3 Run time

At run time, SVSDL provides users with a User support framework at run time. User
support framework at run time receives the variant (an SDL process) from User support
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Figura 54 – Method user interface
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Figura 55 – Method Logic Control 1
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Tabela 21 – Description of Method User Interface

Step 1 : The set of feature precedence relations is checked. This is done to identify
the features that can be set in line with the precedence relations defined
by users at design time. The set of features that can be set in line with
the precedence relations is called Set of enabled features.

Step 2 : This set establishes the intersection between Set of enabled features and
Set of unset featuresresulting in Set enabled/unset features.

Step 3 : The questions bound to the features in Set enabled/unset features are
identified. These questions and their features are displayed in the user
interface.

Step 4 : Users choose a question to be answered from user interface.
Step 5 : Users select the feature i from the question.
Step 6 : The interface sends dfi to Method Logic Control 1.
Step 7 : Then, it waits for Method Logic Control 1 to update set of true features,

set of false features and set of unset features.
Step 8 : After Method Logic Control 1 has updated the sets specified in step 7, it

updates the values of features in the question being answered by the user.
This is necessary because when users select a feature, other features may
have their values changed.

Step 9 : Users can choose whether to select other features from this question or to
finish it. Should users choose to select other features from this question,
the process cycles back to step 5. If users choose to finish the question,
the methd moves on to step 10.

Step 10 : Users can choose whether to select another question to answer or finish
the configuration procedure. Should users choose to select other questions
to answer, the procedures cycles back to step 1. If users choose to finish
the configuration procedure, a Finish message is sent to Method Logic
Control 1, and the operation is ended.

Figura 56 – Method logic control 2
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Tabela 22 – Description of Method Logic control 1.

Step 1 : The method checks whether Finish has been received from Method User
Interface. If Finish is received, then the process moves to step 2. If Finish
is not received, it moves forward to step 3.

Step 2 : Internal variable Finish = Yes is prepared.
Step 3 : Internal variable Finish = No is prepared.
Step 4 : The system then checks for reception of a variable domain fact set as

TRUE or FALSE. If a variable domain fact has been received,the process
moves on to step 5. If no variable domain fact has been receives, then it
moves to step 7.

Step 5 : The method performs logic simplification for Map from features to vari-
ants. Since Map from features to variants is in fact comprised of logical
equivalences, this step simplifies and reduces these logical equivalences.
This identifies the domain facts that are TRUE and FALSE as conse-
quence of the user-defined domain facts. Another consequence of this step
is establishing the domain facts that are TRUE.

Step 6 : As a consequence of logic simplification in Step 5, new domain facts are
set. So, Set of true features, Set of false features and Set of unset features
must be updated.

Step 7 : Internal variable Finish = Yes or No is checked. If internal variable Finish
= Yes, the process goes on to Step 8. If internal variable Finish = No, it
cycles back to Step 1.

Step 8 : A Set of true process facts is compiled. Set of true process facts is comprised
of all process facts that are TRUE in Map from features to variants.

Step 9 : The Set of true process facts is then sent to Method Logic Control 2.

Tabela 23 – Description of Method Logic control 2.

Step 1 : The method takes Set of true process facts from Logic Control 1.
Step 2 : It the unites all the variants in Set of Variants that are bound to process

facts in Set of true process facts. This union is a syntactically and seman-
tically Correct SDL Process that is provided to User support framework
at run time.

Step 3 : The selection of variants is ended.
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framework at configure time and provides users with methods to run that variant (SDL
process). User support framework at run time is in fact SDL framework at run time
(SCHAIDT; SANTOS, 2017b). Since SDL framework at run time was described in a
previous paper, and SDL framework at run time and User support framework at run time
are the same, no other description or explanation about User support framework at run
time is required here.

5.4.4 Two examples

This section presents two User support framework at design time, User support framework
at configure time and User support framework at run time operation examples. The first
example is given by using Function = Exactly.one and the second example is given by
using Function = Atleast.one. The operations at design and configure time are described
using steps. These steps are used for the purpose of making the sequence of operations
clearer.

5.4.4.1 Example 1: Function = Exactly.one

This section presents an operational example of the three frameworks deployed when users
define Function = Exactly.one. In this case, users can only select one variant.

5.4.4.1.1 At design time

Step 1: Using Method to define Function, users define Function = Exactly.one.

Step 2: Using Method to make Reference Process Model, users define RPM = (T ,R), where

T = {t1, t2, t3, t4, t5},
R = {atleast(t1), atleast(t5), precedence(t1,t2), precedence(t2,t1), response(t3,t4)}.

Step 3: Using Method to make Set of Variants, users define four variants:

pf1 : ({t1, t2, t5}, {atleast(t1), precedence(t1,t2)})

pf2 : ({t1, t2, t3}, ∅)

pf3 : ({t3, t4, t5}, {atleast(t5), response(t3,t4)})

pf4 : ({t1, t2, t3, t4, t5}, {atleast(t5), precedence(t2,t1)}).

Step 4: By Method to make Set of Features, users define four features:

df1 : feature 1
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df2 : feature 2

df3 : feature 3

df4 : feature 4.

Step 5: Using Method to make Set of Domain Constraints, users define domain constraint
DC1:

DC1 : df1 ∨ df2 ⇒ df3 ∨ df4.

By simplifying the logic in DC1, it can be also described as:

DC1 : (¬df1 ∧ ¬df2) ∨ df3 ∨ df4.

Step 6: Since DC1 defines that if df1 or df2 are set as TRUE, df3 or df4 must be set as
TRUE, users define that df1 and df2 must be set before df3 and df4 are set. Thus, by
Method to make Set of Feature Precedence Relations, users define:

Set of Feature Precedence Relations = {precedence({df1, df2}, {df3, df4})}.

Step 7: Using Method to Map from Features to Variants, user defines Map from Features
to Variants:

Map from Features to Variants = { df1 ∧ df2 ∧ df3 ∧ ¬df4 ⇔ pf1,

df1 ∧ df2 ∧ ¬df3 ∧ df4 ⇔ pf2,

¬df1 ∧ df2 ∧ df3 ∧ df4 ⇔ pf3,

¬df1 ∧ ¬df2 ∧ ¬df3 ∧ df4 ⇔ pf4 }.

Step 8: Using Method to Map from Questions to Features, users define that Question 1 is
bound to features df1 and df2, and Question 2 is bound to features df3 and df4. Thus,

Map from Questions to Features = { (Question 1 (Q1) : {df1, df2}) ,

(Question 2 (Q2) : {df3, df4}) }

Step 9: From the previously defined inputs, Method for Assembly generates the User
support framework at configure time. User support framework at configure time is used at
configure time.
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5.4.4.1.2 At configure time

Step 1: Method User Interface checks Set of Feature Precedence Relations. Set of Feature
Precedence Relations provides only one relation of precedence: precedence({df1, df2}, {df3,
df4}). Applying this, Method User Interface defines Set of Enabled Features = {df1, df2}.

Step 2: Method User Interface creates the intersection between Set of Enabled Features and
Set of Unset Features, which is the Set of Enabled/Unset Features. Set of Unset Features
= {df1, df2, df3, df4} because no feature has been set yet. So,

Set of Enabled/Unset Features = {df1, df2}.

Step 3: Method User Interface checks which questions are bound to features in Set of
Enabled/Unset Features. There is only one question bound to the features in Set of
Enabled/Unset Features: Question 1 (Q1). So, Q1 is displayed to users:

Question 1 : df1: ( )TRUE ( )FALSE

df2: ( )TRUE ( )FALSE

Step 4: Using Method User Interface, users select whether df1 is TRUE :

Question 1 : df1: (X)TRUE ( )FALSE

df2: ( )TRUE ( )FALSE

Step 5: Control Logic 1 receives df1 =TRUE and performs simplification of Map from
Features to Variants. Since df1 =TRUE, pf3 and pf4 are automatically FALSE. So, Map
from Features to Variants becomes

Map from Features to Variants = { df2 ∧ df3 ∧ ¬df4 ⇔ pf1,

df2 ∧ ¬df3 ∧ df4 ⇔ pf2,

FALSE ⇔ pf3,

FALSE ⇔ pf4 }.

But simplification must ensure that at least one variant is selected, so df2 must be TRUE
because it is in all conjunctions. Thus,

Map from Features to Variants = { df3 ∧ ¬df4 ⇔ pf1,

¬df3 ∧ df4 ⇔ pf2,

FALSE ⇔ pf3,

FALSE ⇔ pf4 }.
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Step 6: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = { df3, df4 }

Set of True Features = { df1, df2 }

Set of False Features = ∅

Step 7: Method User Interface updates the value of features in Q1. Thus, df1 and df2 are
shown TRUE in Q1:

Question 1 : df1: (X)TRUE ( )FALSE

df2: (X)TRUE ( )FALSE

Step 8: Since the user cannot set any other feature in Q1, he/she chooses to close Q1.

Step 9: Method User Interface checks Set of Feature Precedence Relations. Set of Feature
Precedence Relations = {precedence({df1, df2}, {df3, df4})}. Since df1 and df2 are set,
Method User Interface defines Set of Enabled Features = {df3, df4}.

Step 10: Method User Interface creates the intersection between Set of Enabled Features
and Set of Unset Features. This is Set of Enabled/Unset Features. Set of Unset Features =
{df3, df4}. So, Set of Enabled/Unset Features = {df3, df4}.

Step 11: Method User Interface checks which questions bound to features in Set of Ena-
bled/Unset Features. There is only one question bound to features in Set of Enabled/Unset
Features: Question 2 (Q2). So, Q2 is displayed to users:

Question 2 : df3: ( )TRUE ( )FALSE

df4: ( )TRUE ( )FALSE

Step 12: Users select df3 is TRUE :

Question 2 : df3: (X)TRUE ( )FALSE

df4: ( )TRUE ( )FALSE

Step 13: Control Logic 1 receives df3 =TRUE and performs simplification of Map from
Features to Variants. Since df3 =TRUE, pf2 is FALSE. So,
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Map from Features to Variants = { ¬df4 ⇔ pf1,

FALSE ⇔ pf2,

FALSE ⇔ pf3,

FALSE ⇔ pf4 }.

But simplification must ensure that at least one variant is selected, so df4 must be FALSE
because it is in all conjunctions. Thus, Map from Features to Variants becomes

Map from Features to Variants = { TRUE ⇔ pf1,

FALSE ⇔ pf2,

FALSE ⇔ pf3,

FALSE ⇔ pf4 }.

Step 14: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = ∅

Set of True Features = { df1, df2, df3 }

Set of False Features = { df4 }

Step 15: Method User Interface updates the value of features in Q2:

Question 2 : df3: (X)TRUE ( )FALSE

df4: ( )TRUE (X)FALSE

Step 16: Since users cannot set any other feature in Q2, they choose to close Q1.

Step 17: Users choose to finish the selection of variants.

Step 18: Method Control Logic 1 makes Set of true process facts = {pf1} and sends it to
Method Control Logic 2.

Step 19: Method Control Logic 2 sets as TRUE the variants in Set of Variants that are
bound to process facts in Set of true process facts. So,

Set of Variants = { TRUE : ({t1, t2, t5}, {atleast(t1), precedence(t1,t2)}),

pf2 : ({t1, t2, t3}, ∅),
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pf3 : ({t3, t4, t5}, {atleast(t5), response(t3,t4)}),

pf4 : ({t1, t2, t3, t4, t5}, {atleast(t5), precedence(t2,t1)}) }

Step 20: Method Control Logic 2 joins together all variants in Set of Variants that are set
as TRUE. This is a syntactically and semantically Correct SDL Process to be provided to
User support framework at run time. So,

SDL Process = ({t1, t2, t5}, {atleast(t1), precedence(t1,t2)})

Step 21: Method Control Logic 2 finishes the selection of variants.

5.4.4.1.3 At run time

At run time, User support framework at run time receives syntactically and semantically
Correct SDL Process provided by User support framework at configure time. As mentioned
previously, User support framework at run time is the same as SDL framework at run
time. Since the operation of SDL framework at run time has already been described and
an exemple provided (SCHAIDT; SANTOS, 2017b), no demonstration of its operation is
made for the purpose of this example.

5.4.4.2 Example 2: Function = Atleast.one

This section presents an operational example of the three frameworks when users define
Function = Atleast.one. In this case, users can select more than one variant.

5.4.4.2.1 At design time

Step 1: Using Method to define Function, users define Function = Atleast.one.

Step 2: Using Method to make Reference Process Model, users define RPM = (T ,R), where

T = {t1, t2, t3, t4, t5},
R = {atleast(t1), atleast(t5), precedence(t1,t2), precedence(t2,t1), response(t3,t4)}.

Step 3: Using Method to make Set of Variants, users define four variants:

pf1 : ({t1, t2, t5}, {atleast(t1), precedence(t1,t2)})

pf2 : ({t1, t2, t3}, ∅)

pf3 : ({t3, t4, t5}, {atleast(t5), response(t3,t4)})

pf4 : ({t1, t2, t3, t4, t5}, {atleast(t5), precedence(t1,t2)}).
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pf5 : ({t1, t2, t3, t4}, {atleast(t1), precedence(t1,t2)})

Step 4: Using Method to make Set of Features, users define four features:

df1 : feature 1

df2 : feature 2

df3 : feature 3

df4 : feature 4.

Step 5: Using Method to make Set of Domain Constraints, users define domain constraint
DC1:

DC1 : df1 ∨ df2 ⇒ df3 ∨ df4.

By applying logic simplification oo DC1, this can be also described as:

DC1 : (¬df1 ∧ ¬df2) ∨ df3 ∨ df4.

Step 6: Since DC1 defines that if df1 or df2 are set as TRUE, df3 or df4 must be set as
TRUE, users define that df1 and df2 must be set before df3 and df4 are set. Thus, using
Method to make Set of Feature Precedence Relations, users define:

Set of Feature Precedence Relations = {precedence({df1, df2}, {df3, df4})}.

Step 7: By Method to Map from Features to Variants, users define Map from Features to
Variants:

Map from Features to Variants = { df1 ∧ df2 ⇔ pf1,

df1 ∧ df3 ⇔ pf2,

df1 ∧ df4 ⇔ pf3,

df2 ⇔ pf4,

df2 ∧ df4 ⇔ pf5 }.

Step 8: By Method to Map from Questions to Features, users define that Question 1 is
bound to features df1 and df2, and Question 2 is bound to features df3 and df4. Thus,

Map from Questions to Features = { (Question 1 (Q1) : {df1, df2}) ,

(Question 2 (Q2) : {df3, df4}) }

Step 9: From previously defined inputs,Method for Assembly makes User support framework
at configure time. User support framework at configure time is used at configure time.
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5.4.4.2.2 At configure time

Step 1: Method User Interface checks Set of Feature Precedence Relations. Set of Feature
Precedence Relations provides only one relation of precedence: precedence({df1, df2}, {df3,
df4}). Thus, Method User Interface defines Set of Enabled Features = {df1, df2}.

Step 2: Method User Interface performs the intersection between Set of Enabled Features
and Set of Unset Features. This is Set of Enabled/Unset Features. Set of Unset Features =
{df1, df2, df3, df4} since no feature has been set yet. So, Set of Enabled/Unset Features =
{df1, df2}.

Step 3: Method User Interface checks the questions bound to features in Set of Ena-
bled/Unset Features. There is only one question bound to features in Set of Enabled/Unset
Features: Question 1 (Q1). So, Q1 is displayed to users:

Question 1 : df1: ( )TRUE ( )FALSE

df2: ( )TRUE ( )FALSE

Step 4: Using Method User Interface, users select df2 as TRUE :

Question 1 : df1: ( )TRUE ( )FALSE

df2: (X)TRUE ( )FALSE

Step 5: Control Logic 1 receives df2 =TRUE and performs simplification of Map from
Features to Variants. Since df2 =TRUE, Map from Features to Variants becomes

Map from Features to Variants = { df1 ⇔ pf1,

df1 ∧ df3 ⇔ pf2,

df1 ∧ df4 ⇔ pf3,

TRUE ⇔ pf4,

df4 ⇔ pf5 }.

Step 6: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = { df1, df3, df4 }

Set of True Features = { df2 }

Set of False Features = ∅
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Step 7: Method User Interface updates the value of features in Q1:

Question 1 : df1: ( )TRUE ( )FALSE

df2: (X)TRUE ( )FALSE

Step 8: Using Method User Interface, users set df1 as TRUE :

Question 1 : df1: (X)TRUE ( )FALSE

df2: (X)TRUE ( )FALSE

Step 9: Control Logic 1 receives df1 =TRUE and performs simplification of Map from
Features to Variants:

Map from Features to Variants = { TRUE ⇔ pf1,

df3 ⇔ pf2,

df4 ⇔ pf3,

TRUE ⇔ pf4,

df4 ⇔ pf5 }.

Step 10: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df3, df4 }

Set of True Features = { df1, df2 }

Set of False Features = ∅

Step 11: Method User Interface updates the value of features in Q1:

Question 1 : df1: (X)TRUE ( )FALSE

df2: (X)TRUE ( )FALSE

Step 12: Since users cannot set any other feature in Q1, users choose to close Q1.

Step 13: Method User Interface checks Set of Feature Precedence Relations. Set of Feature
Precedence Relations = {precedence({df1, df2}, {df3, df4})}. Since df1 and df2 are set,
Method User Interface defines Set of Enabled Features = {df3, df4}.
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Step 14: Method User Interface performs the intersection between Set of Enabled Features
and Set of Unset Features. This is Set of Enabled/Unset Features. Set of Unset Features =
{df3, df4}. So, Set of Enabled/Unset Features = {df3, df4}.

Step 15: Method User Interface checks the questions bound to features in Set of Ena-
bled/Unset Features. There is only one question bound to features in Set of Enabled/Unset
Features: Question 2 (Q2). So, Q2 is presented to the user:

Question 2 : df3: ( )TRUE ( )FALSE

df4: ( )TRUE ( )FALSE

Step 16: Using Method User Interface, users select df4 is FALSE :

Question 1 : df3: ( )TRUE ( )FALSE

df4: ( )TRUE (X)FALSE

Step 17: Control Logic 1 receives df4 =FALSE and performs simplification of Map from
Features to Variants:

Map from Features to Variants = { TRUE ⇔ pf1,

df3 ⇔ pf2,

FALSE ⇔ pf3,

TRUE ⇔ pf4,

FALSE ⇔ pf5 }.

Step 18: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df3}

Set of True Features = { df1, df2 }

Set of False Features = {df4 }

Step 19: Method User Interface updates the value of features in Q2:

Question 2 : df3: ( )TRUE ( )FALSE

df4: ( )TRUE (X)FALSE

Step 20: Users choose to end variant selection.
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Step 21: Method Control Logic 1 generates Set of true process facts = {pf1, pf4}. Method
Control Logic 1 sends Set of true process facts to Method Control Logic 2.

Step 22: Method Control Logic 2 set as TRUE the variants in Set of Variants that are
bound to process facts in Set of true process facts. So,

Set of Variants = { TRUE : ({t1, t2, t5}, {atleast(t1), precedence(t1,t2)})

pf2 : ({t1, t2, t3}, ∅)

pf3 : ({t3, t4, t5}, {atleast(t5), response(t3,t4)})

TRUE : ({t1, t2, t3, t4, t5}, {atleast(t5), precedence(t2,t1)}).

pf5 : ({t1, t2, t3, t4}, {atleast(t1), precedence(t2,t1)})

Step 23: Method Control Logic 2 joins together all variants in Set of Variants that are set
as TRUE. This is a syntactically and semantically Correct SDL Process to be provided to
User support framework at run time. So,

SDL Process = ({t1, t2, t5}, {atleast(t1), precedence(t1,t2)})
⋃

({t1, t2, t3, t4, t5}, {atleast(t5), precedence(t1,t2)})

SDL Process = ({t1, t2, t3, t4, t5}, {atleast(t1), atleast(t5), precedence(t1,t2)})

Step 24: Method Control Logic 2 finishes the selection of variants.

5.4.4.2.3 At run time

At run time, User support framework at run time takes the syntactically and semantically
Correct SDL Process provided by User support framework at configure time. As mentioned
previously, User support framework at run time is the same as SDL framework at run
time. Since the operation of SDL framework at run time has already been described and
an exemple provided (SCHAIDT; SANTOS, 2017b), no demonstration of its operation is
made for the purposes of this example.

5.5 Conclusion
This paper presented SVSDL, a conceptual framework to select variants from processes
modeled by Simple Declarative Language (SDL). Three main frameworks comprise SVSDL:
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User support framework at design time, User support framework at configure time, User
support framework at run time.

User support framework at design time provides a set of methods and data structures to
enable the users to build User support framework at design time. The methods in User
support framework at design time are designed to be performed in a logical sequence
guaranteing that all data structures are compatible with the operation at configure time.
In other words, all the data structures generated by User support framework at design
time comply with all the necessary requirements for adequate delivery at configure time.

User support framework at configure time provides a set of methods and data structures to
enable users to establish a syntactically and semantically correct SDL process. The methods
in User support framework at configure time interact with each other. Each of them has
its own operating mode, but at same time, they produce and update data structures that
become input for the others. This is required because the procedure to select variants is
user interaction dependent. The answers provided by users cannot be known in advance.
Therefore, this requires a dynamic procedure to change the respective data structures as
consequence of user interactions. This is most visible in Method Logic Control 1. This
method manages all logical expression simplification procedures that define the maps from
domain facts to process facts.

Variant must be syntactically correct before being merged into a configurable process
model. The syntactic correctness of a variant is guaranteed by following the syntax rules of
the language that models the variants in the configurable process model. In this approach,
the syntactic correctness of a variant is guaranteed by complying with the SDL syntax
rules (SCHAIDT; SANTOS, 2017b).

A process must be semantically correct before being merged into a configurable process
model. In this approach, the semantic correctness of a variant is guaranteed by complying
with the semantic rules of SDL. An SDL process is semantically correct if, and only if, it
is sound, i.e., it complies with option to complete, no dead task, and proper completion
(SCHAIDT; SANTOS, 2017b).

User support framework at run time provides a set of methods and data structures to
enable users to run a syntactically and semantically correct SDL process. User support
framework at run time is the same as SDL framework at run time (SCHAIDT; SANTOS,
2017b).
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6 Selection of variants from PMBOK proces-
ses: an example of application of SVSDL

Abstract
In recent years, many people and organizations have become interested in project mana-
gement. Studies show that the use of tools and techniques provided by reference models
in project management are crucial for any organization to succeed in the business envi-
ronment. A reference models can generate a set of different business processes for the
same application domain. But, it is too expensive for companies to design and implement
standardized business processes for each application context. Thus, an approach capable
of capturing variability in process models is needed. This approach must be capable of
representing families of process variants in a compact, reusable, and maintainable way.
Thus, the objective of this paper is to present an example of an application in which a
process generated from a reference model in project management. This paper presents two
variant selection examples supported by questionnaires. The reference model is Project
Management Body of Knowledge (PMBOK). Specifically, for this case, only PMBOK
Project Scope Management was selected. The processes in Project Scope Management
are modeled using Simple Declarative Language (SDL). SDL is a conceptual framework
for modeling constraint based processes. Selection of variants is supported by Selection of
Variants with Simple Declarative language (SVSDL). SVSDL is a conceptual framework
to select variants from processes modeled using SDL.

Keywords: Reference models, project management, PMBOK, selection of variants, confi-
gurable process model, declarative languages.

6.1 Introduction
In recent years, many people and organizations have become interested in project mana-
gement. Initially, project management concentrated on providing schedule and resource
data to top management in just a few industries, such as the military and construction
industries. The advance of technologies has facilitated the deployment of interdisciplinary
and global work teams, which, in its turn, has changed the work environment in the world.
(SCHWALBE, 2015). Nowadays, project management approaches have helped to eliminate
wasted time and efforts that would have been directed at irrelevant tasks, in a rising
number of industries around the world (ALOTAIBI; MAFIMISEBI, 2016).

However, experiences in the business process field have demonstrated that, if the projects
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are managed according to a reference model, this increases the project’s chances of
success (JOSLIN; MÜLLER, 2015; MIR; PINNINGTON, 2014; PSOMAS; VOUZAS;
KAFETZOPOULOS, 2014). Studies show that the use of tools and techniques provided
by reference models for project management are crucial for organizations to succeed in the
highly competitive and continuously evolving global business environment (PARKER et
al., 2013; HORNSTEIN, 2015).

The International Project Management Association (IPMA) (VUKOMANOVIĆ; YOUNG;
HUYNINK, 2016), PRojects IN Controlled Environments (PRINCE2) (BENTLEY, 2015),
Project Management Body of Knowledge (PMBOK) (ROSE, 2013) and Agile (PATA-
NAKUL et al., 2016) are all examples of reference models in project management. Total
Quality Management (TQM) (OAKLAND, 2014), ISO 9000 (CASTKA; CORBETT et
al., 2015) and Lean Six Sigma (FURTERER, 2016) are examples of models in quality
management.

Reference models in project management enable addressing the project in such a way
that project management processes can be continuously improved within the organization
(TENERA; PINTO, 2014; TOO; WEAVER, 2014). This is possible due the the integration
that the managing reference models provides between the different areas involved in the
project (NEVES et al., 2014; MARTINSUO; KILLEN, 2014; SÁNCHEZ, 2015). They
highlight and promote the importance of collaboration among the different players in the
project. This is also a fundamental condition for the success of the project. (OSIPOVA;
ERIKSSON, 2013)

Reference models in project management have been used in companies of small, medium
and large size around the world (MARCELINO-SÁDABA et al., 2014; EL-SAYEGH, 2014;
REES-CALDWELL; PINNINGTON, 2013; LANDRY; MCDANIEL, 2015; CONFORTO
et al., 2014). These models can also support the definition and implementation of stra-
tegic project management. This approach has been gaining popularity in recent years
(PATANAKUL; SHENHAR, 2012).

Reference models in project management provide steps for delivering projects by defining
the project objectives by applying facilitation tools and techniques that are provided to
ensure that these activities are productively carried in project team meetings. (SIMON;
CANACARI, 2012; ŞANDRU; OLARU, 2013; KERZNER, 2013; PRITCHARD; PMP
et al., 2014; HELDMAN, 2013). These models, in general terms, propose to establish
project teams. Project teams are responsible for running the project from beginning to
end (MÜLLER; GLÜCKLER; AUBRY, 2013; MÜLLER et al., 2013).

Integration of project and product aspects also are provided for in reference models in
project management. This is another important feature by making it possible to guide
project stakeholders through the project’s initiation, conceptual design, planning and
execution phases (COHEN; ILUZ; SHTUB, 2014; JUGDEV et al., 2013). Integration of
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knowledge management processes across the different areas impacted by the project is also
promoted by reference models. This feature is important because it fosters and enriches the
project knowledge set in all its aspects, as well as facilitates dissemination (CAGLIANO;
GRIMALDI; RAFELE, 2015).

Because of the increasing interest in reference models in project management, interest has
also arisen in Project Management Information Systems (PMIS) (CANIËLS; BAKENS,
2012; RAYMOND; BERGERON, 2015). PMIS are software applications that help ma-
nagers track projects from conception to execution. They provide them with pertinent
information and collaborative tools. PMIS provide software tools for planning, scheduling,
and communicating within the project activities (BRAGLIA; FROSOLINI, 2014).

PMIS must also deal with the business processes that are generated from reference
models. A reference model can generate a set of different business processes for the same
application domain. An application domain is a specific area of knowledge in which the
reference model is being used. But, inside an application domain there are the application
contexts. Reference models can provide process models for different application contexts
(REICHERT; WEBER, 2012a; REICHERT; HALLERBACH; BAUER, 2015). For example,
some types of processes can be reused in different application contexts with few changes in
some of their components. These changes can be mandatory according to each application
context (ROSA et al., 2013). However, reusing a process model in different contexts can
result in a wide range of related process model variants belonging to the same process
family (MILANI et al., 2016). These process variants are connected to the same business
objectives and have several points in common (ROSA et al., 2013). But there are also
differences due each context’s specific conditions, for instance, some activities can be
required for a given context, but entirely unnecessary for another (SCHUNSELAAR et al.,
2014).

It is too expensive for companies to design and implement standardized business pro-
cesses for each application context. (AYORA et al., 2012). This promotes a high level
of interest in gathering common process knowledge for use as a process reference model,
and, consequently, derive all variants in alignment with the respective application context
(AYORA et al., 2013b). Thus, an approach to capture the variability in process models
is needed. This approach must be capable of representing process variant families in a
compact, reusable, and maintainable way. (AYORA et al., 2015).

In recent years, a number proposals have been made to deal with selecting variants
in process families. In the business process management field, model-driven techniques
provide diversified solutions for process variant management, i.e. for modeling, configuring,
executing, and monitoring a given process family (ZHANG; HAN; OUYANG, 2014; ASSY;
CHAN; GAALOUL, 2015; YONGSIRIWIT; ASSY; GAALOUL, 2016). However, most of
the studies on business process variant selection, performed to date, have concentrated on
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imperative languages (AYORA et al., 2015). These studies presented frameworks intended
to support procedures to make and select variants from configurable process models by
using imperative language modeled processes. There are few studies on selecting variants
using declarative languages (SCHUNSELAAR et al., 2012a) There is a dearth of studies
on frameworks intended to generate configurable process models in which variants are
modeled using declarative languages.

Thus, the objective of this paper is to present an example of an application in which a
process is generated from a reference model in project management. This paper presents two
examples of variant selection supported by questionnaires. The reference model is Project
Management Body of Knowledge (PMBOK). Specifically, only PMBOK Project Scope
Management was selected. The processes in Project Scope Management are modeled using
Simple Declarative Language (SDL) (SCHAIDT; SANTOS, 2017b). SDL is a conceptual
framework for modeling constraint based processes. Selection of variants is supported by
Selection of Variants with Simple Declarative language (SVSDL) (SCHAIDT; SANTOS,
2017a). SVSDL is a conceptual framework to select variants from processes modeled using
SDL.

This paper is divided into 5 sections. Section 2 introduces the main fundamentals in
PMBOK Project Scope Management. Section 3 brings usage of SVSDL to design, configure
and run a variant selection framework for PMBOK processes. This framework allows
exactly one variant from PMBOK processes to be selected at configure time. Section
4 presents the usage of SVSDL to design, configure and run another variant selection
framework for PMBOK processes. This framework allows more than one variant to be
selected from PMBOK processes at configure time. Section 5 presents the conclusion of
this paper.

6.2 PMBOK Project Scope Management
PMBOK consists in various activity management, monitoring and control processes. At each
new project, these processes are performed in different conditions, which requires flexible
modeling capacity. PMBOK in its fifth version establishes a set of 42 macro-processes
in ten knowledge areas. One of these areas of knowledge is Project Scope Management
which consists in five processes: Requirement Gathering, Define Scope, Create WBS, Verify
Scope and Control Scope. Project Scope Management is primarily concerned with defining
and controlling what is in scope for the project and what is not (ROSE, 2013). Table 24
providing an overview of the Project Scope Management processes.

These processes interact with each other and with processes in other Knowledge Areas. In
the project context, the term scope can refer to Product scope or Project scope. Product
scope refers to the features and functions that characterize a product, service, or result.
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Tabela 24 – Project Scope Management processes

Scope Management Plan : The process of creating a scope management plan
that documents how the project scope will be defi-
ned, validated, and controlled.

Requirement Gathering: The process of determining, documenting, and ma-
naging stakeholder needs and requirements to meet
project objectives.

Define Scope: The process of developing a detailed description of
the project and its product.

Create WBS: The process of subdividing project deliverables and
project work into smaller, more manageable com-
ponents.

Validate Scope: The process of formalizing acceptance of the com-
pleted project deliverables.

Control Scope: The process of monitoring the status of the project
and product scope and managing changes to the
scope baseline.

Project scope refers to the work performed to deliver a product, service, or result with the
specified features and functions. The term project scope is sometimes viewed as including
product scope.

The following subsections provide a brief description of each sub-process in Project Scope
Management.

6.2.1 Scope Management Plan

Scope Management Plan is the process of drafting a scope management plan that documents
how the project scope will be defined, validated, and controlled (ROSE, 2013). The inputs,
tools and techniques, and outputs of this process are shown in Table 25.

Tabela 25 – Inputs, tools and techniques, and outputs in Scope Management Plan

Inputs: Project management plan
Project charter
Enterprise environmental factors
Organizational process assets

Tools and Techniques: Expert judgment
Meetings

Outputs: Scope management plan
Requirements management plan

The following subsections provide a brief description of the inputs, tools and techniques,
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and outputs of the Scope Management Plan.

The Project Management Plan defines the approach to be applied in planning and
managing the project scope. Project Charter provides the project context required to plan
the scope management processes. Enterprise environmental factors can include culture of
the organization, infrastructure, personnel administration, marketplace conditions, etc.
Organizational process assets can include policies and procedures and historical information
as well as any lessons learned records.

Expert judgment refers to the expertise provided by a person or group of people with
specialized education, knowledge, skill, experience, or training for deployment in developing
scope management plans. Meetings of the project team can be convened to develop the
scope management plan. These meetings can include the project manager, project sponsor,
selected project team members, selected stakeholders, etc.

The scope management plan describes how the scope will be defined, developed, monitored,
controlled, and verified. The requirements management plan is a component of the project
management plan that describes how requirements will be analyzed, documented, and
managed.

6.2.2 Requirement Gathering

Requirement Gathering is the process of determining, documenting, and managing sta-
keholder needs and requirements to meet project objectives (ROSE, 2013). The inputs,
tools and techniques, and outputs of this process are depicted in Figure 26.

The following subsections provide a brief description of Requirement Gathering inputs,
tools and techniques, and outputs.

The scope management plan provides clarity as to how project teams will determine the
type of requirements that must be collected for the project. The requirements management
plan provides the processes that will be used throughout the Requirement Gathering
process to define and document stakeholder needs. The stakeholder management plan is
used to understand stakeholder communication requirements and the level of stakehol-
der engagement in order to assess and adapt the level of stakeholder participation in
requirements gathering activities. The project charter is used to provide the high-level
description of the product, service, or result of the project so that detailed requirements
can be developed. The stakeholder register is used to identify stakeholders who can provide
information on the requirements.

An interview is a formal or informal approach to elicit information from stakeholders by
talking to them directly. Focus groups bring together previously qualified stakeholders
and subject matter experts to learn about their expectations and attitudes about a
proposed product, service, or result. Facilitated workshops are focused sessions that bring
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Tabela 26 – Inputs, tools and techniques, and outputs from Requirement Gathering

Inputs: Scope management plan
Requirements management plan
Stakeholder management plan
Project charter
Stakeholder register

Tools and Techniques: Interviews
Focus groups
Facilitated workshops
Group creativity techniques
Group decision-making techniques
Questionnaires and surveys
Observations
Prototypes
Benchmarking
Context diagrams
Document analysis

Outputs: requirements documentation
Requirement traceability matrix

key stakeholders together to define product requirements. A number of group activity
techniques can be organized to identify project and product requirements, brainstorming
is an example of group activity techniques. A group decision-making technique is an
assessment process having multiple alternatives with an expected outcome in the form
of future actions. Questionnaires and surveys are written sets of questions designed to
quickly accumulate information from a large number of respondents. Observations provide
a direct way of viewing individuals in their environment and how they perform their jobs
or tasks and carry out processes. Prototyping is a method of obtaining early feedback on
requirements by providing a working model of the expected product before actually building
it. Benchmarking involves comparing actual or planned practices, such as processes and
operations, to those of comparable organizations to identify best practices, generate ideas
for improvement, and provide a basis for measuring performance. Context diagrams visually
depict the product scope by showing a business system (process, equipment, computer
system, etc.), and how people and other systems (actors) interact with it. Document
analysis is used to elicit requirements by analyzing existing documentation and identifying
information relevant to the requirements.

requirements documentation describes how individual requirements meet the project’s bu-
siness need. The requirements traceability matrix is a grid that links product requirements
from their origin to the deliverables that satisfy them.
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6.2.3 Define Scope

Define Scope is the process of developing a detailed description of the project and product
(ROSE, 2013). The inputs, tools and techniques, and outputs of this process are depicted
in Table 27.

Tabela 27 – Inputs, tools and techniques, and outputs from Define Scope

Inputs: Scope management plan
Project charter
requirements documentation
Organizational process assets

Tools and Techniques: Expert judgment
Product analysis
Alternative generation
Facilitated workshops

Outputs: Project scope statement
Project document updates

The scope management plan is a component of the project management plan that establishes
the activities for developing, monitoring, and controlling the project scope. The project
charter provides the high-level project description and product characteristics. This
documentation will be used to select the requirements that will be included in the project.
Organizational process assets can influence how scope is defined. Examples include policies,
procedures, and templates for a project scope statement, project files from previous projects,
and lessons learned from previous phases or projects. Expert judgment is often used to
analyze the information needed to develop the project scope statement. For projects that
have a product as a deliverable, as opposed to a service or result, product analysis can be
an effective tool. Alternatives generation is a technique used to develop as many potential
options as possible in order to identify different approaches to execute and perform the
work of the project. Facilitated workshops consists in participation of key players with a
variety of expectations and/or fields of expertise in intensive working sessions to reach a
cross-functional and common understanding of the project objectives and their limits.

The project scope statement is a description of the project scope, major deliverables,
assumptions, and constraints. Project documents that may be updated include stakeholder
register, requirements documentation, and requirement traceability matrix.

6.2.4 Create WBS

Create WBS is the process of subdividing project deliverables and project work into
smaller, more manageable components (ROSE, 2013). The inputs, tools and techniques,
and outputs of this process are depicted in Table 28.
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Tabela 28 – Inputs, tools and techniques, and outputs from Create WBS

Inputs: Scope management plan
Project scope statement
requirements documentation
Enterprise environmental factors
Organizational process assets

Tools and Techniques: Decomposition
Expert judgment

Outputs: Scope baseline
Project documents updates

The following subsections provide a brief description of the inputs, tools and techniques,
and outputs of Create WBS.

The scope management plan specifies how to create the WBS from the detailed project
scope statement and how the WBS will be maintained and approved. The project scope
statement describes the work that will be performed and the work that is excluded. Detailed
requirements documentation is essential for understanding what needs to be produced as
the result of the project and what needs to be done to deliver the project and its final
products. Enterprise Environmental Factors are industry-specific WBS standards, relevant
to the nature of the project, that serve as external reference sources for creation of the
WBS. The organizational process assets are policies, procedures, and templates for the
WBS, project files and lessons learned from previous projects.

Decomposition is a technique used for dividing and subdividing the project scope and
project deliverables into smaller, more manageable parts. Expert judgment is often used
to analyze the information needed to break down project deliverables down into smaller
component parts in order to create an effective WBS.

The scope baseline is the approved version of a scope statement, work breakdown structure
(WBS), and its associated WBS dictionary, that can be changed only through formal
change control procedures and is used as a basis for comparison. Project documents that
may be updated include, but are not limited to, requirements documentation, which may
need to be updated to include approved changes.

6.2.5 Validate Scope

Validate Scope is the process of formalizing acceptance of the completed project deliverables
(ROSE, 2013). The inputs, tools and techniques, and outputs of this process are depicted
in Table 29.

In the following is shortly described the inputs, tools and techniques, and outputs of the
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Tabela 29 – Inputs, tools and techniques, and outputs from Validate Scope

Inputs: Project management plan
Requirements documentation
Requirement traceability matrix
Verified deliverables
Work performance data

Tools and Techniques: Inspection
Group decision-making techniques

Outputs: Accepted deliverables
Change requests
Work performance information
Project document updates

Validate Scope.

The project management plan contains the scope management plan and the scope baseline.
The requirements documentation lists all the project, product, and other types of require-
ments for the project and product, along with their acceptance criteria. The requirements
traceability matrix links requirements to their origin and tracks them throughout the
project life cycle. Verified deliverables are project deliverables that are completed and
checked for correctness through the Control Quality process. Work performance data can
include the degree of compliance with requirements, number of nonconformities, severity
of the nonconformities, or the number of validation cycles performed in a period of time.

Inspection includes activities such as measuring, examining, and validating to determine
whether work and deliverables meet requirements and product acceptance criteria. These
techniques are used to reach a conclusion when the validation is performed by the project
team and other stakeholders.

Deliverables that meet the acceptance criteria are formally signed off and approved by the
customer or sponsor. The change requests are processed for review and disposition through
the Perform Integrated Change Control process. Work performance information includes
information about project progress, such as which deliverables have started, their progress,
which deliverables have finished, or which have been accepted. Project documents that
may be updated as a result of the Validate Scope process include any documents that
define the product or report status on product completion.

6.2.6 Control Scope

Control Scope is the process of monitoring the status of the project and product scope and
managing changes to the scope baseline (ROSE, 2013). The inputs, tools and techniques,
and outputs of this process are depicted in Table 30.
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Tabela 30 – Inputs, tools and techniques, and outputs from Control Scope

Inputs: Project management plan
Requirements documentation
Requirements traceability matrix
Work performance data
Organizational process assets

Tools and Techniques: Variance analysis
Outputs: Work performance information

Change requests
Project management plan updates
Project documents updates
Organizational process assets updates

The following subsections provide a brief description of the inputs, tools and techniques,
and outputs of the Control Scope.

Requirements should be unambiguous (measurable and testable), traceable, complete,
consistent, and acceptable to key stakeholders. The requirement traceability matrix helps
to detect the impact of any changes or deviations from the scope baseline on the project
objectives. Work performance data can include the number of change requests received,
the number of requests accepted or the number of deliverables completed, etc. The
organizational process assets that can influence the Control Scope process include existing
formal and informal scope, control-related policies, procedures, guidelines, and monitoring
and reporting methods and templates to be used.

Variance analysis is a technique for determining the cause and degree of difference between
the baseline and actual performance. Project performance measurements are used to assess
the magnitude of variation from the original scope baseline.

Work performance information produced includes correlated and contextualized information
on how the project scope is performing compared to the scope baseline. Analysis of scope
performance can result in a change request to the scope baseline or other components
of the project management plan. Project management plan updates may include Scope
Baseline Updates and other Baseline Updates. Project documents that may be updated
include requirements documentation, and requirements traceability matrix. Organizational
process assets that may be updated include causes of variances, corrective action chosen
and the reasons, and other types of lessons learned from project scope control.
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6.3 Approach to select variants from PMBOK processes by using
SVSDL

This paper demonstrates the usage of SVSDL in selecting variants from a SDL process
that is comprised of tasks from PMBOK. For this paper, the tasks selected were Project
management plan and Project Charter from Project Integration Management. From Project
Scope Management Scope management plan, Requirements management plan, Requirements
documentation, Requirements traceability matrix, Project scope statement, Scope baseline,
Accepted deliverables, Change requests, Work performance informationwere selected. Each
task is represented by its abbreviation. The tasks and abbreviations used in this example
are displayed in Table 31.

Tabela 31 – Set of tasks selected to the Examples 1 and 2

Project Management Plan PMP
Project Charter PC
Scope management plan SMP
Requirements management plan RMP
Requirement documentation RD
Requirement traceability matrix RTM
Project scope statement PSS
Scope baseline SB
Accepted deliverables AD
Change requests CR
Work performance information WPI

SVSDL is divided in three frameworks: Framework for user support at design time,
Framework for user support at configure time, and Framework for user support at run time
(SCHAIDT; SANTOS, 2017a). Figures 57 and 58 show these frameworks.

The next two sections present two examples of application of the SVSDL framework in
designing, configuring and running variants from a PMBOK process, by using the three
SVSDL frameworks. First, the examples show how to use Framework for user support at
design time to make Framework for configure support at design time. Second, the examples
show how to use Framework for user support at configure time to make Syntactically and
Semantically Correct SDL Processes. And finally, the examples show how to use Framework
for user support at run time to run a Syntactically and Semantically Correct SDL Process.

6.4 First example of selection of variants with PMBOK and SVSDL
In this example, users select Function = Exactly.one at configure time. This option allows
users to select only one variant at run time, no combination of variants is permitted. The
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Figura 57 – Framework for user support at design time and Framework for user support
at configure time
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Figura 58 – Framework for user support at design time

following shows the SVSDL frameworks.

6.4.1 At design time

At design time, SVSDL provides users with Framework for user support at design time.
The following section shows the sequence of steps with the different interactions between
the methods comprising Framework for user support at design time.

Step 1: Using Method to define Function, users define Function = Exactly.one.

Step 2: Using Method to make Reference Process Model, users define RPM = (T ,R), where

T = { PMP, PC, SMP, RMP, RTM, PSS, SB, AD, CR, WPI }
R = { atleast1 (SMP), atleast1 (RMP),

precedence(SMP, RD), precedence(RD, AD),
precedence(RD, CR), precedence(SMP, RTM ),
precedence(RTM, AD), precedence(RTM, CR),
precedence(RMP, RD), precedence(RMP, RTM ),
response(SMP, RD), response(RD, AD),
response(RD, CR), response(SMP, RTM ),
response(RTM, AD), response(RTM, CR),
response(RMP, RD), response(RMP, RTM ) }
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Step 3: Using Method to make Set of Variants, users define 16 variants:

pf1 : ( {SMP, RD, AD},
{atleast1 (SMP), precedence(SMP, RD), precedence(RD, AD),
response(SMP, RD), response(RD, AD)} )

pf2 : ( {SMP, RD, AD, PMP, PC, PSS, SB, WPI},
{atleast1 (SMP), precedence(SMP, RD), precedence(RD, AD),
response(SMP, RD), response(RD, AD)} )

pf3 : ( {SMP, RD, CR},
{atleast1 (SMP), precedence(SMP, RD), precedence(RD, CR),
response(SMP, RD), response(RD, CR)} )

pf4 : ( {SMP, RD, CR, PMP, PC, PSS, SB, WPI},
{atleast1 (SMP), precedence(SMP, RD), precedence(RD, CR),
response(SMP, RD), response(RD, CR)} )

pf5 : ( {SMP, RTM, AD},
{atleast1 (SMP), precedence(SMP, RTM ), precedence(RTM, AD),
response(SMP, RTM ), response(RTM, AD)} )

pf6 : ( {SMP, RTM, AD, PMP, PC, PSS, SB, WPI},
{atleast1 (SMP), precedence(SMP, RTM ), precedence(RTM, AD),
response(SMP, RTM ), response(RTM, AD)} )

pf7 : ( {SMP, RTM, CR},
{atleast1 (SMP), precedence(SMP, RTM ), precedence(RTM, CR),
response(SMP, RTM ), response(RTM, CR)} )

pf8 : ( {SMP, RTM, CR, PMP, PC, PSS, SB, WPI},
{atleast1 (SMP), precedence(SMP, RTM ), precedence(RTM, CR),
response(SMP, RTM ), response(RTM, CR)} )

pf9 : ( {RMP, RD, AD},
{atleast1 (RMP), precedence(RMP, RD), precedence(RD, AD),
response(RMP, RD), response(RD, AD)} )

pf10 : ( {RMP, RD, AD, PMP, PC, PSS, SB, WPI},
{atleast1 (RMP), precedence(RMP, RD), precedence(RD, AD),
response(RMP, RD), response(RD, AD)} )

pf11 : ( {RMP, RD, CR},
{atleast1 (RMP), precedence(RMP, RD), precedence(RD, CR),
response(RMP, RD), response(RD, CR)} )
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pf12 : ( {RMP, RD, CR, PMP, PC, PSS, SB, WPI},
{atleast1 (RMP), precedence(RMP, RD), precedence(RD, CR),
response(RMP, RD), response(RD, CR)} )

pf13 : ( {RMP, RTM, AD},
{atleast1 (RMP), precedence(RMP, RTM ), precedence(RTM, AD),
response(RMP, RTM ), response(RTM, AD)} )

pf14 : ( {RMP, RTM, AD, PMP, PC, PSS, SB, WPI},
{atleast1 (RMP), precedence(RMP, RTM ), precedence(RTM, AD),
response(RMP, RTM ), response(RTM, AD)} )

pf15 : ( {RMP, RTM, CR},
{atleast1 (RMP), precedence(RMP, RTM ), precedence(RTM, CR),
response(RMP, RTM ), response(RTM, CR)} )

pf16 : ( {RMP, RTM, CR, PMP, PC, PSS, SB, WPI},
{atleast1 (RMP), precedence(RMP, RTM ), precedence(RTM, CR),
response(RMP, RTM ), response(RTM, CR)} )

Step 4: Using Method to make Set of Features, users define 11 features:

df1 : Project Management Plan
df2 : Project Charter
df3 : Scope management plan
df4 : Requirements management plan
df5 : Requirements documentation
df6 : Requirements traceability matrix
df7 : Project scope statement
df8 : Scope baseline
df9 : Accepted deliverable
df10 : Change requests
df11 : Work performance information

Step 5: UsingMethod to make Set of Domain Constraints, users define no domain constraint.

Step 6: Using Method to make Set of Relations of Precedence to Features, users define:

Set of Relations of Precedence to Features = { precedence({df1}, {df2}),
precedence({df2}, {df3, df4}),
precedence({df3, df4}, {df5, df6}),
precedence({df5, df6}, {df7}),
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precedence({df7}, {df8}),
precedence({df8}, {df9, df10}),
precedence({df9, df10}, {df11}) }

Step 7: Using Method to make Map from Features to Variants, users define Map from
Features to Variants:

Map from Features to Variants = {

pf1: df1 ∧ df2 ∧ df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf2: df1 ∧ df2 ∧ df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11,

pf3: df1 ∧ df2 ∧ df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf4: df1 ∧ df2 ∧ df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11,

pf5: df1 ∧ df2 ∧ ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf6: df1 ∧ df2 ∧ ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11,

pf7: df1 ∧ df2 ∧ ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf8: df1 ∧ df2 ∧ ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11,

pf9: ¬df1 ∧ ¬df2 ∧ df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ ¬df7 ∧ ¬df8 ∧ df9 ∧ ¬df10 ∧ ¬df11,

pf10: ¬df1 ∧ ¬df2 ∧ df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ ¬df7 ∧ ¬df8 ∧ ¬df9 ∧ df10 ∧ ¬df11,

pf11: ¬df1 ∧ ¬df2 ∧ df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ ¬df7 ∧ ¬df8 ∧ df9 ∧ ¬df10 ∧ ¬df11,

pf12: ¬df1 ∧ ¬df2 ∧ df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ ¬df7 ∧ ¬df8 ∧ ¬df9 ∧ df10 ∧ ¬df11,

pf13: ¬df1 ∧ ¬df2 ∧ ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ ¬df7 ∧ ¬df8 ∧ df9 ∧ ¬df10 ∧ ¬df11,

pf14: ¬df1 ∧ ¬df2 ∧ ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ ¬df7 ∧ ¬df8 ∧ ¬df9 ∧ df10 ∧ ¬df11,

pf15: ¬df1 ∧ ¬df2 ∧ ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ ¬df7 ∧ ¬df8 ∧ df9 ∧ ¬df10 ∧ ¬df11,

pf16: ¬df1 ∧ ¬df2 ∧ ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ ¬df7 ∧ ¬df8 ∧ ¬df9 ∧ df10 ∧ ¬df11 }

Step 8: Using Method to make Map from Questions to Features, users define:

Map from Questions to Features = {

(Q1: Which documents will be developed to Develop Project Management Plan? : {df1}),

(Q2: Which documents will be developed to Develop Project Charter? : {df2}),

(Q3: Which documents will be developed to Plan Scope Management? : {df3, df4}),

(Q4: Which documents will be developed to Requirement Gathering? : {df5, df6}),

(Q5: Which documents will be developed to Define Scope? : {df7}),
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(Q6: Which documents will be developed to Create WBS? : {df8}),

(Q7: Which documents will be developed to Validate Scope? : {df9, df10}),

(Q8: Which documents will be developed to Control Scope? : {df11}) }

Step 9: From inputs defined previously, Method for Assembly makes Framework for user
support at configure time. Framework for user support at configure time is used at configure
time.

6.4.2 At configure time

At configure time, SVSDL provides users with Framework for user support at configure
time. Next the sequence of steps with the different interactions between the methods that
comprise Framework for user support at configure time is shown.

Step 1: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11}

Set of True Features = ∅

Set of False Features = ∅

Step 2: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features for
which precedent features have already been set. These features which precedent features
have already been set comprise Set of Enabled Features. Since no feature has been set yet,
the system displays

Set of Enabled Features = {df1}.

Step 3: Method User Interface makes

Set of Enabled/Unset Features = Set of Unset Features ∩ Set of Enabled Features.

Set of Enabled/Unset Features = {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11} ∩
{df1}.

Set of Enabled/Unset Features = {df1}.

Step 4: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. There is only



174

one question bound to features in Set of Enabled/Unset Features: Question 1 (Q1). So, Q1

is displayed:

Q1: Will Project Management Plan be developed?:

[ ]Yes (df1 = TRUE) [ ]No (df1 = FALSE)

Step 5: Using Method User Interface, user selects ’Yes’ (df1 = TRUE):

Q1: Will Project Management Plan be developed?:

[X]Yes (df1 = TRUE) [ ]No (df1 = FALSE)

Step 6: Control Logic 1 receives df1 =TRUE and performs simplification of Map from
Features to Variants. Since df1 =TRUE, pf3 and pf4 are automatically FALSE. So, Map
from Features to Variants becomes

Map from Features to Variants = {

pf1: df2 ∧ df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf2: df2 ∧ df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11,

pf3: df2 ∧ df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf4: df2 ∧ df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11,

pf5: df2 ∧ ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf6: df2 ∧ ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11,

pf7: df2 ∧ ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ df9 ∧ ¬df10 ∧ df11,

pf8: df2 ∧ ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ df7 ∧ df8 ∧ ¬df9 ∧ df10 ∧ df11

pf9: FALSE, pf10: FALSE, pf11: FALSE, pf12: FALSE, pf13: FALSE, pf14:
FALSE, pf15: FALSE, pf16: FALSE }

But simplification must ensure that at least one variant is selected, so df2, df3, df7, df8 are
TRUE because they are in all conjunctions. Thus,

Map from Features to Variants = {

pf1: df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ df9 ∧ ¬df10,

pf2: df3 ∧ ¬df4 ∧ df5 ∧ ¬df6 ∧ ¬df9 ∧ df10,

pf3: df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ df9 ∧ ¬df10,

pf4: df3 ∧ ¬df4 ∧ ¬df5 ∧ df6 ∧ ¬df9 ∧ df10,

pf5: ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ df9 ∧ ¬df10,
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pf6: ¬df3 ∧ df4 ∧ df5 ∧ ¬df6 ∧ ¬df9 ∧ df10,

pf7: ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ df9 ∧ ¬df10,

pf8: ¬df3 ∧ df4 ∧ ¬df5 ∧ df6 ∧ ¬df9 ∧ df10,

pf9: FALSE, pf10: FALSE, pf11: FALSE, pf12: FALSE, pf13: FALSE, pf14:
FALSE, pf15: FALSE, pf16: FALSE }

Step 7: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df3, df4, df5, df6, df9, df10}

Set of True Features = {df1, df2, df7, df8, df11}

Set of False Features = ∅

Step 8: Method User Interface updates the value of features in Q1:

Q1: Will Project Management Plan be developed?:

[X]Yes (df1 = TRUE) [ ]No (df1 = FALSE)

Step 9: Since users cannot set any other feature in Q1, users choose to close Q1.

Step 10: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features
for which precedent features have already been set. These features for which precedent
features have already been set comprise Set of Enabled Features. So, the system returns

Set of Enabled Features = {df1, df2, df3, df4, df8, df9, df10}.

Step 11: Method User Interface makes

Set of Enabled/Unset Features = Set of Unset Features ∩ Set of Enabled Features.

Set of Enabled/Unset Features = {df3, df4, df5, df6, df9, df10} ∩ {df2, df3, df4, df8, df9,
df10}.

Set of Enabled/Unset Features = {df3, df4, df9, df10}.

Step 12: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. There are
two questions bound to features in Set of Enabled/Unset Features: Question 3 (Q3) and
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Question 7 (Q7). Users choose to answer Q3. So, Q3 is presented to the user:

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [ ]Yes [ ]No
• Requirements management plan (df4) [ ]Yes [ ]No

Step 13: Using Method User Interface, user selects df3 = ’No’ (df3 = FALSE):

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [ ]Yes [X]No
• Requirements management plan (df4) [ ]Yes [ ]No

Step 14: Control Logic 1 receives df1 =TRUE and performs simplification of Map from
Features to Variants. Since df1 =TRUE, pf3 and pf4 are automatically FALSE. So, Map
from Features to Variants becomes

Map from Features to Variants = {

pf1: FALSE, pf2: FALSE, pf3: FALSE, pf4: FALSE,

pf5: df4 ∧ df5 ∧ ¬df6 ∧ df9 ∧ ¬df10,

pf6: df4 ∧ df5 ∧ ¬df6 ∧ ¬df9 ∧ df10,

pf7: df4 ∧ ¬df5 ∧ df6 ∧ df9 ∧ ¬df10,

pf8: df4 ∧ ¬df5 ∧ df6 ∧ ¬df9 ∧ df10,

pf9: FALSE, pf10: FALSE, pf11: FALSE, pf12: FALSE, pf13: FALSE, pf14:
FALSE, pf15: FALSE, pf16: FALSE }

But simplification must ensure that at least one variant is selected, so df4 is TRUE because
it is in all conjunctions. Thus,

Map from Features to Variants = {

pf1: FALSE, pf2: FALSE, pf3: FALSE, pf4: FALSE,

pf5: df5 ∧ ¬df6 ∧ df9 ∧ ¬df10,

pf6: df5 ∧ ¬df6 ∧ ¬df9 ∧ df10,

pf7: ¬df5 ∧ df6 ∧ df9 ∧ ¬df10,

pf8: ¬df5 ∧ df6 ∧ ¬df9 ∧ df10,

pf9: FALSE, pf10: FALSE, pf11: FALSE, pf12: FALSE, pf13: FALSE, pf14:
FALSE, pf15: FALSE, pf16: FALSE }
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Step 15: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df5, df6, df9, df10}

Set of True Features = {df1, df2, df4, df7, df8, df11}

Set of False Features = {df3}

Step 16: Method User Interface updates the value of features in Q3:

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [ ]Yes [X]No
• Requirements management plan (df4) [X]Yes [ ]No

Step 17: Since users cannot set any other feature in Q3, users choose to close Q3.

Step 17: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features
for which precedent features have already been set. These features for which precedent
features have already been set comprise Set of Enabled Features. So, the system returns

Set of Enabled Features = {df1, df2, df3, df4, df5, df6, df8, df9, df10}.

Step 19: Method User Interface makes

Set of Enabled/Unset Features = Set of Enabled Features ∩ Set of Unset Features.

Set of Enabled/Unset Features = {df5, df6, df9, df10} ∩ {df1, df2, df3, df4, df5, df6, df8, df9,
df10} .

Set of Enabled/Unset Features = {df5, df6, df9, df10}.

Step 20: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. There are
two questions bound to features in Set of Enabled/Unset Features: Question 4 (Q4) and
Question 7 (Q7). Users choose to answer Q4. So, Q4 is displayed to users:

Q4: Which documents will be developed for Requirement Gathering?

• Requirements documentation (df5) [ ]Yes [ ]No
• Requirements traceability matrix (df6) [ ]Yes [ ]No

Step 21: Using Method User Interface, user selects df5 = ’Yes’ (df5 = TRUE):
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Q4: Which documents will be developed for Requirement Gathering?

• Requirements documentation (df5) [X]Yes [ ]No
• Requirements traceability matrix (df6) [ ]Yes [ ]No

Step 22: Control Logic 1 receives df5 =TRUE and performs simplification of Map from
Features to Variants. So, Map from Features to Variants becomes

Map from Features to Variants = {

pf1: FALSE, pf2: FALSE, pf3: FALSE, pf4: FALSE,

pf5: ¬df6 ∧ df9 ∧ ¬df10,

pf6: ¬df6 ∧ ¬df9 ∧ df10,

pf7: FALSE, pf8: FALSE, pf9: FALSE, pf10: FALSE, pf11: FALSE,
pf12: FALSE, pf13: FALSE, pf14: FALSE, pf15: FALSE, pf16: FALSE }

But simplification must ensure that at least one variant is selected, so df6 is FALSE
because it is in all conjunctions. Thus,

Map from Features to Variants = {

pf1: FALSE, pf2: FALSE, pf3: FALSE, pf4: FALSE,

pf5: df9 ∧ ¬df10,

pf6: ¬df9 ∧ df10,

pf7: FALSE, pf8: FALSE, pf9: FALSE, pf10: FALSE, pf11: FALSE,
pf12: FALSE, pf13: FALSE, pf14: FALSE, pf15: FALSE, pf16: FALSE }

Step 23: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df9, df10}

Set of True Features = {df1, df2, df4, df5, df7, df8, df11}

Set of False Features = {df3, df6}

Step 24: Method User Interface updates the value of features in Q4:

• Requirements documentation (df5) [X]Yes [ ]No
• Requirements traceability matrix (df6) [ ]Yes [X]No

Step 25: Since users cannot set any other feature in Q4, users choose to close Q4.
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Step 26: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features
for which precedent features have already been set. These features for which precedent
features have already been set comprise Set of Enabled Features. So, the system returns

Set of Enabled Features = {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10}.

Step 27: Method User Interface makes

Set of Enabled/Unset Features = Set of Unset Features ∩ Set of Enabled Features.

Set of Enabled/Unset Features = {df9, df10} ∩ {df1, df2, df3, df4, df5, df6, df7, df8, df9,
df10}.

Set of Enabled/Unset Features = {df9, df10}.

Step 28: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. There is one
questions bound to features in Set of Enabled/Unset Features: Question 7 (Q7). So, Q7 is
presented to users:

Q7: Which documents will be developed to Validate Scope?

• Scope management plan (df9) [ ]Yes [ ]No
• Requirements management plan (df10) [ ]Yes [ ]No

Step 29: Using Method User Interface, user selects df9 = ’Yes’ (df9 = TRUE):

Q7: Which documents will be developed to Validate Scope?

• Scope management plan (df9) [X]Yes [ ]No
• Requirements management plan (df10) [ ]Yes [ ]No

Step 30: Control Logic 1 receives df9 =TRUE and performs simplification of Map from
Features to Variants. So, Map from Features to Variants becomes

Map from Features to Variants = {

pf1: FALSE, pf2: FALSE, pf3: FALSE, pf4: FALSE,

pf5: ¬df10,

pf6: FALSE, pf7: FALSE, pf8: FALSE, pf9: FALSE, pf10: FALSE,
pf11: FALSE, pf12: FALSE, pf13: FALSE, pf14: FALSE, pf15: FALSE,
pf16: FALSE }
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But simplification must ensure that at least one variant be selected, so df10 is FALSE
because it is in all conjunctions. Thus,

Map from Features to Variants = {

pf1: FALSE, pf2: FALSE, pf3: FALSE, pf4: FALSE, pf5: TRUE,
pf6: FALSE, pf7: FALSE, pf8: FALSE, pf9: FALSE, pf10: FALSE,
pf11: FALSE, pf12: FALSE, pf13: FALSE, pf14: FALSE, pf15: FALSE,
pf16: FALSE }

Step 31: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = ∅

Set of True Features = {df1, df2, df4, df5, df7, df8, df9, df11}

Set of False Features = {df3, df6, df10}

Step 32: Method User Interface updates the value of features in Q7:

Q7: Which documents will be developed to Validate Scope?

• Scope management plan (df9) [X]Yes [ ]No
• Requirements management plan (df10) [ ]Yes [X]No

Step 33: Since users cannot set any other feature in Q7, users choose to close Q4.

Step 34: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features
for which precedent features have already been set. These features for which precedent
features have already been set comprise Set of Enabled Features. So, the system returns

Set of Enabled Features = {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11}.

Step 35: Method User Interface makes

Set of Enabled/Unset Features = Set of Unset Features ∩ Set of Enabled Features.

Set of Enabled/Unset Features = ∅ ∩ {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11}.

Set of Enabled/Unset Features = ∅.
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Step 36: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. Since Set of
Enabled/Unset Features = ∅, there is no question to be presented to the user.

Step 37: Users choose to finish selection of variants.

Step 38: Method Control Logic 1 makes Set of true process facts = {pf5} and sends it to
Method Control Logic 2.

Step 39: Method Control Logic 2 set as TRUE the variants in Set of Variants that is
bound to process facts in Set of true process facts. Since Set of true process facts = {pf5},
the system returns

TRUE : ( {SMP, RTM, AD},
{atleast1 (SMP), precedence(SMP, RTM ), precedence(RTM, AD),
response(SMP, RTM ), response(RTM, AD)} )

Step 40: Method Control Logic 2 joins all variants in Set of Variants that are set as TRUE.
This is a Syntactically and Semantically Correct SDL Process to be provided to Framework
for User Support at Run Time. So,

SDL Process = ( {SMP, RTM, AD},
{atleast1 (SMP), precedence(SMP, RTM ), precedence(RTM, AD),
response(SMP, RTM ), response(RTM, AD)} )

Step 41: Method Control Logic 2 finishes the selection of variants.

6.4.3 At run time

At run time, SVSDL provides users with Framework for user support at run time. The
following section presents the sequence of steps with the different interactions among the
methods comprising Framework for user support at run time.

Step 1: Framework for user support at run time creates the automaton for each task and
constraint taken from Framework for user support at configure time. These automata are
shown in Figure 59. These automata are applied in making the sequence of markings that
is presented in Figure .

Step 2: Framework for user support at run time calculates marking M = 111111.

Step 3: Method Synchronous product makes Set of enabled events = {PC(s), SMP (s)}.

Step 4: Method to calculate pending events makes Set of pending events = {PC(c),
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(a) t1 (b) t2 (c) t3 (d) r1

(e) r2 (f) r3 (g) r4 (h) r5

Figura 59 – a Syntactically and Semantically SDL process taken from configure time

Figura 60 – Sequence of markings

SMP (c)}.

Step 5: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to users.

Step 6: Users choose to execute PC(s).

Step 7: Method to update sequence of executed events updates Set of executed events =
Sequence of executed events = PC(s).

Step 8: Method to update current state in automata takes the last executed event from
Sequence of executed events to update the current state in each automaton of the SDL
process.

Step 9: Framework for user support at run time calculates marking M = 121111.
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Step 10: Method Synchronous product makes Set of enabled events = {PC(c), PC(x),
SMP (s)}.

Step 11: Method to calculate pending events makes Set of pending events = {PC(c),
SMP (c)}.

Step 12: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to user.

Step 13: Users choose to execute PC(c).

Step 14: Method to update sequence of executed events takes PC(c) and updates Sequence
of executed events = PC(s).PC(c)

Step 15: Method to update current state in automata takes PC(c) (the last executed event
from Sequence of executed events) to update the current state in each automaton of the
SDL process.

Step 16: Framework for user support at run time calculates marking M = 111222.

Step 17: Method Synchronous product makes Set of enabled events = {PC(s), SMP (s)}.

Step 18: Method to calculate pending events makes Set of pending events = {SMP (c)}.

Step 19: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to user.

Step 20: Users choose to execute SMP (s).

Step 21: Method to update sequence of executed events takes SMP (s) and updates Sequence
of executed events = PC(s).PC(c).SMP (s)

Step 22: Method to update current state in automata takes SMP (s) (the last executed
event from Sequence of executed events) to update the current state in each automaton of
the SDL process.

Step 23: Framework for user support at run time calculates marking M = 211222.

Step 24: Method Synchronous product makes Set of enabled events = {PC(s), SMP (c),
SMP (x)}.

Step 25: Method to calculate pending events makes Set of pending events = {SMP (c)}.

Step 26: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to user.

Step 27: Users choose to execute SMP (c).

Step 28: Method to update sequence of executed events takes SMP (c) and updates Sequence
of executed events = PC(s).PC(c).SMP (s).SMP (c)

Step 29: Method to update current state in automata takes SMP (c) (the last executed
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event from Sequence of executed events) to update the current state in each automaton of
the SDL process.

Step 30: Framework for user support at run time calculates marking M = 112221.

Step 31: Method Synchronous product makes Set of enabled events = {PC(s), SMP (s)}.

Step 32: Method to calculate pending events makes Set of pending events = ∅.

Step 33: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to user.

Since no event is pending, users are able to continue or finish the running process, from
step 33.

6.5 Second example of selection of variants with PMBOK and
SVSDL

This section demonstrates another use of SVSDL to select variants from an SDL process
comprised of PMBOK tasks. For this example, the same tasks in Table 31 were selected .

This section presents the use of the three frameworks that comprise SVSDL: Framework for
user support at design time, Framework for user support at configure time, and Framework
for user support at run time. In this application example, users select Function = Atleast.one
at configure time. This option allows users to select more than one variant at run time, a
combination of variants is permitted. The following section presents SVSDL frameworks.

6.5.1 At design time

At design time, SVSDL provides users with Framework for user support at design time.
The sequence of steps with the interactions among the methods comprising Framework
for user support at design time is shown.

Step 1: Using Method to define Function, users define Function = Atleast.one.

Step 2: Using Method to make Reference Process Model, users define RPM = (T ,R), where

T = {PMP, PC, SMP, RMP, RTM, PSS, SB, AD, CR, WPI}

R = { atleast1 (PMP), atleast1 (PC ), atleast1 (SMP),

atleast1 (RMP), atleast1 (RD), atleast1 (RTM ),

atleast1 (PSS), atleast1 (SB), atleast1 (AD),

atleast1 (CR), atleast1 (WPI ),
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precedence(PMP, SMP), response(PMP, SMP),

precedence(PMP, RMP), response(PMP, RMP),

precedence(PC, SMP), response(PC, SMP),

precedence(PC, RMP), response(PC, RMP),

precedence(SMP, RD), response(SMP, RD),

precedence(SMP, RTM ), response(SMP, RTM ),

precedence(RMP, RD), response(RMP, RD),

precedence(RMP, RTM ), response(RMP, RTM ),

precedence(SMP, PSS), response(SMP, PSS),

precedence(RMP, PSS), response(RMP, PSS),

precedence(SMP, SB), response(SMP, SB),

precedence(RMP, SB), response(RMP, SB),

precedence(RD, PSS), response(RD, PSS),

precedence(RTM, PSS), response(RTM, PSS),

precedence(RD, AD), response(RD, AD),

precedence(RD, CR), response(RD, CR),

precedence(RTM, AD), response(RTM, AD),

precedence(RTM, CR), response(RTM, CR),

precedence(RD, WPI ), response(RD, WPI ),

precedence(RTM, WPI ), response(RTM, WPI ),

precedence(PSS, SB), response(PSS, SB)}

Step 3: Using Method to make Set of Variants, users define 32 variants:

Set of Variants = {

pf1: ({PMP}, {atleast1 (PMP)}),

pf2: ({PC}, {atleast1 (PC )}),

pf3: ({SMP}, {atleast1 (SMP)}),

pf4: ({RMP}, {atleast1 (RMP)}),

pf5: ({RD}, {atleast1 (RD)}),

pf6: ({RTM}, {atleast1 (RTM )}),
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pf7: ({PSS}, {atleast1 (PSS)}),

pf8: ({SB}, {atleast1 (SB)}),

pf9: ({AD}, {atleast1 (AD)}),

pf10: ({CR}, {atleast1 (CR)}),

pf11: ({WPI}, {atleast1 (WPI )}),

pf12: ({PMP, SMP}, {precedence(PMP, SMP), response(PMP, SMP)}),

pf13: ({PMP, RMP}, {precedence(PMP, RMP), response(PMP, RMP)}),

pf14: ({PC, SMP}, {precedence(PC, SMP), response(PC, SMP)}),

pf15: ({PC, RMP}, {precedence(PC, RMP), response(PC, RMP)}),

pf16: ({SMP, RD}, {precedence(SMP, RD), response(SMP, RD)}),

pf17: ({SMP, RTM}, {precedence(SMP, RTM ), response(SMP, RTM )}),

pf18: ({RMP, RD}, {precedence(RMP, RD), response(RMP, RD)}),

pf19: ({RMP, RTM}, {precedence(RMP, RTM ), response(RMP, RTM )}),

pf20: ({SMP, PSS}, {precedence(SMP, PSS), response(SMP, PSS)}),

pf21: ({RMP, PSS}, {precedence(RMP, PSS), response(RMP, PSS)}),

pf22: ({SMP, SB}, {precedence(SMP, SB), response(SMP, SB)}),

pf23: ({RMP, SB}, {precedence(RMP, SB), response(RMP, SB)}),

pf24: ({RD, PSS}, {precedence(RD, PSS), response(RD, PSS)}),

pf25: ({RTM, PSS}, {precedence(RTM, PSS), response(RTM, PSS)}),

pf26: ({RD, AD}, {precedence(RD, AD), response(RD, AD)}),

pf27: ({RD, CR}, {precedence(RD, CR), response(RD, CR)}),

pf28: ({RTM, AD}, {precedence(RTM, AD), response(RTM, AD)}),

pf29: ({RTM, CR}, {precedence(RTM, CR), response(RTM, CR)}),

pf30: ({RD, WPI}, {precedence(RD, WPI ), response(RD, WPI )}),

pf31: ({RTM, WPI}, {precedence(RTM, WPI ), response(RTM, WPI )}),

pf32: ({PSS, SB}, {precedence(PSS, SB), response(PSS, SB)}) }

Step 4: Using Method to make Set of Features, users define 11 features:

df1 : Project Management Plan
df2 : Project Charter
df3 : Scope management plan
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df4 : Requirements management plan
df5 : Requirements documentation
df6 : Requirements traceability matrix
df7 : Project scope statement
df8 : Scope baseline
df9 : Accepted deliverable
df10 : Change requests
df11 : Work performance information

Step 5: UsingMethod to make Set of Domain Constraints, users define no domain constraint.

Step 6: Using Method to make Set of Relations of Precedence to Features, users define:

Set of Relations of Precedence to Features = { precedence({df1}, {df2}),
precedence({df2}, {df3, df4}),
precedence({df3, df4}, {df5, df6}),
precedence({df5, df6}, {df7}),
precedence({df7}, {df8}),
precedence({df8}, {df9, df10}),
precedence({df9, df10}, {df11}) }

Step 7: Using Method to make Map from Features to Variants, users define Map from
Features to Variants:

Map from Features to Variants = {

pf1: df1, pf2: df2, pf3: df3, pf4: df4, pf5: df5, pf6: df6, pf7: df7, pf8: df8,

pf9: df9, pf10: df10, pf11: df11, pf12: df1 ∧ df3, pf13: df1 ∧ df4, pf14: df2 ∧ df3,

pf15: df2 ∧ df4, pf16: df3 ∧ df5, pf17: df3 ∧ df6, df18: df4 ∧ df5, df19: df4 ∧ df6,

pf20: df3 ∧ df7, pf21: df4 ∧ df7, pf22: df3 ∧ df8, pf23: df4 ∧ df8, pf24: df5 ∧ df7,

pf25: df6 ∧ df7, pf26: df5 ∧ df9, pf27: df5 ∧ df10, pf28: df6 ∧ df9, pf29: df6 ∧ df10,

pf30: df5 ∧ df11, pf31: df6 ∧ df11, pf32: df7 ∧ df8 }

Step 8: Using Method to make Map from Questions to Features, users define:

Map from Questions to Features = {

(Q1: Which documents will be developed to Develop Project Management Plan? : {df1}),

(Q2: Which documents will be developed to Develop Project Charter? : {df2}),
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(Q3: Which documents will be developed to Plan Scope Management? : {df3, df4}),

(Q4: Which documents will be developed to Requirement Gathering? : {df5, df6}),

(Q5: Which documents will be developed to Define Scope? : {df7}),

(Q6: Which documents will be developed to Create WBS? : {df8}),

(Q7: Which documents will be developed to Validate Scope? : {df9, df10}),

(Q8: Which documents will be developed to Control Scope? : {df11}) }

Step 9: From previously defined inputs, Method for Assembly makes Framework for user
support at configure time. Framework for user support at configure time is used at configure
time.

6.5.2 At configure time

At configure time, SVSDL provide users with Framework for user support at configure
time. The sequence of steps with the different interactions among the methods comprising
Framework for user support at configure time is shown.

Step 1: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11 }

Set of True Features = ∅

Set of False Features = ∅

Step 2: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features for
which precedent features have already been set. These features comprise Set of Enabled
Features. Since no feature has been set yet, the system returns

Set of Enabled Features = {df1}.

Step 3: Method User Interface makes

Set of Enabled/Unset Features = Set of Unset Features ∩ Set of Enabled Features.

Set of Enabled/Unset Features = {df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11} ∩
{df1}.

Set of Enabled/Unset Features = {df1}.
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Step 4: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. There is only
one question bound to features in Set oF Enabled/Unset Features: Question 1 (Q1). So,
Q1 is presented to the user:

Q1: Will Project Management Plan be developed?:

[ ]Yes (df1 = TRUE) [ ]No (df1 = FALSE)

Step 5: Using Method User Interface, users select ’No’ (df1 = FALSE):

Q1: Will Project Management Plan be developed?:

[ ]Yes (df1 = TRUE) [X]No (df1 = FALSE)

Step 6: Control Logic 1 receives df1 =FALSE and performs simplification of Map from
Features to Variants. So, Map from Features to Variants becomes

Map from Features to Variants = {

pf1: FALSE, pf2: df2, pf3: df3, pf4: df4, pf5: df5, pf6: df6, pf7: df7,

pf8: df8, pf9: df9, pf10: df10, pf11: df11, pf12: FALSE, pf13: FALSE,

pf14: df2 ∧ df3, pf15: df2 ∧ df4, pf16: df3 ∧ df5, pf17: df3 ∧ df6, pf18: df4 ∧ df5,

pf19: df4 ∧ df6, pf20: df3 ∧ df7, pf21: df4 ∧ df7, pf22: df3 ∧ df8, pf23: df4 ∧ df8,

pf24: df5 ∧ df7, pf25: df6 ∧ df7, pf26: df5 ∧ df9, pf27: df5 ∧ df10, pf28: df6 ∧ df9,

pf29: df6 ∧ df10, pf30: df5 ∧ df11, pf31: df6 ∧ df11, pf32: df7 ∧ df8 }

Step 7: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = {df2, df3, df4, df5, df6, df7, df8, df9, df10, df11}

Set of True Features = ∅

Set of False Features = { df1 }

Step 8: Method User Interface updates the value of features in Q1:

Q1: Will Project Management Plan be developed?:

[ ]Yes (df1 = TRUE) [X]No (df1 = FALSE)

Step 9: Since users cannot set any other feature in Q1, users choose to close Q1.
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Step 10: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features
for which precedent features have already been set. These features for which precedent
features have already been set comprise Set of Enabled Features. So, the system returns

Set of Enabled Features = {df2}.

Step 11: Method User Interface makes

Set of Enabled/Unset Features = Set of Unset Features ∩ Set of Enabled Features.

Set of Enabled/Unset Features = {df2, df3, df4, df5, df6, df7, df8, df9, df10, df11} ∩ {df2}.

Set of Enabled/Unset Features = {df2}.

Step 12: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. There is one
question bound to the features in Set of Enabled/Unset Features: Question 2 (Q2). So, Q2

is presented to users:

(Q2: Will Develop Project Charter be developed?

[ ]Yes (df2 = TRUE) [ ]No (df2 = FALSE)

Step 13: Using Method User Interface, users select df2 = ’No’ (df2 = FALSE):

(Q2: Will Develop Project Charter be developed?

[X]Yes (df2 = TRUE) [ ]No (df2 = FALSE)

Step 14: Control Logic 1 receives df2 =TRUE and performs simplification of Map from
Features to Variants. So, Map from Features to Variants becomes

Map from Features to Variants = {

pf1: FALSE, pf2: TRUE, pf3: df3, pf4: df4, pf5: df5, pf6: df6, pf7: df7,

pf8: df8, pf9: df9, pf10: df10, pf11: df11, pf12: FALSE, pf13: FALSE,

pf14: df3, pf15: df4, pf16: df3 ∧ df5, pf17: df3 ∧ df6, pf18: df4 ∧ df5,

pf19: df4 ∧ df6, pf20: df3 ∧ df7, pf21: df4 ∧ df7, pf22: df3 ∧ df8, pf23: df4 ∧ df8,

pf24: df5 ∧ df7, pf25: df6 ∧ df7, pf26: df5 ∧ df9, pf27: df5 ∧ df10, pf28: df6 ∧ df9,

pf29: df6 ∧ df10, pf30: df5 ∧ df11, pf31: df6 ∧ df11, pf32: df7 ∧ df8 }

Step 15: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
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False Features. So,

Set of Unset Features = { df3, df4, df5, df6, df7, df8, df9, df10, df11 }

Set of True Features = { df2 }

Set of False Features = { df1 }

Step 16: Method User Interface updates the value of features in Q2:

(Q2: Will Develop Project Charter be developed?

[X]Yes (df2 = TRUE) [ ]No (df2 = FALSE)

Step 17: Since users cannot set any other feature in Q2, users choose to close Q2.

Step 18: Method User Interface checks Set of Relations of Precedence to Features. From
Set of Relations of Precedence to Features, Method User Interface defines the features
for which precedent features have already been set. These features for which precedent
features have already been set comprise Set of Enabled Features. So, the system returns

Set of Enabled Features = {df3, df4}.

Step 19: Method User Interface makes

Set of Enabled/Unset Features = Set of Unset Features ∩ Set of Enabled Features.

Set of Enabled/Unset Features = {df3, df4, df5, df6, df7, df8, df9, df10, df11} ∩ {df3, df4}.

Set of Enabled/Unset Features = {df3, df4}.

Step 20: Method User Interface checks Set of Enabled/Unset Features and Map from
Questions to Features to define the questions that can be presented to users. There is one
question bound to the features in Set of Enabled/Unset Features: Question 3 (Q3). So, Q3

is presented to users:

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [ ]Yes [ ]No
• Requirements management plan (df4) [ ]Yes [ ]No

Step 21: Using Method User Interface, user selects df3 = ’Yes’ (df3 = TRUE):

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [X]Yes [ ]No
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• Requirements management plan (df4) [ ]Yes [ ]No

Step 22: Control Logic 1 receives df3 =TRUE and performs simplification of Map from
Features to Variants. So, Map from Features to Variants becomes

Map from Features to Variants = {

pf1: FALSE, pf2: TRUE, pf3: TRUE, pf4: df4, pf5: df5, pf6: df6, pf7: df7,

pf8: df8, pf9: df9, pf10: df10, pf11: df11, pf12: FALSE, pf13: FALSE,

pf14: TRUE, pf15: df4, pf16: df5, pf17: df6, pf18: df4 ∧ df5,

pf19: df4 ∧ df6, pf20: df3 ∧ df7, pf21: df4 ∧ df7, pf22: df3 ∧ df8, pf23: df4 ∧ df8,

pf24: df5 ∧ df7, pf25: df6 ∧ df7, pf26: df5 ∧ df9, pf27: df5 ∧ df10, pf28: df6 ∧ df9,

pf29: df6 ∧ df10, pf30: df5 ∧ df11, pf31: df6 ∧ df11, pf32: df7 ∧ df8 }

Step 23: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = { df4, df5, df6, df7, df8, df9, df10 }

Set of True Features = { df2, df3 }

Set of False Features = { df1 }

Step 24: Method User Interface updates the value of features in Q3:

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [X]Yes [ ]No
• Requirements management plan (df4) [ ]Yes [ ]No

Step 25: Using Method User Interface, user selects df4 = ’No’ (df4 = FALSE):

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [X]Yes [ ]No
• Requirements management plan (df4) [ ]Yes [X]No

Step 26: Control Logic 1 receives df4 =FALSE and performs simplification of Map from
Features to Variants. So, Map from Features to Variants becomes

Map from Features to Variants = {

pf1: FALSE, pf2: TRUE, pf3: TRUE, pf4: FALSE, pf5: df5, pf6: df6,
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pf7: df7, pf8: df8, pf9: df9, pf10: df10, pf11: df11, pf12: FALSE,

pf13: FALSE, pf14: TRUE, pf15: FALSE, pf16: df5, pf17: df6, pf18: FALSE,

pf19: FALSE, pf20: df3 ∧ df7, pf21: FALSE, pf22: df3 ∧ df8, pf23: FALSE,

pf24: df5 ∧ df7, pf25: df6 ∧ df7, pf26: df5 ∧ df9, pf27: df5 ∧ df10, pf28: df6 ∧ df9,

pf29: df6 ∧ df10, pf30: df5 ∧ df11, pf31: df6 ∧ df11, pf32: df7 ∧ df8 }

Step 27: Control Logic 1 updates Set of Unset Features, Set of True Features, and Set of
False Features. So,

Set of Unset Features = { df4, df5, df6, df7, df8, df9, df10 }

Set of True Features = { df2, df3 }

Set of False Features = { df1, df4 }

Step 28: Method User Interface updates the value of features in Q3:

Q3: Which documents will be developed to Plan Scope Management?

• Scope management plan (df3) [X]Yes [ ]No
• Requirements management plan (df4) [ ]Yes [X]No

Step 29: In principle, users would have to continue and answer the remaining questions
down to the last one, but in order not to use much space in this paper, this step simulates
users choosing to finish the variant selection procedure.

Step 30: Method Control Logic 1 makes Set of true process facts = {pf2, pf3, pf14} and
sends it to Method Control Logic 2.

Step 31: Method Control Logic 2 set as TRUE the variants in Set of Variants that is
bound to process facts in Set of true process facts. Since Set of true process facts = {pf2,
pf3, pf14}, the system returns

TRUE: ({PC}, {atleast1 (PC )}),

TRUE: ({SMP}, {atleast1 (SMP)}),

TRUE: ({PC, SMP}, {precedence(PC, SMP), response(PC, SMP)}),

Step 32: Method Control Logic 2 joins all variants in Set of Variants that are set as TRUE.
This is a Syntactically and Semantically Correct SDL Process to be provided to Framework
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for User Support at Run Time. So,

SDL Process = ( {PC, SMP},
{ atleast1 (PC ), atleast1 (SMP),
precedence(PC, SMP), response(PC, SMP) } )

Step 33: Method Control Logic 2 finishes the selection of variants.

6.5.3 At run time

At run time, SVSDL provides users with Framework for user support at run time. The
sequence of steps with the different interactions among the methods comprising Framework
for user support at run time is shown next.

Step 1: Framework for user support at run time makes the automaton for each task and
constraint taken from Framework for user support at configure time. These automata are
displayed in Figure 61. From these automata, the sequence of markings shown in Figure
62 is created.

(a) t1 (b) t2 (c) r1 (d) r2

(e) r3 (f) r4

Figura 61 – a Syntactically and Semantically SDL process taken from configure time

Figura 62 – Sequence of markings

Step 1: Framework for user support at run time makes the automaton for each task and
constraint.

Step 2: Framework for user support at run time calculates marking M = 11111111.
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Step 3: Method Synchronous product makes Set of enabled events = {SMP (s), RTM(s),
AD(s)}.

Step 4: Method to calculate pending events makes Set of pending events = {SMP (c)}.

Step 5: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to users.

Step 6: Users choose to execute SMP (s).

Step 7: Method to update sequence of executed events updates Set of executed events =
Sequence of executed events = SMP (s).

Step 8: Method to update current state in automata takes the last executed event from
Sequence of executed events to update the current state in each automaton of the SDL
process.

Step 9: Framework for user support at run time calculates marking M = 21111111.

Step 10: Method Synchronous product makes Set of enabled events = {SMP (c), SMP (x),
RTM(s), AD(s)}.

Step 11: Method to calculate pending events makes Set of pending events = {SMP (c)}.

Step 12: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to users.

Step 13: Users choose to execute SMP (c).

Step 14: Method to update sequence of executed events takes SMP (c) and updates Sequence
of executed events = SMP (s).SMP (c)

Step 15: Method to update current state in automata takes SMP (c) (the last executed
event from Sequence of executed events) to update the current state in each automaton of
the SDL process.

Step 16: Framework for user support at run time calculates marking M = 11122121.

Step 17: Method Synchronous product makes Set of enabled events = {SMP (s), RTM(s),
AD(s)}.

Step 18: Method to calculate pending events makes Set of pending events = {RTM(c)}.

Step 19: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to user.

Step 20: Users choose to execute RTM(s).

Step 21: Method to update sequence of executed events takes RTM(s) and updates Sequence
of executed events = SMP (s).SMP (c).RTM(s)

Step 22: Method to update current state in automata takes RTM(s) (the last executed
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event from Sequence of executed events) to update the current state in each automaton of
the SDL process.

Step 23: Framework for user support at run time calculates marking M = 12122121.

Step 24: Method Synchronous product makes Set of enabled events = {SMP (s), RTM(c),
RTM(x), AD(s)}.

Step 25: Method to calculate pending events makes Set of pending events = {RTM(c)}.

Step 26: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to user.

Step 27: Users choose to execute RTM(c).

Step 28: Method to update sequence of executed events takes RTM(c) and updates Sequence
of executed events = SMP (s).SMP (c).RTM(s).RTM(c)

Step 29: Method to update current state in automata takes RTM(c) (the last executed
event from Sequence of executed events) to update the current state in each automaton of
the SDL process.

Step 30: Framework for user support at run time calculates marking M = 11122212.

Step 31: Method Synchronous product makes Set of enabled events = {SMP (s), RTM(s),
AD(s)}.

Step 32: Method to calculate pending events makes Set of pending events = {AD(c)}.

Step 33: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to user.

Step 34: Users choose to execute AD(s).

Step 35: Method to update sequence of executed events takes AD(s) and updates Sequence
of executed events = SMP (s).SMP (c).RTM(s).RTM(c).AD(s)

Step 36: Method to update current state in automata takes AD(s) (the last executed event
from Sequence of executed events) to update the current state in each automaton of the
SDL process.

Step 37: Framework for user support at run time calculates marking M = 11222212.

Step 38: Method Synchronous product makes Set of enabled events = {SMP (s), RTM(s),
AD(c), AD(x)}.

Step 39: Method to calculate pending events makes Set of pending events = {AD(c)}.

Step 40: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to users.

Step 41: Users choose to execute AD(c).
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Step 42: Method to update sequence of executed events takes AD(s) and updates Sequence
of executed events = SMP (s).SMP (c).RTM(s).RTM(c).AD(s).AD(c)

Step 43: Method to update current state in automata takes AD(c) (the last executed event
from Sequence of executed events) to update the current state in each automaton of the
SDL process.

Step 37: Framework for user support at run time calculates marking M = 11122211.

Step 38: Method Synchronous product makes Set of enabled events = {SMP (s), RTM(s),
AD(s)}.

Step 39: Method to calculate pending events makes Set of pending events = ∅.

Step 40: Method to update sequence of executed events presents Set of enabled events and
Set of pending events to users.

Since no event is pending, users are able to continue or finish running process, from step
40.

6.6 Conclusion
This paper argued that in recent years, the interest in reference models in project ma-
nagement is increasing and, consequently, it is also increasing in Project Management
Information Systems (PMIS). Business processes generated from a reference model are
one of the dimensions dealt with in Project Management Information Systems (PMIS). A
reference model can generate a set of different business processes for the same application
domain.

This paper also quoted studies showing that reusing process models in different contexts can
result in a wide range of related process model variants, which belongs to the same process
family, and that it is too expensive for companies to design and implement standardized
business processes for each actual context in the real world. So, there currently is a
high level of interest in gathering common process knowledge to use as reference process
models. Thus, an approach to capture and set the variability in a given process model is
needed. This approach must be able to represent a family of process variants in a compact,
reusable, and maintainable way and should allow process families to be configured so that
process variants represent, correctly, the requirements of the respective specific application
environments.

This paper selected PMBOK as reference model for project management. The processes to
create the application example were selected from PMBOK. The processes in Project Scope
Management are modeled using Simple Declarative Language (SDL) (SCHAIDT; SANTOS,
2017b). SDL is a conceptual framework for modeling constraint based processes. Selection
of variants is supported by Selection of Variants with Simple Declarative language (SVSDL)



198

(SCHAIDT; SANTOS, 2017a). SVSDL is a conceptual framework to select variants from
processes modeled using SDL.

This paper presented an example of SVSDL application in its three moments: design,
configure and run time. At design time, SVSDL provides users with Framework for user
support at design time. This framework enables users to make Framework for user support
at configure time. This framework enables users to make a Syntactically and Semantically
Correct SDL Process. At run time, users are provided with Framework for user support at
run time. This framework enables users to run a Syntactically and Semantically Correct
SDL Process. Thus, these example present the complete SVSDL operation cycle.

The first example uses Function = Exactly.one and questionnaire approach to support the
selection of variants. Function = Exactly.one requires that all process facts be mutually
exclusive and, consequently, the logical expressions that are bound to these process facts
are also mutually exclusive. If Function = Exactly.one then the variants in Vrpm cannot
be joined to make a variant run. Each variant in Vsel is semantically correct. So, if Function
= Exactly.one then it is not required that the configurable process model in Example 1
be semantically correct. The previous conditions are complied in Example 1.

The second example uses Function = Atleast.one and questionnaire approach to support
the selection of variants. Function = Atleast.one do not require that all the process facts
be mutually exclusive and, consequently, the logical expressions that are bound to these
process facts are also not mutually exclusive. If Function = Atleast.one then the variants
in Vrpm can be joined to make a variant that can be run. If Function = Atleast.one then
the configurable process model must be semantically correct. The previous conditions are
also complied in Example 2.

Each process fact must be bound to a logical expression. This logical expression is comprised
of logical variables that represent domain facts. This condition is fulfilled in Examples
1 and 2. In Examples 1 and 2 there are only the logical rules to bind process facts and
domain facts. There are no other logical rules among domain facts. But, it is possible, if
so desired, to define domain constraints among domain facts, however this would decrease
the number of variants that could be run.
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7 Conclusion

Our research’s main objective is to propose a variants selection framework from a configura-
ble process model. Configurable process model is modeled by Simple Declarative Language.
This research sets five Specific Objectives. For each Specific Objective was defined a set
of expected results. Expected results are specific topics to be addressed by each Specific
Objective. When the five specific objectives are fulfilled, the main objective is also fulfilled.
Objectives’ evaluating is presented next.

7.1 Evaluating compliance with Specific Objectives
Specific Objective 1 was Define a constraint based language to model the process variants
of the framework. This objective was fulfilled by the Simple Declarative Language (SDL)
presented in section 3. SDL provides features to guarantee Specific Objective 1 is fulfilled.
Some of these features are described next. SDL encompasses four constructs: task, constraint
atleast, constraint precedence, and constraint response. Constraint atleast defines that a
task must be executed, constraint precedence defines the order to execute two tasks,
and constraint response defines that whenever a task is executed other task must be
executed. The fours constructs in SDL are represented by automata. Definition of automata
to represent the four constructs in SDL meets Expected_Result1.1 (ER1.1). A process
modeled by SDL is composed by two sets: a set of tasks and a set of constraints. These sets
of tasks and constraints must obey SDL’s syntax and semantics. SDL syntax is defined
through a set of rules. These rules was an important point to SDL definition. That is
because syntax rules support the user to properly specify a process. For example, if the
modeler specifies the constraint precedence(ti,tj) in set of constraints, then modeler is
obligated to specify that the tasks ti and tj are in set of tasks. That is very important
because constraints refer only to part of tasks events. Constraints do not refer complete
tasks. So modelers must to specify tasks in set of tasks. This is an example of SDL
syntax rule. SDL syntax rules also support the modeler to specify processes with better
performance. For example, modeler cannot specify the constraint response(ti,ti). That
constraint do not change the process behavior, it only increases the number of states
to achieve process objectives. So that constraint is not permitted by the SDL syntax
rules. SDL semantics is defined by two rules. These rules was another important point to
SDL definition. That is because semantics rules support the user to specify a process to
be properly performed. The first semantics rule does not permit set of constraints with
constraints precedence(ti,tj) and precedence(tj ,ti) together. Such a constraints combination
disable ti and tj disabled to be completed. The second semantics rule does not permit
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set of constraints with constraints response(ti,tj) and response(tj,ti) together. Such a
constraint combination disable the process to be completed. Definition of syntax and
semantics accurate rules for SDL meets Expected_Result1.2 (ER1.2).

Specific Objective 2 was Propose a framework for design time. This objective was fulfilled
by Framework for user support at design time presented in Section 4. Framework for user
support at design time provides a set of methods and data structures to enable the user to
make Framework for user support at run time. Methods in Framework for user support at
design time are designed to be performed at a logical sequence. All the data structures
made by Framework for user support at design time comply with all the requirements at
configuration time. Framework for user support at design time is, in fact, a specification
for nine methods. Method to make Function, Method to make Reference Process Model,
Method to make Set of Variants, and Method to make Map from Features to Variants
enable the modeler to make process variants and mix them into the same constraint based
process. These four methods ensure that the SDL syntax and semantics rules are preserved.
This is possible due the precise mathematical rules that are obeyed by these methods.
These mathematical rules are demonstrated in section 4. These four methods’ definitions
meet Expected_Result2.1 (ER2.1) and Expected_Result2.2 (ER2.2). Method to make Set
of features, Method to make Set of Domain Constraints, Method to define Set of Relations
of Precedence to Features, and Method to Map Questions to Features enable the modeler to
make Questionnaire. Questionnaire enabled the user to select and control all the process
features. This is possible due the precise logic rules obeyed by these methods. These logic
rules are demonstrated in section 4. Since these four methods enable modeler to make
Questionnaire, these four methods’ definitions meet Expected_Result2.3 (ER2.3).

Specific Objective 3 (SO3 ) was Propose a framework for configuration time. This objective
was fulfilled by Framework for user support at configuration time presented in Section
5. Framework for user support at configuration time provides a set of methods and data
structures to enable the user to make Framework for user support at run time. Methods in
Framework for user support at configuration time are designed to be performed at a logical
sequence. All the data structures made by Framework for user support at configuration time
comply with all the requirements at run time. Framework for user support at configuration
time is, in fact, a specification for three methods. Method User Interface and Method Logic
Control 1 provide support for user to answer the questionnaire. These methods are based
on mathematical rules. These rules guarantee that questionnaire is properly answered.
Definition of Method User Interface and Method Logic Control 1 meets Expected_Result3.1

(ER3.1). Method Logic Control 1 and Method Logic Control 2 provides support to simplify
and reduce the logic sentences of process features. These two methods are based on logic
formalism to support the user to set features to true or false. When the user sets a feature,
these methods simplify the logic sentences. These two methods reduce logical variables.
That brings a dynamic operation of the questionnaire. Whenever user sets a feature,
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framework calculates which are the features that user can set next. User cannot set other
features before framework make that calculation. Framework also provides methods to
select the process variants in accord to syntax and semantics rules, no additional calculation
is required to ensure syntactic and semantically correctness. This happens because the
logic rules to make each process variant are defined at design time. Definition of Method
Logic Control 1 and Method Logic Control 2 meets Expected_Result3.2 (ER3.2).

Specific Objective 4 (SO4 ) is Propose a framework for run time. This objective was fulfilled
by Framework for user support at run time presented in Section 5. Framework for user
support at run time provides a set of methods and data structures to enable the user
to answer the questionnaire. Methods in Framework for user support at configuration
time are designed to be performed at a logical sequence. Framework for user support at
run time provides four methods: Method to calculate the pendent events, Method product
synchronous, Method to update sequence of executed events, and Method to update current
state in automata. These four methods enable the user to run any process modeled by SDL.
Method to calculate the pendent events supports the user to execute pendent events at each
process step. Definition ofMethod to calculate the pendent events meets Expected_Result4.1

(ER4.1). Method product synchronous supports the user to execute enable events at each
process step. Definition of Method product synchronous meets Expected_Result4.2 (ER4.2).
SDL framework offers a great advantageous: no event sequence is calculated at design time,
events sequences are calculated only at run time. This happens because SDL framework
guarantee syntax and semantics consistency at design time. That is very important in
variants selection context because checking syntax and semantics at run time requires very
complicated methods. This could bring process performance reduction.

Specific Objective 5 (SO5 ) was Demonstrate the application of the framework. This objec-
tive was fulfilled by examples presented in Section 6. Section 6 presents reference process
models’ fundamentals. One of these is Process Management Body Of Knowledge (PMBOK).
PMBOK fundamentals’ description in Section 6 meets Expected_Result5.1 (ER5.1). PM-
BOK encompasses management, monitoring and control activities. For each new project,
these activities are performed in different conditions. Modeling PMBOK processes by im-
perative languages tends to be hard and confuse. This happens because PMBOK processes
tend to be repeatedly executed. For example, while the project management planning
is developed it is impossible to define how many times Scope management plan will be
modified during the project execution. In general, project team define a initial scope, but
at most of cases, project requirements need to be modified due several reasons, including
factors related to finances, quality, resources, time, among others. As from that argument,
article in Section 6 presents two examples to model Project Scope Management processes.
Project Scope Management is one PMBOK knowledge area. Article in Section 6 describes
five processes: Collect Requirements, Define Scope, Create WBS, Verify Scope and Control
Scope. In the two application examples, Project Scope Management processes are modeled
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by SDL. These processes generate processes variants, i.e. the application contexts. Process
variants context (application contexts) meets Expected_Result5.2 (ER5.2). Section 6 also
demonstrates examples to model, configure and run process variants from Project Scope
Management. These examples meet Expected_Result5.3 (ER5.3). Examples in Section 6
obligate the user to update PMBOK documents whenever some tasks are executed. That
condition is precisely one of PMBOK features. In other words, modeling PMBOK by SDL
(a constraint based language) eased comply with PMBOK features. Article in Section 7
demonstrated the appropriate operation of the SVSDL methods presented in Section 5.

7.2 Main contribution and its originality
Previous subsection analysed each of the five research’s Specific Objectives. It was demons-
trated that the five research’sSpecific Objectives were fulfilled. Since the five research’s
Specific Objectives were fulfilled, the research’s Main Objective was fulfilled. Since the
research’s Main Objective was fulfilled, this research also provided its main contribution:
Propose a conceptual framework to select variants as from constraints based processes.
That conceptual framework is Selection of Variants with Simple Declarative Language
(SVSDL). SVSDL encompasses three frameworks: Framework for design time, Framework
for configuration time and Framework for run time. Each of these frameworks encompasses
a set of methods. Framework for design time methods support user to make the Framework
for configuration time. Framework for configuration time methods support user to make a
constraints based process modeled by Simple Declarative Language (SDL). Framework for
run time methods support user to perform the SDL process. At design time, the modeler
gathers all relevant data to design Framework for configuration time. Framework for design
time requires greater work to be performed by the modeler since it is expected to be
performed only one time. Framework for configuration time will be available to be used
repeatedly by users. Whenever Framework for configuration time is performed, a new
SDL process is performed by Framework for run time. With respect to originality, SVSDL
provides consistent methods to combine variants selection fundamentals (variability) with
constraints based processes fundamentals (looseness). Literature review has demonstrated
that there is not work which propose that combination. This is the originality of this
research.

7.3 Secondary contributions
The process to achieve the research’s Secondary and Main Objectives brought naturally
others secondary contributions. They are described next:

• Development of an approach based on Supervisory Control Theory to model cons-
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traints based processes. That is Article 1.

• Development of an approach to model variation points in pre-specified processes
through constraints based language. That is Article 2.

• Development of SDL framework to design and run constraints based processes. That
is Article 3.

7.4 Limitations
Although SVSDL framework complies with research’s Specific and Main Objectives, SVSDL
framework presents at least two limitations. These limitations are described in the following:

• First limitation concerns to validation of logic relations. SVSDL presents methods to
define logic relations to three levels: level 1, level 2 and level 3. They are described
in the following. Level 1 : modeler specifies logic relations just between Domain
Facts. Level 2 : modeler specifies logic relations between Domain Facts and Processes
Facts. Level 3 : modeler specifies logic relations just between Process Facts. Although
SVSDL provides methods to define logic relations to these levels, it does not offer
support to validation if the modeler specifies logic relations to level 1. In other words,
SVSDL is able to identify when logic relations of level 2 and level 3 have some
contradiction, but it is not able to identify such contradictions if the modeler also
specify logic relations to level 1. If modeler also specifies logic relations to level 1,
then some logic external support is required.

• Second limitation concerns to Simple Declarative Language (SDL). SDL provides a
set of only three constraints: atleast, precedence and response. SDL does not provide,
for example, constraints to tasks exclusion. That can be very restrictive in cases
where is necessary to model a process that requires events exclusion.

7.5 Future works
Future works are related to the limitations of this research. So we enumerated two future
works to be done:

• Specify methods to perform logic validation for logic relations at Level 1 (just between
Domain Facts).

• Specifying, at least, some constraint to exclude tasks in SVSDL.
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